1
|
Song H, Yang A, Wang Y, Xu R, Hu W. Potential roles of inhalation aromatherapy on stress-induced depression by inhibiting inflammation in the peripheral olfactory system. Neurochem Int 2025; 186:105967. [PMID: 40158533 DOI: 10.1016/j.neuint.2025.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
According to principles of Traditional Chinese Medicine, the nose is the passage for exogenous evil to invade the body, while essential or volatile oils extracted from herbs have the effects of dispelling melancholy, repelling foulness, and resuscitation with aromatics. Inhalation aromatherapy can target the brain and has a potential therapeutic effect on mood disorders. However, in particular, the mechanism of the effect of inhalation aromatherapy on the olfactory mucosa (OM) of the nasal cavity at the peripheral level, the first step in olfactory detection, where olfactory sensory neurons (OSNs) relay information to brain for signal processing, remains unclear. Here, we examined the roles of inhalation aromatherapy with compound essential oils derived from Bergamot, Peppermint and Rosa rugose on chronic unpredictable mild stress (CUMS)-induced depression and explored potential therapeutic targets in the peripheral OM. We found that inhalation aromatherapy effectively ameliorated CUMS-induced depression and olfactory dysfunction in rats. Strikingly, inhalation aromatherapy improved pathological changes, significantly reduced apoptosis levels, and promoted olfactory neurogenesis in the OM, which may contribute to the beneficial effects on the olfactory function of depressed rats. Further, inhalation aromatherapy significantly may reverse inflammation levels in the OM through Sirt1/FKBP5/GR/NF-κB signaling pathway, and prevented neuroinflammation in other parts of the olfactory system such as the hippocampus and prefrontal cortex, which may play a role in the olfactory impairments in rats with depression. Collectively, we have demonstrated that inhalation aromatherapy could efficiently prevent the local inflammatory responses in the OM of CUMS depression model rats. These findings provide new insights into the treatment of depression with aromatherapy, as well as new concept for the identification of novel antidepressant strategies.
Collapse
Affiliation(s)
- Hongxiu Song
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Aihong Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Wang
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rui Xu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Hu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Xie J, Che S, Liu J, Long X. SIRT1: potential target in glucocorticoid-resistant diseases. Front Immunol 2025; 16:1514745. [PMID: 40416964 PMCID: PMC12098067 DOI: 10.3389/fimmu.2025.1514745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Glucocorticoid resistance is a challenging problem in clinical practice. Increasing glucocorticoid sensitivity and reducing resistance are important in the management of certain diseases. In steroid-resistant airway inflammatory diseases, glucocorticoid receptor (GR) expression is reduced, and impaired GR nuclear translocation is closely related to glucocorticoid resistance. Histone deacetylase SIRT1 regulates steroid hormone receptor activity and interacts with the androgen receptor and GR. In some glucocorticoid-resistant diseases, SIRT1 expression is reduced. Here, we review recent advances in the role of SIRT1 in regulating glucocorticoid signaling. First, we describe the structure, tissue expression, and subcellular localization of SIRT1. We also discuss the molecular mechanisms by which SIRT1 regulates glucocorticoid activity and its association with GR, as well as the mechanisms and roles of SIRT1 in several common glucocorticoid-resistant diseases. SIRT1 may serve as a potential therapeutic target, providing an opportunity for the treatment of glucocorticoid-resistant diseases.
Collapse
Affiliation(s)
| | | | | | - Xiaoru Long
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| |
Collapse
|
3
|
Xie H, Xie Z, Luan F, Zeng J, Zhang X, Chen L, Zeng N, Liu R. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117785. [PMID: 38262525 DOI: 10.1016/j.jep.2024.117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
4
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
5
|
Chang N, Li J, Lin S, Zhang J, Zeng W, Ma G, Wang Y. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci Rep 2024; 14:5521. [PMID: 38448466 PMCID: PMC10917792 DOI: 10.1038/s41598-024-55923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise.
Collapse
Affiliation(s)
- Ning Chang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Junyang Li
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Sufen Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Jinfeng Zhang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Weiqiang Zeng
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Guoda Ma
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| |
Collapse
|
6
|
Iyer-Bierhoff A, Wieczorek M, Peter SM, Ward D, Bens M, Vettorazzi S, Guehrs KH, Tuckermann JP, Heinzel T. Acetylation-induced proteasomal degradation of the activated glucocorticoid receptor limits hormonal signaling. iScience 2024; 27:108943. [PMID: 38333702 PMCID: PMC10850750 DOI: 10.1016/j.isci.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.
