1
|
Xie H, Zheng Y, Zhang H, Guo Y, Liu M, Weng Q, Wu X. Association of NR1I2 Polymorphism with Midazolam Clearance in Mechanically Ventilated ICU Patients: A Population Pharmacokinetic and Pharmacogenetic Study. Drug Des Devel Ther 2025; 19:1527-1541. [PMID: 40066084 PMCID: PMC11891766 DOI: 10.2147/dddt.s495647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Background Significant variability in the metabolism of midazolam (MDZ) exists among mechanically ventilated (MV) patients in the intensive care unit (ICU) due to complex clinical conditions and genetic factors. The NR1I2 gene (PXR), which encodes a nuclear receptor that regulates drug-metabolizing enzymes like CYP3A4, plays a critical role in MDZ metabolism. Polymorphisms in NR1I2, along with variations in genes such as CYP3A4, CYP3A5, and ABCB1, may influence enzyme activity and MDZ pharmacokinetics (PK). Understanding these factors is essential for optimizing MDZ dosing in high-risk patient populations. Methods We studied 61 MV ICU patients receiving continuous MDZ infusion. A population pharmacokinetic (PopPK) model was used to assess MDZ PK, with genetic factors (NR1I2 rs2461817, CYP3A4, CYP3A5, ABCB1, and other PXR polymorphisms) and clinical covariates (body weight (BW), aspartate aminotransferase (AST) levels) evaluated for their impact on MDZ clearance (CL). Results The PK of MDZ and its metabolite, 1-hydroxymidazolam (1-OH-MDZ), were accurately described using a one-compartment model. The estimated population means for MDZ and 1-OH-MDZ CL were 22.6 L/h (inter-individual variability [IIV] 59.4%) and 67.1 L/h (IIV 57.7%), respectively. MDZ CL was significantly associated with the NR1I2 rs2461817 polymorphism and AST levels, accounting for 11.3% of the variability. MDZ CL decreased by 32.7% as AST increased from 22 IU/L to 60 IU/L, and by 40.7% in patients homozygous for the NR1I2 rs2461817 variant. BW also influenced the CL of 1-OH-MDZ, demonstrating a 34.2% increase as weight increased from 54 kg to 65 kg. Simulations confirmed the significant impact of NR1I2 rs2461817 on MDZ CL. Conclusion The PopPK model highlights the significant impact of NR1I2 rs2461817 polymorphism on MDZ CL in Chinese MV patients, emphasizing the need to consider genetic and clinical factors for optimizing MDZ dosing in ICU settings.
Collapse
Affiliation(s)
- Helin Xie
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - You Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350000, People’s Republic of China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Yanmei Guo
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Qinyong Weng
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| |
Collapse
|
2
|
Staudinger JL, Mahroke A, Patel G, Dattel C, Reddy S. Pregnane X Receptor Signaling Pathway and Vitamin K: Molecular Mechanisms and Clinical Relevance in Human Health. Cells 2024; 13:681. [PMID: 38667296 PMCID: PMC11049418 DOI: 10.3390/cells13080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review explores the likely clinical impact of Pregnane X Receptor (PXR) activation by vitamin K on human health. PXR, initially recognized as a master regulator of xenobiotic metabolism in liver, emerges as a key regulator influencing intestinal homeostasis, inflammation, oxidative stress, and autophagy. The activation of PXR by vitamin K highlights its role as a potent endogenous and local agonist with diverse clinical implications. Recent research suggests that the vitamin K-mediated activation of PXR highlights this vitamin's potential in addressing pathophysiological conditions by promoting hepatic detoxification, fortifying gut barrier integrity, and controlling pro-inflammatory and apoptotic pathways. PXR activation by vitamin K provides an intricate association with cancer cell survival, particularly in colorectal and liver cancers, to provide new insights into potential novel therapeutic strategies. Understanding the clinical implications of PXR activation by vitamin K bridges molecular mechanisms with health outcomes, further offering personalized therapeutic approaches for complex diseases.
