1
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
2
|
Delhaye M, LeDue J, Robinson K, Xu Q, Zhang Q, Oku S, Zhang P, Craig AM. Adaptation of Magnified Analysis of the Proteome for Excitatory Synaptic Proteins in Varied Samples and Evaluation of Cell Type-Specific Distributions. J Neurosci 2024; 44:e1291232024. [PMID: 38360747 PMCID: PMC10993037 DOI: 10.1523/jneurosci.1291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Collapse
Affiliation(s)
- Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaylie Robinson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Qin Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
3
|
Xu YP, Zhang J, Mei X, Wu Y, Jiao W, Wang YH, Zhang AQ. Ablation of Shank1 Protects against 6-OHDA-induced Cytotoxicity via PRDX3-mediated Inhibition of ER Stress in SN4741 Cells. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:402-410. [PMID: 36797610 DOI: 10.2174/1871527322666230216124156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 02/18/2023]
Abstract
BACKGROUND Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.
Collapse
Affiliation(s)
- Ye-Ping Xu
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Jing Zhang
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xue Mei
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yan Wu
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Wei Jiao
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Ai-Qin Zhang
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
4
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Li N, Ren C, Li S, Yu W, Jin K, Ji X. Remote ischemic conditioning alleviates chronic cerebral hypoperfusion-induced cognitive decline and synaptic dysfunction via the miR-218a-5p/SHANK2 pathway. Prog Neurobiol 2023; 230:102514. [PMID: 37574039 DOI: 10.1016/j.pneurobio.2023.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Vascular cognitive impairment (VCI) due to chronic cerebral hypoperfusion (CCH), is the second leading cause of dementia. Although synaptic impairment plays a critical role in VCI, its exact mechanism remains unknown. Our previous research revealed that remote ischemic conditioning (RIC) could alleviate cognitive decline resulting from CCH, however, its effects on synaptic impairment remain unclear. In this study, we confirmed that RIC alleviated both cognitive decline and its associated synaptic dysfunction caused by CCH. RNA sequencing revealed that CCH increased in miR-218a-5p expression, which was decreased by RIC. Elevated miR-218a-5p levels limited the benefits of RIC, however, inhibiting miR-218a-5p in hippocampal CA1 neurons rescued synaptic dysfunction. Additionally, we found that SHANK2 is a downstream target of miR-218a-5p, and inhibiting SHANK2 expression reduced the alleviation caused by hypoxic conditioning in synaptic impairment in vitro. In conclusion, our results suggested that RIC alleviated synaptic impairment via the miR-218a-5p/SHANK2 pathway, which could be a potential biomarker or therapeutic target for cognitive impairment caused by CCH.
Collapse
Affiliation(s)
- Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xuming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Qin Y, Zhang XY, Liu Y, Ma Z, Tao S, Li Y, Peng R, Wang F, Wang J, Feng J, Qiu Z, Jin L, Wang H, Gong X. Downregulation of mGluR1-mediated signaling underlying autistic-like core symptoms in Shank1 P1812L-knock-in mice. Transl Psychiatry 2023; 13:329. [PMID: 37880287 PMCID: PMC10600164 DOI: 10.1038/s41398-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yanyan Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuo Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Rui Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
10
|
SHANK family on stem cell fate and development. Cell Death Dis 2022; 13:880. [PMID: 36257935 PMCID: PMC9579136 DOI: 10.1038/s41419-022-05325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
SH3 and multiple ankyrin repeat domains protein (SHANK) 1, SHANK2, and SHANK3 encode a family of postsynaptic scaffolding proteins present at glutamatergic synapses and play a crucial role in synaptogenesis. In the past years, studies have provided a preliminary appreciation and understanding of the influence of the SHANK family in controlling stem cell fate. Here, we review the modulation of SHANK gene expression and their related signaling pathways, allowing for an in-depth understanding of the role of SHANK in stem cells. Besides, their role in governing stem cell self-renewal, proliferation, differentiation, apoptosis, and metabolism are explored in neural stem cells (NSCs), stem cells from apical papilla (SCAPs), and induced pluripotent stem cells (iPSCs). Moreover, iPSCs and embryonic stem cells (ESCs) have been utilized as model systems for analyzing their functions in terms of neuronal development. SHANK-mediated stem cell fate determination is an intricate and multifactorial process. This study aims to achieve a better understanding of the role of SHANK in these processes and their clinical applications, thereby advancing the field of stem cell therapy. This review unravels the regulatory role of the SHANK family in the fate of stem cells.