Collapse
Affiliation(s)
- Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Wieczorek
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Sina Marielle Peter
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dima Ward
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Karl-Heinz Guehrs
- Core Facility Proteomics, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
7
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
8
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Liu T, Mu S, Yang L, Mao H, Ma F, Wang Y, Zhan Y. Comprehensive bibliometric analysis of sirtuins: Focus on sirt1 and kidney disease. Front Pharmacol 2022; 13:966786. [PMID: 36052119 PMCID: PMC9424666 DOI: 10.3389/fphar.2022.966786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Sirtuins, as regulators of metabolism and energy, have been found to play an important role in health and disease. Sirt1, the most widely studied member of the sirtuin family, can ameliorate oxidative stress, immune inflammation, autophagy, and mitochondrial homeostasis by deacetylating regulatory histone and nonhistone proteins. Notably, sirt1 has gradually gained attention in kidney disease research. Therefore, an evaluation of the overall distribution of publications concerning sirt1 based on bibliometric analysis methods to understand the thematic evolution and emerging research trends is necessary to discover topics with potential implications for kidney disease research. We conducted a bibliometric analysis of publications derived from the Web of Science Core Collection and found that publications concerning sirt1 have grown dramatically over the past 2 decades, especially in the past 5 years. Among these, the proportion of publications regarding kidney diseases have increased annually. China and the United States are major contributors to the study of sirt1, and Japanese researchers have made important contributions to the study of sirt1 in kidney disease. Obesity, and Alzheimer’s disease are hotspots diseases for the study of sirt1, while diabetic nephropathy is regarded as a research hotspot in the study of sirt1 in kidney disease. NAD+, oxidative stress, and p53 are the focus of the sirt1 research field. Autophagy and NLRP3 inflammasome are emerging research trends have gradually attracted the interest of scholars in sirt1, as well as in kidney disease. Notably, we also identified several potential research topics that may link sirt1 and kidney disease, which require further study, including immune function, metabolic reprogramming, and fecal microbiota.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shujuan Mu
- South District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yongli Zhan,
| |
Collapse
|
10
|
Song MK, Lee JH, Kim YJ. Effect of chronic handling and social isolation on emotion and cognition in adolescent rats. Physiol Behav 2021; 237:113440. [PMID: 33940083 DOI: 10.1016/j.physbeh.2021.113440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Adolescence is a critical period of establishing social relations through social interactions that affect the emotional development associated with stress responses, anxiety, depression, and cognitive development. We investigated the behavioral and neurobiological changes induced by handling and social isolation in adolescent rats to determine social interaction effects. Rats were randomly divided into groups and used as a control, a handling, and a social isolation group. After 12 weeks, the handling group showed a significant increase in mobility in the open field test and in tryptophan hydroxylase expression in the dorsal raphe nucleus, as well as significantly reduced immobility times in the forced swim test, compared to the control group (p < 0.05). The social isolation group, in contrast, showed a significant increase in immobility times in the forced swim test and in glucocorticoid and SIRT1 expression in the hippocampus, as well as a significant reduction in mobility in the open field test and in escape latency times in the passive avoidance test, compared to the control group (p < 0.05). The present results show that while handling did not improve cognitive function, it reduced anxiety and lowered depression levels; social isolation, in contrast, significantly impaired the animals' stress response, anxiety and depression levels, and cognitive function. Our findings indicate that handling and social isolation have a strong effect on adolescents' emotional and cognitive development into healthy adults.