Collapse
Affiliation(s)
- Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin Campus, 2901 St Johns Blvd, Joplin, MO 64804, USA (C.D.); (S.R.)
| | | | | | | | | |
Collapse
|
3
|
Jagtap U, Paul A. UCP1 activation: Hottest target in the thermogenesis pathway to treat obesity using molecules of synthetic and natural origin. Drug Discov Today 2023; 28:103717. [PMID: 37467882 DOI: 10.1016/j.drudis.2023.103717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Uncoupling protein 1 (UCP1) has been discovered as a possible target for obesity treatment because of its widespread distribution in the inner mitochondrial membrane of brown adipose tissue (BAT) and high energy expenditure capabilities to burn calories as heat. UCP1 is dormant and does not produce heat without activation as it is inhibited by purine nucleotides. However, activation of UCP1 via either direct interaction with the UCP1 protein, an increase in the expression of UCP1 genes or the physiological production of fatty acids can lead to a rise in the thermogenesis phenomenon. Hence, activation of UCP1 through small molecules of synthetic and natural origin can be considered as a promising strategy to mitigate obesity.
Collapse
Affiliation(s)
- Utkarsh Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Atish Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Wang H, Zhang L, Xia Z, Cui JY. Effect of Chronic Cadmium Exposure on Brain and Liver Transporters and Drug-Metabolizing Enzymes in Male and Female Mice Genetically Predisposed to Alzheimer's Disease. Drug Metab Dispos 2022; 50:1414-1428. [PMID: 35878927 PMCID: PMC9513859 DOI: 10.1124/dmd.121.000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.
Collapse
Affiliation(s)
- Hao Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Liang Zhang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Abbott K, Salamat JM, Flannery PC, Chaudhury CS, Chandran A, Vishveshwara S, Mani S, Huang J, Tiwari AK, Pondugula SR. Gefitinib Inhibits Rifampicin-Induced CYP3A4 Gene Expression in Human Hepatocytes. ACS OMEGA 2022; 7:34034-34044. [PMID: 36188260 PMCID: PMC9520547 DOI: 10.1021/acsomega.2c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.
Collapse
Affiliation(s)
- Kodye
L. Abbott
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Julia M. Salamat
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Patrick C. Flannery
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Chloe S. Chaudhury
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Aneesh Chandran
- Department
of Biotechnology and Microbiology, Kannur
University, Kannur, Kerala 670661, India
| | | | - Sridhar Mani
- Albert Einstein
Cancer Center, Albert Einstein College of
Medicine, New York 10461, United States
| | - Jianfeng Huang
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amit K. Tiwari
- Center
of Medical Bio-Allied Health Sciences Research, Ajman University, Ajman 306, United Arab Emirates
- Department
of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio 43606, United States
- Department
of Cell and Cancer Biology, University of
Toledo, Toledo, Ohio 43614, United
States
| | - Satyanarayana R. Pondugula
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Mustonen EK, Pantsar T, Rashidian A, Reiner J, Schwab M, Laufer S, Burk O. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells 2022; 11:1299. [PMID: 35455978 PMCID: PMC9030254 DOI: 10.3390/cells11081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| | - Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Azam Rashidian
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Juliander Reiner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| |
Collapse
|
7
|
Bwayi MN, Garcia-Maldonado E, Chai SC, Xie B, Chodankar S, Huber AD, Wu J, Annu K, Wright WC, Lee HM, Seetharaman J, Wang J, Buchman CD, Peng J, Chen T. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res 2022; 50:3254-3275. [PMID: 35212371 PMCID: PMC8989523 DOI: 10.1093/nar/gkac133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR–CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.
