1
|
S Gomes AA, Costa MGS, Louet M, Floquet N, Bisch PM, Perahia D. Extended Sampling of Macromolecular Conformations from Uniformly Distributed Points on Multidimensional Normal Mode Hyperspheres. J Chem Theory Comput 2024; 20:10770-10786. [PMID: 39663763 DOI: 10.1021/acs.jctc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.
Collapse
Affiliation(s)
- Antoniel A S Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
| |
Collapse
|
2
|
Wu Q, Li L, Zhang Y, Ming X, Feng N. Measurement methods, influencing factors and applications of intercellular receptor-ligand binding kinetics in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:43-54. [PMID: 39491758 DOI: 10.1016/j.pbiomolbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Receptor-ligand binding on contacting cells dictates the extent of transmembrane signaling through membrane receptors during cell communication, influencing both the physiological and pathological activities of cells. This process is integral to fundamental biological mechanisms including signal transduction, cancer metastasis, immune responses, and inflammatory cascades, all of which are profoundly influenced by the cell microenvironment. This article provides an overview of the kinetic theory of receptor-ligand binding and examines methods for measuring this interaction, along with their respective advantages and disadvantages. Furthermore, it comprehensively explores the factors that impact receptor-ligand binding, encompassing protein-membrane interactions, the bioelectric microenvironment, auxiliary factors, hydrogen bond strength, pH levels, cis and trans interactions between ligands and receptors. The application of receptor-ligand binding kinetics in various diseases such as immunity, cancer, and inflammation are also discussed. Additionally, the investigation into how functional substances alter receptor-ligand binding dynamics within specific cellular microenvironments presents a promising new approach to treating related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Liangchao Li
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Yuyan Zhang
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Xiaozhi Ming
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Nianjie Feng
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
3
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
4
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Hartmann A, Sreenivasa K, Schenkel M, Chamachi N, Schake P, Krainer G, Schlierf M. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat Commun 2023; 14:6511. [PMID: 37845199 PMCID: PMC10579363 DOI: 10.1038/s41467-023-42232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Single-molecule FRET (smFRET) has become a versatile tool for probing the structure and functional dynamics of biomolecular systems, and is extensively used to address questions ranging from biomolecular folding to drug discovery. Confocal smFRET measurements are amongst the widely used smFRET assays and are typically performed in a single-well format. Thus, sampling of many experimental parameters is laborious and time consuming. To address this challenge, we extend here the capabilities of confocal smFRET beyond single-well measurements by integrating a multiwell plate functionality to allow for continuous and automated smFRET measurements. We demonstrate the broad applicability of the multiwell plate assay towards DNA hairpin dynamics, protein folding, competitive and cooperative protein-DNA interactions, and drug-discovery, revealing insights that would be very difficult to achieve with conventional single-well format measurements. For the adaptation into existing instrumentations, we provide a detailed guide and open-source acquisition and analysis software.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Koushik Sreenivasa
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, Netherlands
| | - Mathias Schenkel
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Neharika Chamachi
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Philipp Schake
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Georg Krainer
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010, Graz, Austria
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062, Dresden, Germany.
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
6
|
Smith AA, Pacull EM, Stecher S, Hildebrand PW, Vogel A, Huster D. Analysis of the Dynamics of the Human Growth Hormone Secretagogue Receptor Reveals Insights into the Energy Landscape of the Molecule. Angew Chem Int Ed Engl 2023; 62:e202302003. [PMID: 37205715 DOI: 10.1002/anie.202302003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
G protein-coupled receptors initiate signal transduction in response to ligand binding. Growth hormone secretagogue receptor (GHSR), the focus of this study, binds the 28 residue peptide ghrelin. While structures of GHSR in different states of activation are available, dynamics within each state have not been investigated in depth. We analyze long molecular dynamics simulation trajectories using "detectors" to compare dynamics of the apo and ghrelin-bound states yielding timescale-specific amplitudes of motion. We identify differences in dynamics between apo and ghrelin-bound GHSR in the extracellular loop 2 and transmembrane helices 5-7. NMR of the GHSR histidine residues reveals chemical shift differences in these regions. We evaluate timescale specific correlation of motions between residues of ghrelin and GHSR, where binding yields a high degree of correlation for the first 8 ghrelin residues, but less correlation for the helical end. Finally, we investigate the traverse of GHSR over a rugged energy landscape via principal component analysis.
Collapse
Affiliation(s)
- Albert A Smith
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Emelyne M Pacull
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Sabrina Stecher
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| |
Collapse
|
7
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
8
|
Biophysical investigations of class A GPCRs. Biochimie 2023; 205:86-94. [PMID: 36220484 DOI: 10.1016/j.biochi.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) play a central role in cellular communication, converting external stimuli into intracellular responses. GPCRs bind a very broad panel of ligands, such as hormones, neurotransmitters, peptides and lipids. Ligand binding triggers a series of receptor conformational rearrangements, enabling the coupling to intracellular partners and the activation of signaling cascades. The major breakthrough in GPCRs structural biology of the past decade has considerably advanced our understanding of GPCR activation. However, structural information cannot fully explain the molecular details of GPCRs pharmacology. Biophysical investigations reveal that GPCRs are very dynamic proteins, capable of exploring a wide range of conformational states. Binding to ligands of various pharmacological classes, as well as intracellular effectors and allosteric modulators, can shift the equilibrium between these states and the kinetic of interconversions among the different conformers. Investigation of GPCR dynamic interplay is therefore important to better understand the complex pharmacology and signaling profile of these receptors.