Collapse
Affiliation(s)
- Min Kyung Song
- Department of Nursing, Graduate school, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- Department of Nursing, Graduate school, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University• East West Nursing Institute, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Wang J, Ma SF, Yun Q, Liu WJ, Guo MN, Zhu YQ, Liu ZZ, Qian JJ, Zhang WN. Ameliorative effect of SIRT1 in postpartum depression mediated by upregulation of the glucocorticoid receptor. Neurosci Lett 2021; 761:136112. [PMID: 34265417 DOI: 10.1016/j.neulet.2021.136112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Recent evidence has confirmed the association of glucocorticoid receptor (GR) gene variants with the "stress" endocrine axis in postpartum depression (PPD). Sirtuin 1(SIRT1) is an NAD+-dependent histone deacetylase and transcriptional enhancer of GR. However, to date, the function of the SIRT1 gene in the regulation of GR expression in PPD remains to be fully determined. A hormone-stimulated pregnancy (HSP) and subsequent "postpartum" withdrawal of estrogen was employed to mimic the fluctuations in estradiol associated with pregnancy and postpartum. We confirmed that estradiol benzoate withdrawal (EW)-rats displayed depression- and anxiety-like behaviors. These behavioral dysfunctions are associated with attenuated expression of SIRT1 and GR in the hippocampus. To assess the role of SIRT1, as well as its regulatory target directly, a selective SIRT1 activator (SRT2104) was infused into the hippocampus of EW-rats. We found that pharmacological activation of hippocampal SIRT1 blocks the development of depression-related, but not anxiety-related, phenotypes of PPD. In addition, the activation of SIRT1 leads to an increase in hippocampal GR expression in EW-rats. We further confirmed that SIRT1 physically interacts with GR in a glucocorticoid-dependent manner. Taken together, our results suggest that neuropathology in PPD is caused, at least in part, by the inhibition of the SIRT1-GR signaling pathway. Elevating SIRT1 levels, either pharmacologically or through other means, could represent a therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Zhenjiang Jieshengrui Biotech Co., Ltd, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Si-Fei Ma
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Qi Yun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Changzhou Children's Hospital, Changzhou, Jiangsu Province 213003, PR China
| | - Wen-Jun Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Mei-Na Guo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Yong-Qiang Zhu
- Department of Neurology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Zi-Zhong Liu
- Department of Neurology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jin-Jun Qian
- Department of Neurology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Zhenjiang Jieshengrui Biotech Co., Ltd, Zhenjiang, Jiangsu Province 212013, PR China
| | - Wei-Ning Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
12
|
Grillault Laroche D, Curis E, Bellivier F, Nepost C, Gross G, Etain B, Marie-Claire C. Network of co-expressed circadian genes, childhood maltreatment and sleep quality in bipolar disorders. Chronobiol Int 2021; 38:986-993. [PMID: 33781139 DOI: 10.1080/07420528.2021.1903028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bipolar disorder (BD) is a chronic and burdensome psychiatric disease, characterized by variations in mood and energy. The literature has consistently demonstrated an association between BD and childhood maltreatment (CM), and genetic variants of circadian genes have been associated with an increased vulnerability to develop BD. In this context, environmental factors such as CM may also contribute to the susceptibility to BD through alterations in the functioning of the biological clock linked to modifications of expression of circadian genes. In this study, we explored the associations between childhood maltreatment, sleep quality, and the level of expression of a comprehensive set of circadian genes in lymphoblastoid cell lines from patients with BD. The sample consisted of 52 Caucasian euthymic patients with a diagnosis of BD type 1 or type 2. The exposure to CM was assessed with the Childhood Trauma Questionnaire (CTQ), and the sleep quality was assessed using the Pittsburgh Sleep Quality Index. We measured the expression of 18 circadian genes using quantitative RT-PCR: ARNTL2, BHLHE40, BHLHE41, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, DBP, GSK3B, NPAS2, NR1D1, PER1, PER2, PER3, PPARGC1A, RORA, and RORB. Gene expression networks were analyzed with the disjoint graphs method. Compared to the other investigated transcripts, PPARGC1A was the only one whose expression level was differentially affected in patients who have experienced CM and, more specifically, physical abuse. We observed no significant effects of the other CTQ subscores (emotional and sexual abuses, physical and emotional neglects), nor of the sleep quality on the network of circadian genes expression. Although requiring replication in larger cohorts, the result obtained here is consistent with the hypothesis of an influence of CM exposure on circadian systems and highlights the importance of PPARGC1A in these processes.