Collapse
Affiliation(s)
- Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Kavya Annu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Cameron D Buchman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
8
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
9
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
10
|
Iwamoto M, Masuya T, Hosose M, Tagawa K, Ishibashi T, Suyama K, Nose T, Yoshihara E, Downes M, Evans RM, Matsushima A. Bisphenol A derivatives act as novel coactivator-binding inhibitors for estrogen receptor β. J Biol Chem 2021; 297:101173. [PMID: 34499926 PMCID: PMC8551653 DOI: 10.1016/j.jbc.2021.101173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Bisphenol A and its derivatives are recognized as endocrine disruptors based on their complex effects on estrogen receptor (ER) signaling. While the effects of bisphenol derivatives on ERα have been thoroughly evaluated, how these chemicals affect ERβ signaling is less well understood. Herein, we sought to identify novel ERβ ligands using a radioligand competitive binding assay to screen a chemical library of bisphenol derivatives. Many of the compounds identified showed intriguing dual activities as both ERα agonists and ERβ antagonists. Docking simulations of these compounds and ERβ suggested that they bound not only to the canonical binding site of ERβ but also to the coactivator binding site located on the surface of the receptor, suggesting that they act as coactivator-binding inhibitors (CBIs). Receptor-ligand binding experiments using WT and mutated ERβ support the presence of a second ligand-interaction position at the coactivator-binding site in ERβ, and direct binding experiments of ERβ and a coactivator peptide confirmed that these compounds act as CBIs. Our study is the first to propose that bisphenol derivatives act as CBIs, presenting critical insight for the future development of ER signaling-based drugs and their potential to function as endocrine disruptors.
Collapse
Affiliation(s)
- Masaki Iwamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuya
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mari Hosose
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koki Tagawa
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tomoka Ishibashi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keitaro Suyama
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA; David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ayami Matsushima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
12
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
13
|
Li Y, Lin W, Wright WC, Chai SC, Wu J, Chen T. Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. J Med Chem 2021; 64:1733-1761. [PMID: 33497575 DOI: 10.1021/acs.jmedchem.0c02201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pregnane X receptor (PXR) plays roles in detoxification and other physiological processes. PXR activation may enhance drug metabolism (leading to adverse drug reactions) or inhibit inflammation. Therefore, PXR agonists, antagonists, and inverse agonists may serve as research tools and drug candidates. However, a specific PXR modulator with an associated structure-activity relationship is lacking. Based on the scaffold of specific human PXR (hPXR) antagonist SPA70 (10), we developed 81 SPA70 analogs and evaluated their receptor-binding and cellular activities. Interestingly, analogs with subtle structural differences displayed divergent cellular activities, including agonistic, dual inverse agonistic and antagonistic, antagonistic, and partial agonistic/partial antagonistic activities (as in compounds 111, 10, 97, and 42, respectively). We generated a pharmacophore model that represents 81 SPA70 analogs, and docking models that correlate strong interactions between the compounds and residues in the AF-2 helix with agonistic activity. These compounds are novel chemical tools for studying hPXR.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| |
Collapse
|
14
|
Hukkanen J, Hakkola J. PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome. Cells 2020; 9:cells9112445. [PMID: 33182477 PMCID: PMC7696146 DOI: 10.3390/cells9112445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Pregnane X receptor (PXR) activation has been found to regulate glucose and lipid metabolism and affect obesity in response to high-fat diets. PXR also modulates vascular tone. In fact, PXR appears to regulate multiple components of metabolic syndrome. In most cases, the effect of PXR action is harmful to metabolic health, and PXR can be hypothesized to play an important role in metabolic disruption elicited by exposure to endocrine-disrupting chemicals. The majority of the data on the effects of PXR activation on metabolic health come from animal and cell culture experiments. However, randomized, placebo-controlled, human trials indicate that the treatment with PXR ligands impairs glucose tolerance and increases 24-h blood pressure and heart rate. In addition, plasma 4β-hydroxycholesterol (4βHC), formed under the control of PXR in the liver, is associated with lower blood pressure in healthy volunteers. Furthermore, 4βHC regulates cholesterol transporters in peripheral tissues and may activate the beneficial reverse HDL cholesterol transport. In this review, we discuss the current knowledge on the role of PXR and the PXR–4βHC axis in the regulation of components of metabolic syndrome.
