1
|
Loganathan N, Lieu CV, Belsham DD. Immortalization and Characterization of GFAP-expressing Glial Cells from the Adult Mouse Hypothalamus, Cortex, and Brain Stem. Neuroscience 2024; 551:43-54. [PMID: 38788830 DOI: 10.1016/j.neuroscience.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The generation of astrocyte cell lines from the hypothalamus is key to study glial involvement in hypothalamic physiology, including energy homeostasis. As such, we immortalized astrocytes from the hypothalamus of an adult male CD-1 mouse using SV40 T-antigen to generate the mHypoA-Ast1 cell line. A comparative approach was taken with two other murine GFAP-expressing cell lines that were also generated in this study: a mixed glial cell line from the cortex (mCortA-G1) and an oligodendrocyte cell line from the brainstem (mBstA-Olig1), as well as an established microglial cell line (IMG). mHypoA-Ast1 cells express GFAP, alongside other astrocytic markers such as Aldh1l1, Aqp4, Glt1 and S100b, and express low levels of microglial, ependymal and oligodendrocyte markers. 100 ng/mL lipopolysaccharide (LPS) elevated mRNA levels of Il6, Il1b, Tnfα and Cxcl5 in mHypoA-Ast1 cells after 4 h, while 50 μM palmitate increased Il6 and Chop mRNA, demonstrating the ability of these cells to respond to inflammatory and nutrient signals. Interestingly, co-culture of mHypoA-Ast1 cells with mHypoE-N46 hypothalamic neuronal cells prevented the palmitate-mediated increase in orexigenic neuropeptide Agrp mRNA in mHypoE-N46 cells, suggesting that this cell line can alter neuronal responses to nutrients. In conclusion, we report mHypoA-Ast1 cells representing a functional astrocyte cell line from the adult mouse brain that can be used to study the complex interactions of hypothalamic cells, as well as dysregulation that may occur in disease states, providing a key tool for neuroendocrine research.
Collapse
Affiliation(s)
- Neruja Loganathan
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Calvin V Lieu
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Toronto, ON, Canada; Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
3
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Breton TS, Fike S, Francis M, Patnaude M, Murray CA, DiMaggio MA. Characterizing the SREB G protein-coupled receptor family in fish: Brain gene expression and genomic differences in upstream transcription factor binding sites. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111507. [PMID: 37611891 PMCID: PMC10529039 DOI: 10.1016/j.cbpa.2023.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The SREB (Super-conserved Receptors Expressed in Brain) family of orphan G protein-coupled receptors is highly conserved in vertebrates and consists of three members: SREB1 (orphan designation GPR27), SREB2 (GPR85), and SREB3 (GPR173). SREBs are associated with processes ranging from neuronal plasticity to reproductive control. Relatively little is known about similarities across the entire family, or how mammalian gene expression patterns compare to non-mammalian vertebrates. In fish, this system may be particularly complex, as some species have gained a fourth member (SREB3B) while others have lost genes. To better understand the system, the present study aimed to: 1) use qPCR to characterize sreb and related gene expression patterns in the brains of three fish species with different systems, and 2) identify possible differences in transcriptional regulation among the receptors, using upstream transcription factor binding sites across 70 ray-finned fish genomes. Overall, regional patterns of sreb expression were abundant in forebrain-related areas. However, some species-specific patterns were detected, such as abundant expression of receptors in zebrafish (Danio rerio) hypothalamic-containing sections, and divergence between sreb3a and sreb3b in pufferfish (Dichotomyctere nigroviridis). In addition, a gene possibly related to the system (dkk3a) was spatially correlated with the receptors in all three species. Genomic regions upstream of sreb2 and sreb3b, but largely not sreb1 or sreb3a, contained many highly conserved transcription factor binding sites. These results provide novel information about expression differences and transcriptional regulation across fish that may inform future research to better understand these receptors.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA.