Collapse
|
11
|
Lim HK, Yoon JH, Song M. Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Front Mol Neurosci 2022; 15:922840. [PMID: 35726297 PMCID: PMC9206533 DOI: 10.3389/fnmol.2022.922840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian brain comprises structurally and functionally distinct regions. Each of these regions has characteristic molecular mechanisms that mediate higher-order tasks, such as memory, learning, emotion, impulse, and motor control. Many genes are involved in neuronal signaling and contribute to normal brain development. Dysfunction of essential components of neural signals leads to various types of brain disorders. Autism spectrum disorder is a neurodevelopmental disorder characterized by social deficits, communication challenges, and compulsive repetitive behaviors. Long-term genetic studies have uncovered key genes associated with autism spectrum disorder, such as SH3 and multiple ankyrin repeat domains 3, methyl-CpG binding protein 2, neurexin 1, and chromodomain helicase DNA binding protein 8. In addition, disease-associated networks have been identified using animal models, and the understanding of the impact of these genes on disease susceptibility and compensation is deepening. In this review, we examine rescue strategies using key models of autism spectrum disorder.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
12
|
Urrutia-Ruiz C, Rombach D, Cursano S, Gerlach-Arbeiter S, Schoen M, Bockmann J, Demestre M, Boeckers TM. Deletion of the Autism-Associated Protein SHANK3 Abolishes Structural Synaptic Plasticity after Brain Trauma. Int J Mol Sci 2022; 23:ijms23116081. [PMID: 35682760 PMCID: PMC9181590 DOI: 10.3390/ijms23116081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by repetitive behaviors and impairments of sociability and communication. About 1% of ASD cases are caused by mutations of SHANK3, a major scaffolding protein of the postsynaptic density. We studied the role of SHANK3 in plastic changes of excitatory synapses within the central nervous system by employing mild traumatic brain injury (mTBI) in WT and Shank3 knockout mice. In WT mice, mTBI triggered ipsi- and contralateral loss of hippocampal dendritic spines and excitatory synapses with a partial recovery over time. In contrast, no significant synaptic alterations were detected in Shank3∆11−/− mice, which showed fewer dendritic spines and excitatory synapses at baseline. In line, mTBI induced the upregulation of synaptic plasticity-related proteins Arc and p-cofilin only in WT mice. Interestingly, microglia proliferation was observed in WT mice after mTBI but not in Shank3∆11−/− mice. Finally, we detected TBI-induced increased fear memory at the behavioral level, whereas in Shank3∆11−/− animals, the already-enhanced fear memory levels increased only slightly after mTBI. Our data show the lack of structural synaptic plasticity in Shank3 knockout mice that might explain at least in part the rigidity of behaviors, problems in adjusting to new situations and cognitive deficits seen in ASDs.
Collapse
Affiliation(s)
- Carolina Urrutia-Ruiz
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Daniel Rombach
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Silvia Cursano
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Susanne Gerlach-Arbeiter
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Translational Biochemistry, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-5002-3220
| |
Collapse
|
13
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
14
|
Vyas Y, Cheyne JE, Lee K, Jung Y, Cheung PY, Montgomery JM. Shankopathies in the Developing Brain in Autism Spectrum Disorders. Front Neurosci 2022; 15:775431. [PMID: 35002604 PMCID: PMC8727517 DOI: 10.3389/fnins.2021.775431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein–protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in SHANKs reflect their importance to synapse development and plasticity. This is evident in autism spectrum disorder (ASD), a neurodevelopmental disorder resulting in behavioural changes including repetitive behaviours, lack of sociability, sensory issues, learning, and language impairments. Human genetic studies have revealed ASD mutations commonly occur in SHANKs. Rodent models expressing these mutations display ASD behavioural impairments, and a subset of these deficits are rescued by reintroduction of Shank in adult animals, suggesting that lack of SHANK during key developmental periods can lead to permanent changes in the brain’s wiring. Here we explore the differences in synaptic function and plasticity from development onward in rodent Shank ASD models. To date the most explored brain regions, relate to the behavioural changes observed, e.g., the striatum, hippocampus, sensory, and prefrontal cortex. In addition, less-studied regions including the hypothalamus, cerebellum, and peripheral nervous system are also affected. Synaptic phenotypes include weakened but also strengthened synaptic function, with NMDA receptors commonly affected, as well as changes in the balance of excitation and inhibition especially in cortical brain circuits. The effects of shankopathies in activity-dependent brain wiring is an important target for therapeutic intervention. We therefore highlight areas of research consensus and identify remaining questions and challenges.