Collapse
Affiliation(s)
- D Grillault Laroche
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - E Curis
- Laboratoire de Biomathématiques, Université de Paris, Paris, France
- Service de Biostatistique et Information Médicale, Paris, France
| | - F Bellivier
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - C Nepost
- Université de Paris, INSERM UMR-S 1144, Paris, France
| | - G Gross
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - B Etain
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | | |
Collapse
|
13
|
Kino T, Burd I, Segars JH. Dexamethasone for Severe COVID-19: How Does It Work at Cellular and Molecular Levels? Int J Mol Sci 2021; 22:ijms22136764. [PMID: 34201797 PMCID: PMC8269070 DOI: 10.3390/ijms22136764] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by infection of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) significantly impacted human society. Recently, the synthetic pure glucocorticoid dexamethasone was identified as an effective compound for treatment of severe COVID-19. However, glucocorticoids are generally harmful for infectious diseases, such as bacterial sepsis and severe influenza pneumonia, which can develop respiratory failure and systemic inflammation similar to COVID-19. This apparent inconsistency suggests the presence of pathologic mechanism(s) unique to COVID-19 that renders this steroid effective. We review plausible mechanisms and advance the hypothesis that SARS-CoV-2 infection is accompanied by infected cell-specific glucocorticoid insensitivity as reported for some other viruses. This alteration in local glucocorticoid actions interferes with undesired glucocorticoid to facilitate viral replication but does not affect desired anti-inflammatory properties in non-infected organs/tissues. We postulate that the virus coincidentally causes glucocorticoid insensitivity in the process of modulating host cell activities for promoting its replication in infected cells. We explore this tenet focusing on SARS-CoV-2-encoding proteins and potential molecular mechanisms supporting this hypothetical glucocorticoid insensitivity unique to COVID-19 but not characteristic of other life-threatening viral diseases, probably due to a difference in specific virally-encoded molecules and host cell activities modulated by them.
Collapse
Affiliation(s)
- Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Sidra Medicine, Doha 26999, Qatar
- Correspondence: ; Tel.: +974-4003-7566
| | - Irina Burd
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| | - James H. Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| |
Collapse
|
14
|
Hodge G, Tran HB, Reynolds PN, Jersmann H, Hodge S. Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes. Ther Adv Respir Dis 2021; 14:1753466620905280. [PMID: 32270742 PMCID: PMC7153179 DOI: 10.1177/1753466620905280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The class III NAD-dependent histone deacetylase (HDAC) sirtuin 1 (SIRT1) is an important regulator of senescence, aging, and inflammation. SIRT1de-acetylates chromatin histones, thereby silencing inflammatory gene transcription. We have reported increased steroid-resistant senescent pro-inflammatory CD28nullCD8+ T cells in patients with chronic obstructive pulmonary disease (COPD). We hypothesized that SIRT1 is reduced in these cells in COPD, and that treatment with SIRT1 activators (resveratrol, curcumin) and agents preventing NAD depletion (theophylline) would upregulate SIRT1 and reduce pro-inflammatory cytokine expression in these steroid-resistant cells. METHODS Blood was collected from n = 10 COPD and n = 10 aged-matched controls. Expression of CD28, SIRT1, and pro-inflammatory cytokines was determined in CD8+ and CD8- T and natural killer T (NKT)-like cells cultured in the presence of ±1 µM prednisolone, ±5 mg/L theophylline, ±1 µM curcumin, ±25 µM resveratrol, using flow cytometry and immunofluorescence. RESULTS There was an increase in the percentage of CD28nullCD8+ T and NKT-like cells in COPD patients compared with controls. Decreased SIRT1 expression was identified in CD28nullCD8+T and NKT-like cells compared with CD28+ counterparts from both patients and controls (e.g. CD28null 11 ± 3% versus CD28+ 57 ± 9%). Loss of SIRT1 was associated with increased production of IFNγ and TNFα, steroid resistance, and disease severity. SIRT1 expression was upregulated in the presence of all drugs and was associated with a decrease in steroid resistance and IFNγ and TNFα production by CD28nullCD8+T and NKT-like cells. The presence of the SIRT1 inhibitor, EX-527 negated [by 92 ± 12% (median ± SEM)] the effect of the SIRT1 activator SRT720 on the percentage of CD8+ T cells producing IFNγ and TNFα. CONCLUSIONS Steroid resistance in pro-inflammatory CD28nullCD8+ T and NKT-like cells is associated with decreased SIRT1 expression. Treatment with prednisolone, in combination with theophylline, curcumin or resveratrol increases SIRT1 expression, restores steroid sensitivity, and inhibits pro-inflammatory cytokine production from these cells and may reduce systemic inflammation in COPD. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Greg Hodge