Collapse
|
9
|
Salas-Estrada L, Fiorillo B, Filizola M. Metadynamics simulations leveraged by statistical analyses and artificial intelligence-based tools to inform the discovery of G protein-coupled receptor ligands. Front Endocrinol (Lausanne) 2022; 13:1099715. [PMID: 36619585 PMCID: PMC9816996 DOI: 10.3389/fendo.2022.1099715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
G Protein-Coupled Receptors (GPCRs) are a large family of membrane proteins with pluridimensional signaling profiles. They undergo ligand-specific conformational changes, which in turn lead to the differential activation of intracellular signaling proteins and the consequent triggering of a variety of biological responses. This conformational plasticity directly impacts our understanding of GPCR signaling and therapeutic implications, as do ligand-specific kinetic differences in GPCR-induced transducer activation/coupling or GPCR-transducer complex stability. High-resolution experimental structures of ligand-bound GPCRs in the presence or absence of interacting transducers provide important, yet limited, insights into the highly dynamic process of ligand-induced activation or inhibition of these receptors. We and others have complemented these studies with computational strategies aimed at characterizing increasingly accurate metastable conformations of GPCRs using a combination of metadynamics simulations, state-of-the-art algorithms for statistical analyses of simulation data, and artificial intelligence-based tools. This minireview provides an overview of these approaches as well as lessons learned from them towards the identification of conformational states that may be difficult or even impossible to characterize experimentally and yet important to discover new GPCR ligands.
Collapse
Affiliation(s)
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 2022; 237:108242. [DOI: 10.1016/j.pharmthera.2022.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
|
11
|
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 2022; 185:1661-1675.e16. [PMID: 35483373 PMCID: PMC9191627 DOI: 10.1016/j.cell.2022.03.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
β-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that β-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the β-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that β-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for β-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of β-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream β-arrestin-mediated events are directed.
Collapse
Affiliation(s)
- Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - G Glenn A Gregorio
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Zhu
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alekhya Govindaraju
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
12
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Das N, Yadav S, Negi KS, Tariff E, Sen P. Microsecond Active-Site Dynamics Primarily control Proteolytic Activity of Bromelain: A Single Molecular Level Study with a Denaturant, a Stabilizer and a Macromolecular Crowder. BBA ADVANCES 2022; 2:100041. [PMID: 37082607 PMCID: PMC10074955 DOI: 10.1016/j.bbadva.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022] Open
Abstract
Proteins are dynamic entity with various molecular motions at different timescale and length scale. Molecular motions are crucial for the optimal function of an enzyme. It seems intuitive that these motions are crucial for optimal enzyme activity. However, it is not easy to directly correlate an enzyme's dynamics and activity due to biosystems' enormous complexity. amongst many factors, structure and dynamics are two prime aspects that combinedly control the activity. Therefore, having a direct correlation between protein dynamics and activity is not straightforward. Herein, we observed and correlated the structural, functional, and dynamical responses of an industrially crucial proteolytic enzyme, bromelain with three versatile classes of chemicals: GnHCl (protein denaturant), sucrose (protein stabilizer), and Ficoll-70 (macromolecular crowder). The only free cysteine (Cys-25 at the active-site) of bromelain has been tagged with a cysteine-specific dye to unveil the structural and dynamical changes through various spectroscopic studies both at bulk and at the single molecular level. Proteolytic activity is carried out using casein as the substrate. GnHCl and sucrose shows remarkable structure-dynamics-activity relationships. Interestingly, with Ficoll-70, structure and activity are not correlated. However, microsecond dynamics and activity are beautifully correlated in this case also. Overall, our result demonstrates that bromelain dynamics in the microsecond timescale around the active-site is probably a key factor in controlling its proteolytic activity.