| | - Samantha Fike
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Mullein Francis
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Michael Patnaude
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Casey A Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| |
Collapse
|
5
|
Kulinska KI, Białas P, Dera-Szymanowska A, Billert M, Kotwicka M, Szymanowski K, Wołun-Cholewa M. The role of phoenixin in the proliferation and migration of ectopic epithelial cells in vitro. Biochem Biophys Res Commun 2023; 646:44-49. [PMID: 36706704 DOI: 10.1016/j.bbrc.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
AIM Endometriosis is one of the most common gynecologic diseases in women of reproductive age. The pathophysiology of endometriosis is still not fully understood. Phoenixin (PNX-14) is a newly discovered neuropeptide that regulates the hypothalamo-pituitary-gonadal (HPG) axis and reproductive functions. Recently, we reported that PNX-14, its precursor protein and receptor were expressed in human endometrium. Moreover, PNX-14 serum levels in endometriosis were reduced. This study aimed to evaluate the in vitro biological functions of physiological PNX-14 concentrations on the ectopic endometrium Z12 cells. METHODS The proliferation and migration of Z12 cells were assessed using the xCELLigence® RTCA DP system following 72 h of stimulation with 0.05 and 0.2 nM of PNX-14. GPR173 and small integral membrane protein 20 (SMIM20) gene expression was evaluated using quantitative polymerase chain reaction (qPCR) and the protein levels of GPR173 were analyzed using Western blot analysis. RESULTS PNX-14 at the concentration observed in the serum of patients with endometriosis (0.05 nM) reduced GPR173 and increased SMIM20 expression, while protein levels of GPR173 remained unchanged. Cell proliferation was increased by the 0.02 nM PNX-14- the concentration found in healthy subjects. The 0.2 nM of PNX-14 decreased SMIM20 expression with no change to GPR173 expression and reduced ectopic epithelial cell proliferation during the first 5 h after stimulation. However, at 72 h, the proliferation increased. CONCLUSIONS This study shows that PNX-14 at endometriosis specific concentration desensitized ectopic epithelium to PNX-14, and increased the expression of SMIM20 to restore the physiological levels of PNX-14.
Collapse
Affiliation(s)
- Karolina Iwona Kulinska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, 60-806, Poznan, Poland.
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, 60-806, Poznan, Poland; Division of Urological Cancers, Department of Translational Medicine, Faculty of Medicine, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Anna Dera-Szymanowska
- Clinic of Perinatology and Gynaecology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637, Poznan, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, 60-806, Poznan, Poland
| | - Krzysztof Szymanowski
- Clinic of Perinatology and Gynaecology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Maria Wołun-Cholewa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, 60-806, Poznan, Poland.
| |
Collapse
|
6
|
Friedrich T, Stengel A. Current state of phoenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front Pharmacol 2023; 14:1076800. [PMID: 36860304 PMCID: PMC9968724 DOI: 10.3389/fphar.2023.1076800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Phoenixin is a pleiotropic peptide, whose known functions have broadened significantly over the last decade. Initially first described as a reproductive peptide in 2013, phoenixin is now recognized as being implicated in hypertension, neuroinflammation, pruritus, food intake, anxiety as well as stress. Due to its wide field of involvement, an interaction with physiological as well as psychological control loops has been speculated. It has shown to be both able to actively reduce anxiety as well as being influenced by external stressors. Initial rodent models have shown that central administration of phoenixin alters the behavior of the subjects when confronted with stress-inducing situations, proposing an interaction with the perception and processing of stress and anxiety. Although the research on phoenixin is still in its infancy, there are several promising insights into its functionality, which might prove to be of value in the pharmacological treatment of several psychiatric and psychosomatic illnesses such as anorexia nervosa, post-traumatic stress disorder as well as the increasingly prevalent stress-related illnesses of burnout and depression. In this review, we aim to provide an overview of the current state of knowledge of phoenixin, its interactions with physiological processes as well as focus on the recent developments in stress response and the possible novel treatment options this might entail.