Collapse
Affiliation(s)
- Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, POB 5000, FI-90014 Oulu, Finland
- Correspondence: (J.H.); (J.H.); Tel.: +358-8-3156212 (J.H.); +358-294-485235 (J.H.)
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, POB 5000, FI-90014 Oulu, Finland
- Correspondence: (J.H.); (J.H.); Tel.: +358-8-3156212 (J.H.); +358-294-485235 (J.H.)
| |
Collapse
|
15
|
Creamer BA, Sloan SNB, Dennis JF, Rogers R, Spencer S, McCuen A, Persaud P, Staudinger JL. Associations between Pregnane X Receptor and Breast Cancer Growth and Progression. Cells 2020; 9:cells9102295. [PMID: 33076284 PMCID: PMC7602492 DOI: 10.3390/cells9102295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a member of the ligand-activated nuclear receptor superfamily. This receptor is promiscuous in its activation profile and is responsive to a broad array of both endobiotic and xenobiotic ligands. PXR is involved in pivotal cellular detoxification processes to include the regulation of genes that encode key drug-metabolizing cytochrome-P450 enzymes, oxidative stress response, as well as enzymes that drive steroid and bile acid metabolism. While PXR clearly has important regulatory roles in the liver and gastrointestinal tract, this nuclear receptor also has biological functions in breast tissue. In this review, we highlight current knowledge of PXR’s role in mammary tumor carcinogenesis. The elevated level of PXR expression in cancerous breast tissue suggests a likely interface between aberrant cell division and xeno-protection in cancer cells. Moreover, PXR itself exerts positive effect on the cell cycle, thereby predisposing tumor cells to unchecked proliferation. Activation of PXR also plays a key role in regulating apoptosis, as well as in acquired resistance to chemotherapeutic agents. The repressive role of PXR in regulating inflammatory mediators along with the existence of genetic polymorphisms within the sequence of the PXR gene may predispose individuals to developing breast cancer. Further investigations into the role that PXR plays in driving tumorigenesis are needed.
Collapse
|
16
|
Turner PK, Hall SD, Chapman SC, Rehmel JL, Royalty JE, Guo Y, Kulanthaivel P. Abemaciclib Does Not Have a Clinically Meaningful Effect on Pharmacokinetics of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates in Patients with Cancer. Drug Metab Dispos 2020; 48:796-803. [PMID: 32581049 DOI: 10.1124/dmd.119.090092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/19/2020] [Indexed: 02/13/2025] Open
Abstract
Abemaciclib is an orally administered, potent inhibitor of cyclin-dependent kinases 4 and 6 and is metabolized extensively by CYP3A4. The effects of abemaciclib on several CYPs were qualified in vitro and subsequently evaluated in a clinical study. In vitro, human hepatocytes were treated with vehicle, abemaciclib, or abemaciclib metabolites [N-desethylabemaciclib (M2) or hydroxyabemaciclib (M20)]. mRNA levels for eight CYPs were measured using reverse-transcription quantitative polymerase chain reaction, and, additionally, catalytic activities for three CYPs were determined. In the clinical study, adult patients with cancer received a drug cocktail containing CYP substrates [midazolam (3A), warfarin (2C9), dextromethorphan (2D6), and caffeine (1A2)] either alone or in combination with abemaciclib. Plasma pharmacokinetics (PK) samples were analyzed for all substrates, caffeine metabolite paraxanthine, and abemaciclib; polymorphisms of CYP2C9, CYP2D6, CYP3A4, and CYP3A5 were evaluated. In vitro, downregulation of CYP mRNA, including 1A2, 2B6, 2C8, 2C9, 2D6, and 3A, by abemaciclib and/or M2 and M20 was observed at clinically relevant concentrations. In humans, abemaciclib did not affect the PK of CYP2D6 or CYP2C9 substrates. Minor statistically significant but clinically irrelevant changes were observed for midazolam [area under the concentration versus time curve from zero to infinity (AUC0-inf) (13% lower), Cmax (15% lower)], caffeine [AUC0-inf (56% higher)], and paraxanthine: caffeine [area under the concentration versus time curve from 0 to 24 hours ratio (was approximately 30% lower)]. However, given the magnitude of