Collapse
|
14
|
Abstract
Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; .,Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA;
| |
Collapse
|
15
|
Abrol R, Serrano E, Santiago LJ. Development of enhanced conformational sampling methods to probe the activation landscape of GPCRs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:325-359. [PMID: 35034722 PMCID: PMC11476118 DOI: 10.1016/bs.apcsb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest superfamily of integral membrane proteins and play critical signal transduction roles in many physiological processes. Developments in molecular biology, biophysical, biochemical, pharmacological, and computational techniques aimed at these important therapeutic targets are beginning to provide unprecedented details on the structural as well as functional basis of their pleiotropic signaling mediated by G proteins, β arrestins, and other transducers. This pleiotropy presents a pharmacological challenge as the same ligand-receptor interaction can cause a therapeutic effect as well as an undesirable on-target side-effect through different downstream pathways. GPCRs don't function as simple binary on-off switches but as finely tuned shape-shifting machines described by conformational ensembles, where unique subsets of conformations may be responsible for specific signaling cascades. X-ray crystallography and more recently cryo-electron microscopy are providing snapshots of some of these functionally-important receptor conformations bound to ligands and/or transducers, which are being utilized by computational methods to describe the dynamic conformational energy landscape of GPCRs. In this chapter, we review the progress in computational conformational sampling methods based on molecular dynamics and discrete sampling approaches that have been successful in complementing biophysical and biochemical studies on these receptors in terms of their activation mechanisms, allosteric effects, actions of biased ligands, and effects of pathological mutations. Some of the sampled simulation time scales are beginning to approach receptor activation time scales. The list of conformational sampling methods and example uses discussed is not exhaustive but includes representative examples that have pushed the limits of classical molecular dynamics and discrete sampling methods to describe the activation energy landscape of GPCRs.
Collapse
Affiliation(s)
- Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States.
| | - Erik Serrano
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| | - Luis Jaimes Santiago
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| |
Collapse
|
16
|
Zagotta WN, Sim BS, Nhim AK, Raza MM, Evans EG, Venkatesh Y, Jones CM, Mehl RA, Petersson EJ, Gordon SE. An improved fluorescent noncanonical amino acid for measuring conformational distributions using time-resolved transition metal ion FRET. eLife 2021; 10:e70236. [PMID: 34623258 PMCID: PMC8500717 DOI: 10.7554/elife.70236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.
Collapse
Affiliation(s)
- William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Brandon S Sim
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Anthony K Nhim
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Marium M Raza
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Eric Gb Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Chloe M Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
17
|
Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat Commun 2021; 12:5426. [PMID: 34521824 PMCID: PMC8440590 DOI: 10.1038/s41467-021-25620-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states. Here, the authors use smFRET to assess the structural dynamics of metabotropic glutamate receptor mGlu2 and show that a positive allosteric modulator or the Gi protein stabilize mGlu2 in the glutamate-induced active state, leading to the full activation of the receptor.
Collapse
|
18
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
19
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
20
|
Ligand modulation of the conformational dynamics of the A 2A adenosine receptor revealed by single-molecule fluorescence. Sci Rep 2021; 11:5910. [PMID: 33723285 PMCID: PMC7960716 DOI: 10.1038/s41598-021-84069-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane proteins, making them an important target for therapeutics. Activation of these receptors is modulated by orthosteric ligands, which stabilize one or several states within a complex conformational ensemble. The intra- and inter-state dynamics, however, is not well documented. Here, we used single-molecule fluorescence to measure ligand-modulated conformational dynamics of the adenosine A2A receptor (A2AR) on nanosecond to millisecond timescales. Experiments were performed on detergent-purified A2R in either the ligand-free (apo) state, or when bound to an inverse, partial or full agonist ligand. Single-molecule Förster resonance energy transfer (smFRET) was performed on detergent-solubilized A2AR to resolve active and inactive states via the separation between transmembrane (TM) helices 4 and 6. The ligand-dependent changes of the smFRET distributions are consistent with conformational selection and with inter-state exchange lifetimes ≥ 3 ms. Local conformational dynamics around residue 2296.31 on TM6 was measured using fluorescence correlation spectroscopy (FCS), which captures dynamic quenching due to photoinduced electron transfer (PET) between a covalently-attached dye and proximal aromatic residues. Global analysis of PET-FCS data revealed fast (150-350 ns), intermediate (50-60 μs) and slow (200-300 μs) conformational dynamics in A2AR, with lifetimes and amplitudes modulated by ligands and a G-protein mimetic (mini-Gs). Most notably, the agonist binding and the coupling to mini-Gs accelerates and increases the relative contribution of the sub-microsecond phase. Molecular dynamics simulations identified three tyrosine residues (Y112, Y2887.53, and Y2907.55) as being responsible for the dynamic quenching observed by PET-FCS and revealed associated helical motions around residue 2296.31 on TM6. This study provides a quantitative description of conformational dynamics in A2AR and supports the idea that ligands bias not only GPCR conformations but also the dynamics within and between distinct conformational states of the receptor.
Collapse
|
21
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
22
|
Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol 2020; 63:18-25. [PMID: 32305785 DOI: 10.1016/j.sbi.2020.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins that are involved in regulation of sensory and physiological processes and implicated in many diseases. The last decade revolutionized the GPCR field by unraveling multiple high-resolution structures of many different receptors in complexes with various ligands and signaling partners. A complete understanding of the complex nature of GPCR function is, however, impossible to attain without combining static structural snapshots with information about GPCR dynamics obtained by complementary spectroscopic techniques. As illustrated in this review, structure and dynamics studies are now paving the way for understanding important questions of GPCR biology such as partial and biased agonism, allostery, oligomerization, and other fundamental aspects of GPCR signaling.
Collapse
|