Collapse
Affiliation(s)
- T. Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A. Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany,*Correspondence: A. Stengel,
| |
Collapse
|
7
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
8
|
Basha EH, Eltokhy AKB, Eltantawy AF, Heabah NAE, Elshwaikh SL, El-Harty YM. Linking mitochondrial dynamics and fertility: promoting fertility by phoenixin through modulation of ovarian expression of GnRH receptor and mitochondrial dynamics proteins DRP-1 and Mfn-2. Pflugers Arch 2022; 474:1107-1119. [PMID: 35972578 PMCID: PMC9492611 DOI: 10.1007/s00424-022-02739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Obesity is linked to reproductive disorders. Novel neuropeptide phoenixin demonstrated many therapeutic actions. In this study, we aim to evaluate phoenixin’s potential effect in obesity-induced infertility through modulating mitochondrial dynamics. Ninety adult female rats were divided to 4 groups: (I), fed with normal pellet diet; (II), given phoenixin; (III), fed with high-fat diet. Rats that developed obesity and infertility were divided to 2 groups: (III-A), received no further treatment; (III-B), given phoenixin. Our results showed that phoenixin treatment in obese infertile rats significantly decreased serum levels of insulin and testosterone and ovarian levels of dynamin-related protein1(Drp1),reactive oxygen species ROS, TNF-α, MDA, and caspase-3. Phoenixin treatment also significantly increased serum estrogen progesterone, LH, and FSH together with ovarian levels of GnRH receptor (GnRHR), mitofusin2(Mfn2), mitochondrial transmembrane potential (ΔΨm), and electron transport chain (ETC) complex-I significantly when compared with obese group. Ovarian histopathological changes were similarly improved by phoenixin. Our data demonstrate phoenixin’s role in improving obesity-induced infertility.
Collapse
Affiliation(s)
- Eman H Basha
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K B Eltokhy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Fawzy Eltantawy
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nehal A E Heabah
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasmeen M El-Harty
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
9
|
McIlwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. J Endocr Soc 2021; 6:bvab192. [PMID: 35059547 PMCID: PMC8763610 DOI: 10.1210/jendso/bvab192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The phoenixin (PNX) peptide is linked to the control of reproduction, food intake, stress, and inflammation. However, little is known about what regulates its gene and protein expression, information that is critical to understand the physiological role of PNX. In this review, we summarize what is known about the transcriptional control of Pnx and its receptor Gpr173. A main function of PNX is as a positive regulator of the hypothalamic-pituitary-gonadal axis, but there is a lack of research on its control by reproductive hormones and peptides. PNX is also associated with food intake, and its expression is linked to feeding status, fatty acids, and glucose. It is influenced by environmental and hormonal-induced stress. The regulation of Pnx in most contexts remains an enigma, in part due to conflicting and negative results. An extensive analysis of the response of the Pnx gene to factors related to reproduction, metabolism, stress, and inflammation is required. Analysis of the Pnx promoter and epigenetic regulation must be considered to understand how this level of control contributes to its pleiotropic effects. PNX is now linked to a broad range of functions, but more research on its gene regulation is required to understand its place in overall physiology and therapeutic potential.
Collapse
Affiliation(s)
| | - Ningtong Zhang
- Department of Physiology, University of Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, ON, Canada
- Department of Medicine, University of Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, ON, Canada
| |
Collapse
|
10
|
Lieu CV, Loganathan N, Belsham DD. Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells 2021; 10:3120. [PMID: 34831343 PMCID: PMC8617942 DOI: 10.3390/cells10113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus maintains whole-body homeostasis by integrating information from circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that express and secrete unique neuropeptides execute the individual functions of the hypothalamus, including, but not limited to, the regulation of energy homeostasis, reproduction and circadian rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type 2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals, ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian rhythms. This review focuses on the how the changes in the underlying molecular mechanisms caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-transcriptionally, can result in detrimental alterations in protein expression and content. Studying the involvement of microRNAs in hypothalamic function holds immense potential, as these molecular markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.