- Lung Research, Department of Thoracic Medicine, Royal Adelaide Hospital, AHMS building, North Terrace, Adelaide, South Australia 5000, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hai B Tran
- Lung Research, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Paul N Reynolds
- Lung Research, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hubertus Jersmann
- Lung Research, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Lung Research, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Alnoud MAH, Chen W, Liu N, Zhu W, Qiao J, Chang S, Wu Y, Wang S, Yang Y, Sun Q, Kang J. Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotox Res 2021; 39:444-455. [PMID: 33025360 DOI: 10.1007/s12640-020-00294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Prenatal glucocorticoid (GC) overexposure impacts fetal hippocampal neural stem cells (NSCs) and increases the risk for relative cognitive and mood disorders in offspring. However, the precise underlying mechanisms remain elusive. Here, we treated mouse hippocampal NSCs with dexamethasone (DEX) in vitro and found that DEX inhibited cell proliferation and Sirt7 expression. In addition, prenatal mouse overexposure to DEX induced the suppression of Sirt7 in the hippocampus of offspring. Sirt7 knockdown significantly decreased the percentage of proliferating cells but did not further reduce the NSC proliferation rate in the presence of DEX, whereas Sirt7 overexpression rescued DEX-induced inhibition of hippocampal NSC proliferation. Moreover, DEX inhibited Sirt7 expression through the glucocorticoid receptor (GR), and p21 was found to mediate the functional effect of DEX-induced Sirt7 suppression. In conclusion, our data demonstrate for the first time the effect of DEX on the Sirt7-p21 pathway in hippocampal NSCs, identifying a new potential therapeutic target for prenatal GC overexposure-related neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Mohammed A H Alnoud
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
16
|
Huang SB, Thapa D, Munoz AR, Hussain SS, Yang X, Bedolla RG, Osmulski P, Gaczynska ME, Lai Z, Chiu YC, Wang LJ, Chen Y, Rivas P, Shudde C, Reddick RL, Miyamoto H, Ghosh R, Kumar AP. Androgen deprivation-induced elevated nuclear SIRT1 promotes prostate tumor cell survival by reactivation of AR signaling. Cancer Lett 2021; 505:24-36. [PMID: 33617947 DOI: 10.1016/j.canlet.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
The NAD+-dependent deacetylase, Sirtuin 1 (SIRT1) is involved in prostate cancer pathogenesis. However, the actual contribution is unclear as some reports propose a protective role while others suggest it is harmful. We provide evidence for a contextual role for SIRT1 in prostate cancer. Our data show that (i) mice orthotopically implanted with SIRT1-silenced LNCaP cells produced smaller tumors; (ii) SIRT1 suppression mimicked AR inhibitory effects in hormone responsive LNCaP cells; and (iii) caused significant reduction in gene signatures associated with E2F and MYC targets in AR-null PC-3 and E2F and mTORC1 signaling in castrate-resistant ARv7 positive 22Rv1 cells. Our findings further show increased nuclear SIRT1 (nSIRT1) protein under androgen-depleted relative to androgen-replete conditions in prostate cancer cell lines. Silencing SIRT1 resulted in decreased recruitment of AR to PSA enhancer selectively under androgen-deprivation conditions. Prostate cancer outcome data show that patients with higher levels of nSIRT1 progress to advanced disease relative to patients with low nSIRT1 levels. Collectively, we demonstrate that lowering SIRT1 levels potentially provides new avenues to effectively prevent prostate cancer recurrence.
Collapse
Affiliation(s)
- Shih-Bo Huang
- Department of Urology, The University of Texas Health, USA
| | - D Thapa
- Department of Urology, The University of Texas Health, USA
| | - A R Munoz
- Department of Urology, The University of Texas Health, USA
| | - S S Hussain
- Department of Urology, The University of Texas Health, USA
| | - X Yang
- Department of Urology, The University of Texas Health, USA
| | - R G Bedolla
- Department of Urology, The University of Texas Health, USA
| | - P Osmulski
- Department ofMolecular Medicine, The University of Texas Health, USA
| | - M E Gaczynska
- Department ofMolecular Medicine, The University of Texas Health, USA
| | - Z Lai
- Department ofMolecular Medicine, The University of Texas Health, USA; Greehey Children's Cancer Research Institute, San Antonio, TX, 78229, USA
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Greehey Children's Cancer Research Institute, San Antonio, TX, 78229, USA
| | - Y Chen