Collapse
Affiliation(s)
- Yukti Vyas
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pang Ying Cheung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
A recurrent SHANK1 mutation implicated in autism spectrum disorder causes autistic-like core behaviors in mice via downregulation of mGluR1-IP3R1-calcium signaling. Mol Psychiatry 2022; 27:2985-2998. [PMID: 35388181 PMCID: PMC9205781 DOI: 10.1038/s41380-022-01539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
The genetic etiology and underlying mechanism of autism spectrum disorder (ASD) remain elusive. SHANK family genes (SHANK1/2/3) are well known ASD-related genes. However, little is known about how SHANK missense mutations contribute to ASD. Here, we aimed to clarify the molecular mechanism of and the multilevel neuropathological features induced by Shank1 mutations in knock-in (KI) mice. In this study, by sequencing the SHANK1 gene in a cohort of 615 ASD patients and 503 controls, we identified an ASD-specific recurrent missense mutation, c.2621 G > A (p.R874H). This mutation demonstrated strong pathogenic potential in in vitro experiments, and we generated the corresponding Shank1 R882H-KI mice. Shank1 R882H-KI mice displayed core symptoms of ASD, namely, social disability and repetitive behaviors, without confounding comorbidities of abnormal motor function and heightened anxiety. Brain structural changes in the frontal cortex, hippocampus and cerebellar cortex were observed in Shank1 R882H-KI mice via structural magnetic resonance imaging. These key brain regions also showed severe and consistent downregulation of mGluR1-IP3R1-calcium signaling, which subsequently affected the release of intracellular calcium. Corresponding cellular structural and functional changes were present in Shank1 R882H-KI mice, including decreased spine size, reduced spine density, abnormal morphology of postsynaptic densities, and impaired hippocampal long-term potentiation and basal excitatory transmission. These findings demonstrate the causative role of SHANK1 in ASD and elucidate the underlying biological mechanism of core symptoms of ASD. We also provide a reliable model of ASD with core symptoms for future studies, such as biomarker identification and therapeutic intervention studies.
Collapse
|
16
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
17
|
Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, Pachter L. Isoform cell-type specificity in the mouse primary motor cortex. Nature 2021; 598:195-199. [PMID: 34616073 PMCID: PMC8494650 DOI: 10.1038/s41586-021-03969-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene expression at isoform resolution, making possible the identification of specific isoform markers for different cell types. Used in conjunction with spatial RNA capture and gene-tagging methods, this enables the inference of spatially resolved isoform expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples of isoform specificity in cell types-including isoform shifts between cell types that are masked in gene-level analysis-as well as examples of transcriptional regulation. Additionally, we show that isoform specificity helps to refine cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging multiple measurements provides a comprehensive atlas of transcription in the mouse primary motor cortex that improves on the possibilities offered by any single technology.
Collapse
Affiliation(s)
- A Sina Booeshaghi
- Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
18
|
Wan L, Ai JQ, Yang C, Jiang J, Zhang QL, Luo ZH, Huang RJ, Tu T, Pan A, Tu E, Manavis J, Xiao B, Yan XX. Expression of the Excitatory Postsynaptic Scaffolding Protein, Shank3, in Human Brain: Effect of Age and Alzheimer's Disease. Front Aging Neurosci 2021; 13:717263. [PMID: 34504419 PMCID: PMC8421777 DOI: 10.3389/fnagi.2021.717263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Shank3 is a postsynaptic scaffolding protein of excitatory synapses. Mutations or variations of SHANK3 are associated with various psychiatric and neurological disorders. We set to determine its normal expression pattern in the human brain, and its change, if any, with age and Alzheimer’s disease (AD)-type β-amyloid (Aβ) and Tau pathogenesis. In general, Shank3 immunoreactivity (IR) exhibited largely a neuropil pattern with differential laminar/regional distribution across brain regions. In youth and adults, subsets of pyramidal/multipolar neurons in the cerebrum, striatum, and thalamus showed moderate IR, while some large-sized neurons in the brainstem and the granule cells in the cerebellar cortex exhibited light IR. In double immunofluorescence, Shank3 IR occurred at the sublemmal regions in neuronal somata and large dendrites, apposing to synaptophysin-labeled presynaptic terminals. In aged cases, immunolabeled neuronal somata were reduced, with disrupted neuropil labeling seen in the molecular layer of the dentate gyrus in AD cases. In immunoblot, levels of Shank3 protein were positively correlated with that of the postsynaptic density protein 95 (PSD95) among different brain regions. Levels of Shank3, PSD95, and synaptophysin immunoblotted in the prefrontal, precentral, and cerebellar cortical lysates were reduced in the aged and AD relative to youth and adult groups. Taken together, the differential Shank3 expression among brain structures/regions indicates the varied local density of the excitatory synapses. The enriched Shank3 expression in the forebrain subregions appears inconsistent with a role of this protein in the modulation of high cognitive functions. The decline of its expression in aged and AD brains may relate to the degeneration of excitatory synapses.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
19
|
Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021; 26:6482-6504. [PMID: 34021263 PMCID: PMC8760046 DOI: 10.1038/s41380-021-01140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.