Collapse
Affiliation(s)
- Calvin V. Lieu
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
- Departments of Obstetrics/Gynecology and Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
11
|
Mukherjee K, Unniappan S. Mouse gastric mucosal endocrine cells are sources and sites of action of Phoenixin-20. Peptides 2021; 141:170551. [PMID: 33862165 DOI: 10.1016/j.peptides.2021.170551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Energy homeostasis is is determined by food intake and energy expenditure, which are partly regulated by the cross-talk between central and peripheral hormonal signals. Phoenixin (PNX) is a recently discovered pleiotropic neuropeptide with isoforms of 14 (PNX-14) and 20 (PNX-20) amino acids. It is a potent reproductive peptide in vertebrates, regulating the hypothalamo-pituitary-gonadal axis (HPG). It has been identified as a regulator of food intake during light phase when injected intracerebroventricularly in rats. In addition, plasma levels of PNX also increased after food intake in rats, suggesting that it might have possible roles in energy homeostasis. We hypothesized that gut is a source and site of action of PNX in mice. Immunoreactivity for PNX and its putative receptor, super-conserved receptor expressed in brain (SREB3; also known as the G-protein coupled receptor 173/GPR 173) was found in the stomach and intestine of male C57/BL6 J mice, and in MGN3-1 (mouse stomach endocrine) cells and STC-1 (mouse enteroendocrine) cells. In MGN3-1 cells, PNX-20 significantly upregulated ghrelin (10 nM) and ghrelin-O-acyl transferase (GOAT) mRNAs (1000 nM) at 6 h. In STC-1 cells, it significantly suppressed CCK (100 nM) at 2 h. No effects were found on other intestinal hormones tested (glucagon like peptide-1, glucose dependent insulinotropic polypeptide, and peptide YY). Together, these results indicate that PNX-20 is produced in the gut, and it could act directly on gut cells to regulate metabolic hormones.
Collapse
Affiliation(s)
- Kundanika Mukherjee
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
12
|
Wang L, Tran A, Lee J, Belsham DD. Palmitate differentially regulates Spexin, and its receptors Galr2 and Galr3, in GnRH neurons through mechanisms involving PKC, MAPKs, and TLR4. Mol Cell Endocrinol 2020; 518:110991. [PMID: 32841709 DOI: 10.1016/j.mce.2020.110991] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The function of the gonadotropin-releasing hormone (GnRH) neuron is critical to maintain reproductive function and a significant decrease in GnRH can lead to disorders affecting fertility, including hypogonadotropic hypogonadism. Spexin (SPX) is a novel hypothalamic neuropeptide that exerts inhibitory effects on reproduction and feeding by acting through galanin receptor 2 (GALR2) and galanin receptor 3 (GALR3). Fatty acids can act as nutritional signals that regulate the hypothalamic-pituitary-gonadal (HPG) axis, and elevated levels of circulating saturated fatty acids associated with high fat diet (HFD)-feeding have been shown to induce neuroinflammation, endoplasmic reticulum stress and hormonal resistance in the hypothalamus, as well as alter neuropeptide expression. We previously demonstrated that palmitate, the most common saturated fatty acid in a HFD, elevates the expression of Spx, Galr2 and Galr3 mRNA in a model of appetite-regulating neuropeptide Y hypothalamic neurons. Here, we found that Spx, Galr2 and Galr3 mRNA were also significantly induced by palmitate in a model of reproductive GnRH neurons, mHypoA-GnRH/GFP. As a follow-up to our previous report, we examined the molecular pathways by which Spx and galanin receptor mRNA was regulated in this cell line. Furthermore, we performed inhibitor studies, which revealed that the effect of palmitate on Spx and Galr3 mRNA involved activation of the innate immune receptor TLR4, and we detected differential regulation of the three genes by the protein kinases PKC, JNK, ERK, and p38. However, the intracellular metabolism of palmitate to ceramide did not appear to be involved in the palmitate-mediated gene regulation. Overall, this suggests that SPX may play a role in reproduction at the level of the hypothalamus and the pathways by which Spx, Galr2 and Galr3 are altered by fatty acids could provide insight into the mechanisms underlying reproductive dysfunction in obesity.