the effect, these changes are not considered clinically relevant. In conclusion, the downregulation of CYP mRNA mediated by abemaciclib in vitro did not translate into clinically meaningful drug-drug interactions in patients with cancer. SIGNIFICANCE STATEMENT: Despite observations that abemaciclib alters the mRNA of various CYP isoforms in vitro, a clinical study using a drug cocktail approach found no clinically meaningful drug-drug interactions between abemaciclib and a range of CYP substrates [midazolam (CYP3A4), S-warfarin (CYP2C9), dextromethorphan (CYP2D6), and caffeine (CYP1A2)]. This lack of translation suggests greater understanding of mechanisms of CYP downregulation is needed to accurately predict clinical drug-drug interaction risk from in vitro data.
Collapse
Affiliation(s)
- P Kellie Turner
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Stephen D Hall
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Sonya C Chapman
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Jessica L Rehmel
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Jane E Royalty
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| | - Palaniappan Kulanthaivel
- Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)
| |
Collapse
|
17
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 PMCID: PMC7228503 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
18
|
Egusquiza RJ, Ambrosio ME, Wang SG, Kay KM, Zhang C, Lehmler HJ, Blumberg B. Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal and Chronic Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47011. [PMID: 32352317 PMCID: PMC7228131 DOI: 10.1289/ehp6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are environmental toxicants; PCB exposure has been associated with adverse effects on wildlife and humans. However, the mechanisms underlying these adverse effects are not fully understood. The steroid and xenobiotic receptor [SXR; also known as the pregnane X receptor (PXR) and formally known as NR1I2] is a nuclear hormone receptor that regulates inducible metabolism of drugs and xenobiotics and is activated or inhibited by various PCB congeners. OBJECTIVES The aim of this study was to investigate the effects of exposure to PCB-153, the most prevalent PCB congener in human tissues, on SXR knockout mice (SXRKO) and to elucidate the role of SXR in PCB-153 metabolism and promotion of its harmful effects. METHODS Wild-type (WT) and SXRKO mice were chronically or perinatally exposed to a low dose (54μg/kg/d) of PCB-153. Blood, livers, and spleens were analyzed using transcriptome sequencing (RNA-seq) and molecular techniques to investigate the impacts of exposure on metabolism, oxidative stress, and hematological parameters. RESULTS SXRKO mice perinatally exposed to PCB-153 displayed elevated oxidative stress, symptoms of hemolytic anemia, and premature death. Transcriptomal analysis revealed that expression of genes involved in metabolic processes was altered in SXRKO mice. Elevated levels of the PCB-153 metabolite, 3-OH-PCB-153, were found in exposed SXRKO mice compared to exposed WT mice. Blood hemoglobin (HGB) levels were lower throughout the lifespan, and the occurrence of intestinal tumors was larger in SXRKO mice chronically exposed to PCB-153 compared to vehicle and WT controls. DISCUSSION Our results suggest that altered metabolism induced by SXR loss of function resulted in the accumulation of hydroxylated metabolites upon exposure to PCB-153, leading to oxidative stress, hemolytic anemia, and tumor development in a mouse model. These results support a major role for SXR/PXR in protection against xenobiotic-induced oxidative stress by maintaining proper metabolism in response to PCB-153 exposure. This role of SXR could be generally applicable to other environmental toxicants as well as pharmaceutical drugs. https://doi.org/10.1289/EHP6262.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Maria Elena Ambrosio
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Shuyi Gin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Kaelen Marie Kay
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
19
|