- Department ofEpidemiology and Biostatistics, The University of Texas Health, USA; Mays Cancer Center, San Antonio, TX, 78229, USA; Greehey Children's Cancer Research Institute, San Antonio, TX, 78229, USA
| | - P Rivas
- Department of Urology, The University of Texas Health, USA
| | - C Shudde
- Department of Urology, The University of Texas Health, USA
| | - R L Reddick
- Department ofPathology, The University of Texas Health, USA
| | - H Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - R Ghosh
- Department of Urology, The University of Texas Health, USA; Department ofMolecular Medicine, The University of Texas Health, USA; Mays Cancer Center, San Antonio, TX, 78229, USA
| | - A P Kumar
- Department of Urology, The University of Texas Health, USA; Department ofMolecular Medicine, The University of Texas Health, USA; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA; Mays Cancer Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
17
|
Chen Y, Yan X, Xu X, Yuan S, Xu F, Liang H. PNPLA3 I148M is involved in the variability in anti-NAFLD response to exenatide. Endocrine 2020; 70:517-525. [PMID: 32862405 DOI: 10.1007/s12020-020-02470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE GLP-1 receptor agonists, such as exenatide, have been proven to attenuate nonalcoholic fatty liver disease (NAFLD) in vivo and in vitro. However, the efficiency of exenatide had interindividual differences. PNPLA3 is a major susceptibility gene for NAFLD and its I148M polymorphism increases the risk of all disorders of the NAFLD spectrum. Whether this variant contributes to variability in exenatide response is still unclear. METHODS PNPLA3 148I knockin HepG2 cells were constructed using the Cas9/sgRNA system. Oil Red O staining combined with TG quantification was used to evaluate lipid accumulation. Western blotting and qRT-qPCR were conducted, respectively, to measure the protein and mRNA expression of lipid metabolic and endoplasmic reticulum (ER) stress-related inflammatory markers. PNPLA3 I148M was genotyped in type 2 diabetics using Sanger sequencing. The exenatide-induced changes in liver fat content and other clinical parameters were compared between PNPLA3 I148M genotypes. RESULTS Lipid deposition increased in both PNPLA3 148I/I and 148M/M HepG2 cells treated with palmitoleic acid, while cells with 148M/M had a higher TG content than those with 148I/I. Exendin-4 treatment was showed to be more significant in 148I/I cells than in 148M/M cells in terms of reducing the intrahepatic fat content, inhibiting SREBP-1c and ER stress-related inflammation, and activating AMPK-ACC lipid oxidation pathway. In patients with type 2 diabetes, 24-week treatment with exenatide improved liver fat content in patients carrying PNPLA3 148I/I better than in patients with 148M/M. CONCLUSIONS PNPLA3 I148M might modify the anti-NAFLD response to exenatide.
Collapse
Affiliation(s)
- Yunzhi Chen
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Xuemei Yan
- Department of Endocrinology and Metabolism, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Xiao Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Shuhua Yuan
- Department of Endocrinology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
| |
Collapse
|
18
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
19
|
Præstholm SM, Correia CM, Grøntved L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front Endocrinol (Lausanne) 2020; 11:572981. [PMID: 33133019 PMCID: PMC7578419 DOI: 10.3389/fendo.2020.572981] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Peng L, Qian M, Liu Z, Tang X, Sun J, Jiang Y, Sun S, Cao X, Pang Q, Liu B. Deacetylase-independent function of SIRT6 couples GATA4 transcription factor and epigenetic activation against cardiomyocyte apoptosis. Nucleic Acids Res 2020; 48:4992-5005. [PMID: 32239217 PMCID: PMC7229816 DOI: 10.1093/nar/gkaa214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
SIRT6 deacetylase activity improves stress resistance via gene silencing and genome maintenance. Here, we reveal a deacetylase-independent function of SIRT6, which promotes anti-apoptotic gene expression via the transcription factor GATA4. SIRT6 recruits TIP60 acetyltransferase to acetylate GATA4 at K328/330, thus enhancing its chromatin binding capacity. In turn, GATA4 inhibits the deacetylase activity of SIRT6, thus ensuring the local chromatin accessibility via TIP60-promoted H3K9 acetylation. Significantly, the treatment of doxorubicin (DOX), an anti-cancer chemotherapeutic, impairs the SIRT6-TIP60-GATA4 trimeric complex, blocking GATA4 acetylation and causing cardiomyocyte apoptosis. While GATA4 hyperacetylation-mimic retains the protective effect against DOX, the hypoacetylation-mimic loses such ability. Thus, the data reveal a novel SIRT6-TIP60-GATA4 axis, which promotes the anti-apoptotic pathway to prevent DOX toxicity. Targeting the trimeric complex constitutes a new strategy to improve the safety of DOX chemotherapy in clinical application.