Collapse
Affiliation(s)
- Lu Wang
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Andy Tran
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Juliette Lee
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada; Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada; Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY) 2020; 13:4976-4985. [PMID: 33196456 PMCID: PMC7950309 DOI: 10.18632/aging.103717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Osteogenic differentiation is critical to bone homeostasis, and its imbalance plays a key role in the progression of osteoporosis. Osteoblast cells are responsible for synthesizing new bone tissue, and understanding how to control osteoblastic differentiation is vital to the treatment of osteoporosis. Herein, we show that GPR173 signaling is involved in the regulation of osteoblastic differentiation in MC3T3-E1 cells. Our data reveals that GPR173 is abundantly expressed in MC3T3-E1 cells, and its expression is inducible upon the introduction of osteogenic media. The activation of GPR173 by its selective agonist phoenixin 20 induces the expression of several osteoblast signature genes including collagen type 1 alpha 1 (Col-I), osteocalcin (OCN), alkaline phosphatase (ALP) as well as increased matrix mineralization and ALP activity, suggesting that the activation of GPR173 promotes osteoblastic differentiation. Moreover, we show that the effect of phoenixin 20 is mediated by its induction on the key regulator runt-Related Transcription Factor 2 (Runx2). Mechanistically, we display that the action of phoenixin 20 requires the activation of MAPK kinase p38, and deactivation of p38 by its inhibitor SB203580 weakens the phoenixin 20-mediated induction of RUNX-2, ALP, and matrix mineralization. Silencing of GPR173 attenuates phoenixin 20-mediated osteoblastic differentiation, indicating its dependence on the receptor. Collectively, our study reveals a new role of GPR173 and its agonist phoenixin 20 in osteoblastic differentiation.
Collapse
Affiliation(s)
- Zhengtao Gu
- Department of Treatment Center for Traumatic Injuries, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Denghui Xie
- Division of Joint Surgery, Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Ding
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Caiqiang Huang
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yiyan Qiu
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020; 21:ijms21218378. [PMID: 33171667 PMCID: PMC7664650 DOI: 10.3390/ijms21218378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-6184-637-24
| |
Collapse
|
15
|
Yang F, Huang P, Shi L, Liu F, Tang A, Xu S. Phoenixin 14 Inhibits High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Experimental Mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3865-3874. [PMID: 33061293 PMCID: PMC7519838 DOI: 10.2147/dddt.s258857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. The development of NAFLD is closely associated with hepatic lipotoxicity, inflammation, and oxidative stress. The new concept of NAFLD treatment is to seek molecular control of lipid metabolism and hepatic redox hemostasis. Phoenixin is a newly identified neuropeptide with pleiotropic effects. This study investigated the effects of phoenixin 14 against high-fat diet (HFD)-induced NAFLD in mice. Materials and Methods For this study, we used HFD-induced NAFLD mice models to analyze the effect of phonenixin14. The mice were fed on HFD and normal diet and also given phoenixin 14 (100 ng/g body weight) by gastrogavage for 10 weeks. The peripheral blood samples were collected for biochemical assays. The liver tissues were examined for HFD-induced tissue fibrosis, lipid deposition and oxidative activity including SOD, GSH, and MDA. The liver tissues were analyzed for the inflammatory cytokines and oxidative stress pathway genes. Results The results indicate that phoenixin 14 significantly ameliorated HFD-induced obesity and fatty liver. The biochemical analysis of blood samples revealed that phoenixin 14 ameliorated HFD-induced elevated circulating alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, and triglyceride levels, suggesting that phoenixin 14 has a protective role in liver function and lipid metabolism. Hematoxylin-eosin (HE) and Oil Red O staining of the liver showed that phoenixin 14 alleviated HFD-induced tissue damage and lipid deposition in the liver. Furthermore, the mice administered with phoenixin 14 had increased hepatic SOD activity, increased production of GSH and reduced MDA activity, as well as reduced production of TNF-α and IL-6 suggesting that phoenixin 14 exerts beneficial effects against inflammation and ROS. The findings suggest an explanation of how mechanistically phoenixin 14 ameliorated HFD-induced reduced activation of the SIRT1/AMPK and NRF2/HO-1 pathways. Conclusion Collectively, this study revealed that phoenixin 14 exerts a protective effect in experimental NAFLD mice. Phoenixin could be of the interest in preventive modulation of NAFLD.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Ping Huang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Liandong Shi