Li D, Zhu H, Luo X, Ge W. PXR haplotype clusters will affect the pharmacokinetics of ciclosporin in Chinese renal transplant recipients. J Pharm Pharmacol 2019; 72:271-278. [PMID: 31820434 DOI: 10.1111/jphp.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE PXR was reported to be the key nuclear receptor regulating the expression of metabolizing enzymes and transporters. The aim of this study was to evaluate the influence of PXR haplotype clusters on ciclosporin concentration in Chinese renal transplant recipients during the early stage after transplantation. METHODS A total of 98 recipients receiving ciclosporin were genotyped by PCR-RFLP, and the ciclosporin concentration was determined by EMIT. KEY FINDINGS The frequency of IVS2+55A>G, IVS2+78A>G, IVS6-17C>T, 1792A>G, 1944T>C and 2654T>C variant alleles was 0.343, 0.332, 0.378, 0.515, 0.520 and 0.393, which fitted Hardy-Weinberg equilibrium. Only the IVS6-17C>T and 2654T>C were significantly associated with the ciclosporin C2 /D during the end of the first month. The mean ciclosporin C2 /D level of the PXR*1B haplotype clusters was 1.3-fold and 1.2-fold higher compared with the *1A and *1C. No significant difference was observed in CsA C2 /D between the PXR*1A and PXR*1C. We found no difference in C0 /D among the six genotypes or the three haplotype clusters. CONCLUSIONS The PXR*1B in Chinese renal transplant patients was associated with ciclosporin concentration. Genetic polymorphisms and specific haplotype clusters in PXR could have significant contributory roles in affecting interethnic variations in drug disposition in the Chinese population.
Collapse
Affiliation(s)
- Danying Li
- Pharmacy Department, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Huaijun Zhu
- Pharmacy Department, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xuemei Luo
- Pharmacy Department, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Weihong Ge
- Pharmacy Department, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
20
|
Chai SC, Wright WC, Chen T. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Med Res Rev 2019; 40:1061-1083. [PMID: 31782213 DOI: 10.1002/med.21648] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Pregnane X receptor (PXR) is a ligand-activated nuclear receptor (NR) that was originally identified as a master regulator of xenobiotic detoxification. It regulates the expression of drug-metabolizing enzymes and transporters to control the degradation and excretion of endobiotics and xenobiotics, including therapeutic agents. The metabolism and disposition of drugs might compromise their efficacy and possibly cause drug toxicity and/or drug resistance. Because many drugs can promiscuously bind and activate PXR, PXR antagonists might have therapeutic value in preventing and overcoming drug-induced PXR-mediated drug toxicity and drug resistance. Furthermore, PXR is now known to have broader cellular functions, including the regulation of cell proliferation, and glucose and lipid metabolism. Thus, PXR might be involved in human diseases such as cancer and metabolic diseases. The importance of PXR antagonists is discussed in the context of the role of PXR in xenobiotic sensing and other disease-related pathways. This review focuses on the development of PXR antagonists, which has been hampered by the promiscuity of PXR ligand binding. However, substantial progress has been made in recent years, suggesting that it is feasible to develop selective PXR antagonists. We discuss the current status, challenges, and strategies in developing selective PXR antagonists. The strategies are based on the molecular mechanisms of antagonism in related NRs that can be applied to the design of PXR antagonists, primarily driven by structural information.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Moore TW, Frasor J. Editorial for Special Issue on "Alternative nuclear receptor ligands". Mol Cell Endocrinol 2019; 493:110479. [PMID: 31173820 DOI: 10.1016/j.mce.2019.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA; University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, USA.
| | - Jonna Frasor
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott St., Chicago, Illinois 60612, USA
| |
Collapse
|