Collapse
Affiliation(s)
- Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jie Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yue Jiang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China.,Carson International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
21
|
Pasquereau S, Totoson P, Nehme Z, Abbas W, Kumar A, Verhoeven F, Prati C, Wendling D, Demougeot C, Herbein G. Impact of glucocorticoids on systemic sirtuin 1 expression and activity in rats with adjuvant-induced arthritis. Epigenetics 2020; 16:132-143. [PMID: 32615849 DOI: 10.1080/15592294.2020.1790789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The class III histone deacetylase sirtuin 1 (SIRT1) plays a pivotal role in numerous biological and physiological functions, including inflammation. An association between SIRT1 and proinflammatory cytokines might exist. In addition to their important role in inflammation associated with rheumatoid arthritis (RA), proinflammatory cytokines mediate the development of systemic effects. Here, we evaluated systemic SIRT1 expression and enzymatic activity, in peripheral blood mononuclear cells (PBMCs) and in liver isolated from rats with adjuvant-induced arthritis (AIA), treated or not with low or high doses of glucocorticoids (GCs). We also measured the production of tumour necrosis factor alpha (TNF) and interleukin-1 beta (IL-1 beta) in PBMCs and liver. We found that SIRT1 expression and activity increased in PBMCs of AIA rats compared to healthy controls and decreased under GC treatment. Similarly, we observed an increased SIRT1 activity in the liver of AIA rats compared to healthy controls which decreased under high doses of GCs. We also found an increase in IL-1 beta and TNF levels in the liver of AIA rats compared to healthy controls, which decreased under high doses of GC. We did not observe a significant correlation between SIRT1 activity and proinflammatory cytokine production in PBMC or liver. In contrast, a strong positive correlation was found between the liver levels of TNF and IL-1 beta (rho=0.9503, p=7.5x10-21). Our results indicate that increased inflammation in AIA rats compared to healthy control is accompanied by an increased SIRT1 activity in both PBMCs and liver, which could be decreased under GC treatment.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Perle Totoson
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Frank Verhoeven
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Clément Prati
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Daniel Wendling
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Céline Demougeot
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Virology, CHRU Besançon , Besançon, France
| |
Collapse
|
22
|
Blubber proteome response to repeated ACTH administration in a wild marine mammal. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100644. [PMID: 31786479 DOI: 10.1016/j.cbd.2019.100644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022]
Abstract
While the response to acute stress is adaptive in nature, repeated or chronic stress can impact an animal's fitness by depleting its energy stores and suppressing immune function and reproduction. This can be especially deleterious for species that rely on energy reserves to fuel key life history stages (e.g. reproduction), already experience physiological extremes (e.g. fasting), and/or have undergone significant population declines, such as many marine mammals. However, identifying chronically stressed individuals is difficult due to the practical challenges to sample collection from large aquatic animals and a paucity of information on downstream consequences of the stress response. We previously simulated repeated stress by ACTH administration in a model marine mammal, the northern elephant seal, and showed that changes in blubber gene expression, but not circulating cortisol levels, could distinguish between single and repeated responses to ACTH. Here, we profiled changes in the proteome of the same blubber cell population and identified a set of differentially expressed proteins that included extracellular matrix components, heat shock and mitochondrial proteins, metabolic enzymes, and metabolite transporters. Differentially expressed proteins and genes shared similar functions that suggest that repeated corticosteroid elevation may affect blubber tissue proteostasis, mitochondrial activity, adipogenesis, and metabolism in marine mammals. For marine mammal species from which blubber biopsies, but not blood can be obtained by remote sampling, measurement of abundance of such proteins may serve as a novel method for identifying chronically stressed animals.