- Department of Ultrasonography, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Feng Liu
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Aimei Tang
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Shaohui Xu
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| |
Collapse
|
16
|
Zeng X, Li Y, Ma S, Tang Y, Li H. Phoenixin-20 Ameliorates Lipopolysaccharide-Induced Activation of Microglial NLRP3 Inflammasome. Neurotox Res 2020; 38:785-792. [DOI: 10.1007/s12640-020-00225-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
17
|
Ma H, Su D, Wang Q, Chong Z, Zhu Q, He W, Wang W. Phoenixin 14 inhibits ischemia/reperfusion-induced cytotoxicity in microglia. Arch Biochem Biophys 2020; 689:108411. [PMID: 32450066 DOI: 10.1016/j.abb.2020.108411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
The process of ischemia/reperfusion (IR) in ischemic stroke often leads to significant cell death and permanent neuronal damage. Safe and effective treatments are urgently needed to mitigate the damage caused by IR injury. The naturally occurring pleiotropic peptide phoenixin 14 (PNX-14) has recently come to light as a potential treatment for IR injury. In the present study, we examined the effects of PNX-14 on several key processes involved in ischemic injury, such as pro-inflammatory cytokine expression, oxidative stress, and the related cascade mediated through the toll-like receptor 4 (TLR4) pathway, using BV2 microglia exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Our results demonstrate an acute ability of PNX-14 to regulate the expression levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). PNX-14 also prevented oxidative stress by reducing the generation of reactive oxygen species (ROS) and increasing the level of the antioxidant glutathione (GSH). Importantly, PNX-14 inhibited high-mobility group box 1 (HMGB1)/TLR4/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway, by inhibiting the activation of TLR4 and preventing the nuclear translocation of p65 protein. We further confirmed the cerebroprotective effects of PNX-14 in an MCAO rat model, which resulted in reduced infarct volume and decreased microglia activation. Together, the results of this study implicate a possible protective role of PNX-14 against various aspects of IR injury in vitro.
Collapse
Affiliation(s)
- Hongling Ma
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qingdong Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qiushi Zhu
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, 430060, China
| | - Wei Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China.
| |
Collapse
|
18
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
19
|
Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020; 18:843-851. [PMID: 32322366 PMCID: PMC7160382 DOI: 10.1016/j.csbj.2020.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.
Collapse
Key Words
- ACTH, adrenocorticotrophic hormone
- Antimicrobial peptides
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- CRH, corticotropin-releasing hormone
- CRLR, calcitonin receptor like receptor
- Gut-brain axis
- HPA axis, hypothalamic–pituitary–adrenal axis
- Hypothalamic–pituitary–adrenal axis
- Immunity
- LPS, lipopolysaccharides
- NPY, neuropeptide Y
- Neuropeptide
- PACAP, pituitary adenylate cyclase-activating polypeptide
- PNX, phoenixin
- RAMP1, receptor activity-modifying protein1
- SP, substance P
- Stress
- TRPV1, transient receptor potential vanilloid receptor-1
- VIP, vasoactive intestinal peptide
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author at: School of Pharmacy & Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
20
|
Leptin Modulates the Expression of miRNAs-Targeting POMC mRNA by the JAK2-STAT3 and PI3K-Akt Pathways. J Clin Med 2019; 8:jcm8122213. [PMID: 31847355 PMCID: PMC6947463 DOI: 10.3390/jcm8122213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
The central control of energy balance involves a strongly regulated neuronal network within the hypothalamus and the brainstem. In these structures, pro-opiomelanocortin (POMC) neurons are known to decrease food intake and to increase energy expenditure. Thus, leptin, a peripheral signal that relays information regarding body fat content, modulates the activity of POMC neurons. MicroRNAs (miRNAs) are short non-coding RNAs of 22–26 nucleotides that post-transcriptionally interfere with target gene expression by binding to their mRNAs. It has been demonstrated that leptin is able to modulate the expression of miRNAs (miR-383, miR-384-3p, and miR-488) that potentially target POMC mRNA. However, no study has identified the transduction pathways involved in this effect of leptin on miRNA expression. In addition, miRNAs targeting POMC mRNAs are not clearly identified. In this work, using in vitro models, we have identified and confirmed that miR-383, miR-384-3p, and miR-488 physically binds to the 3′ untranslated (3′UTR) regions of POMC mRNA. Importantly, we show that leptin inhibits these miRNAs expression by different transduction pathways. Taken together, these results allowed us to highlight the miRNA involvement in the regulation of POMC expression downstream of the leptin signaling and satiety signal integration.
Collapse
|