Collapse
|
23
|
Zhang T, Du X, Zhao L, He M, Lin L, Guo C, Zhang X, Han J, Yan H, Huang K, Sun G, Yan L, Zhou B, Xia G, Qin Y, Wang C. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription. FASEB J 2019; 33:14703-14716. [PMID: 31693862 DOI: 10.1096/fj.201900782r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In female mammals, the majority of primordial follicles (PFs) are physiologically quiescent, and only a few of them are activated and enter the growing follicle pool. Specific molecules, such as mammalian target of rapamycin (mTOR) and the serine/threonine kinase Akt (AKT), have been proven to be important for PF activation. However, how the transcription of these genes is regulated is not clear. Although activators of mTOR or AKT have been successfully used to rescue the fertility of patients with premature ovarian insufficiency, the low efficacy and unclear safety profile of these drugs hinder their clinical use in the in vitro activation (IVA) of PFs. Here, sirtuin 1 (SIRT1), an NAD-dependent deacetylase, was demonstrated to activate mouse PFs independent of its deacetylase activity. SIRT1 was prominently expressed in pregranulosa cells (pGCs) and oocytes, and its expression was increased during PF activation. PF activation was achieved by either up-regulating SIRT1 with a specific activator or overexpressing SIRT1. Moreover, SIRT1 knockdown in oocytes or pGCs could significantly suppress PF activation. Further studies demonstrated that SIRT1 enhanced both Akt1 and mTOR expression by acting more as a transcription cofactor, directly binding to the respective gene promoters, than as a deacetylase. Importantly, we explored the potential clinical applications of targeting SIRT1 in IVA via short-term treatment of cultured ovaries from mice and human ovarian tissues to activate PFs by applying the SIRT1 activator resveratrol. RSV-induced IVA could be a candidate strategy to develop more efficient procedures for future clinical treatment of infertility.-Zhang, T., Du, X., Zhao, L., He, M., Lin, L., Guo, C., Zhang, X., Han, J., Yan, H., Huang, K., Sun, G., Yan, L., Zhou, B., Xia, G., Qin, Y., Wang, C. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription.
Collapse
Affiliation(s)
- Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinhua Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lihua Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Pathology and Hepatology, The 5th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chuanhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China; and
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China College of Life Science, Ningxia University, Yinchuan, China
| | - YingYing Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China; and
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Pfister JA, Ma C, D’Mello SR. Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. PLoS One 2019; 14:e0215208. [PMID: 30973934 PMCID: PMC6459503 DOI: 10.1371/journal.pone.0215208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/28/2019] [Indexed: 12/25/2022] Open
Abstract
SIRT1, a NAD+-dependent deacetylase, protects neurons in a variety of in vitro and in vivo models of neurodegenerative disease. We have previously described a neuroprotective effect by SIRT1 independent of its catalytic activity. To confirm this conclusion we tested a panel of SIRT1 deletion mutant constructs, designated Δ1–Δ10, in cerebellar granule neurons induced to undergo apoptosis by low potassium treatment. We find that deletions of its N-terminal, those lacking portions of the catalytic domain, as well as one that lacks the ESA (Essential for SIRT1 Activity) motif, are as protective as wild-type SIRT1. In contrast, deletion of the region spanning residues 542–609, construct Δ8, substantially reduced the neuroprotective activity of SIRT1. As observed with LK-induced apoptosis, all SIRT1 constructs except Δ8 protect neurons against mutant huntingtin toxicity. Although its own catalytic activity is not required, neuroprotection by SIRT1 is abolished by inhibitors of Class I HDACs as well as by knockdown of endogenous HDAC1. We find that SIRT1 interacts with HDAC1 and this interaction is greatly increased by deleting regions of SIRT1 necessary for its catalytic activity. However, SIRT1-mediated protection is not dependent on HDAC1 deacetylase activity. Although other studies have described that catalytic activity of SIRT1 mediates is neuroprotective effect, our study suggests that in cerebellar granule neurons its deacetylase activity is not important and that HDAC1 contributes to the neuroprotective effect of SIRT1.
Collapse
Affiliation(s)
- Jason A. Pfister
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
| | - Chi Ma
- National Institutes of Health, Bethesda, MD, United States of America
| | - Santosh R. D’Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kino T. GR-regulating Serine/Threonine Kinases: New Physiologic and Pathologic Implications. Trends Endocrinol Metab 2018; 29:260-270. [PMID: 29501228 DOI: 10.1016/j.tem.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
Glucocorticoid hormones, end products of the hypothalamic-pituitary-adrenal axis, virtually influence all human functions both in a basal homeostatic condition and under stress. The glucocorticoid receptor (GR), a nuclear hormone receptor superfamily protein, mediates these actions of glucocorticoids by acting as a ligand-dependent transcription factor. Because glucocorticoid actions are diverse and strong, many biological pathways adjust them in local tissues by targeting the GR signaling pathway as part of the regulatory loop coordinating complex human functions. Phosphorylation of GR protein by serine/threonine kinases is one of the major regulatory mechanisms for this communication. In this review, recent progress in research investigating GR phosphorylation by these kinases is discussed, along with the possible physiologic and pathophysiologic implications.
Collapse
Affiliation(s)
- Tomoshige Kino
- Department of Human Genetics, Division of Translational Medicine, Sidra Medical and Research Center, Doha 26999, Qatar.
| |
Collapse
|