Collapse
|
20
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Scott-Solomon E, Kuruvilla R. Prenylation of Axonally Translated Rac1 Controls NGF-Dependent Axon Growth. Dev Cell 2020; 53:691-705.e7. [PMID: 32533921 DOI: 10.1016/j.devcel.2020.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Compartmentalized signaling is critical for cellular organization and specificity of functional outcomes in neurons. Here, we report that post-translational lipidation of newly synthesized proteins in axonal compartments allows for short-term and autonomous responses to extrinsic cues. Using conditional mutant mice, we found that protein prenylation is essential for sympathetic axon innervation of target organs. We identify a localized requirement for prenylation in sympathetic axons to promote axonal growth in response to the neurotrophin, nerve growth factor (NGF). NGF triggers prenylation of proteins including the Rac1 GTPase in axons, counter to the canonical view of prenylation as constitutive, and strikingly, in a manner dependent on axonal protein synthesis. Newly prenylated proteins localize to TrkA-harboring endosomes in axons and promote receptor trafficking necessary for axonal growth. Thus, coupling of prenylation to local protein synthesis presents a mechanism for spatially segregated cellular functions during neuronal development.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
Lo LHY, Lai KO. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol Autism 2020; 11:40. [PMID: 32460854 PMCID: PMC7251853 DOI: 10.1186/s13229-020-00349-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain disorder that involves changes in neuronal connections. Abnormal morphology of dendritic spines on postsynaptic neurons has been observed in ASD patients and transgenic mice that model different monogenetic causes of ASD. A number of ASD-associated genetic variants are known to disrupt dendritic local protein synthesis, which is essential for spine morphogenesis, synaptic transmission, and plasticity. Most of our understanding on the molecular mechanism underlying ASD depends on studies using rodents. However, recent advance in human pluripotent stem cells and their neural differentiation provides a powerful alternative tool to understand the cellular aspects of human neurological disorders. In this review, we summarize recent progress on studying mRNA targeting and local protein synthesis in stem cell-derived neurons, and discuss how perturbation of these processes may impact synapse development and functions that are relevant to cognitive deficits in ASD.
Collapse
Affiliation(s)
- Louisa Hoi-Ying Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
24
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
25
|
Harrison BJ, Park JW, Gomes C, Petruska JC, Sapio MR, Iadarola MJ, Chariker JH, Rouchka EC. Detection of Differentially Expressed Cleavage Site Intervals Within 3' Untranslated Regions Using CSI-UTR Reveals Regulated Interaction Motifs. Front Genet 2019; 10:182. [PMID: 30915105 PMCID: PMC6422928 DOI: 10.3389/fgene.2019.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
The length of untranslated regions at the 3' end of transcripts (3'UTRs) is regulated by alternate polyadenylation (APA). 3'UTRs contain regions that harbor binding motifs for regulatory molecules. However, the mechanisms that coordinate the 3'UTR length of specific groups of transcripts are not well-understood. We therefore developed a method, CSI-UTR, that models 3'UTR structure as tandem segments between functional alternative-polyadenylation sites (termed cleavage site intervals-CSIs). This approach facilitated (1) profiling of 3'UTR isoform expression changes and (2) statistical enrichment of putative regulatory motifs. CSI-UTR analysis is UTR-annotation independent and can interrogate legacy data generated from standard RNA-Seq libraries. CSI-UTR identified a set of CSIs in human and rodent transcriptomes. Analysis of RNA-Seq datasets from neural tissue identified differential expression events within 3'UTRs not detected by standard gene-based differential expression analyses. Further, in many instances 3'UTR and CDS from the same gene were regulated differently. This modulation of motifs for RNA-interacting molecules with potential condition-dependent and tissue-specific RNA binding partners near the polyA signal and CSI junction may play a mechanistic role in the specificity of alternative polyadenylation. Source code, CSI BED files and example datasets are available at: https://github.com/UofLBioinformatics/CSI-UTR.
Collapse
Affiliation(s)
- Benjamin J Harrison
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States.,Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, KY, United States
| | - Juw Won Park
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, KY, United States.,Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Cynthia Gomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Julia H Chariker
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States.,Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, KY, United States
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, KY, United States.,Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
26
|
Srivastava S, Scherrer B, Prohl AK, Filip-Dhima R, Kapur K, Kolevzon A, Buxbaum JD, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Warfield SK, Sahin M. Volumetric Analysis of the Basal Ganglia and Cerebellar Structures in Patients with Phelan-McDermid Syndrome. Pediatr Neurol 2019; 90:37-43. [PMID: 30396833 PMCID: PMC6309632 DOI: 10.1016/j.pediatrneurol.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Phelan-McDermid syndrome is caused by haploinsufficiency of SHANK3 on terminal chromosome 22. Knowledge about altered neuroanatomic circuitry in Phelan-McDermid syndrome comes from mouse models showing striatal hypertrophy in the basal ganglia, and from humans with evidence of cerebellar atrophy. To date, no studies have performed volumetric analysis on Phelan-McDermid syndrome patients. METHODS We performed volumetric analysis of baseline brain MRIs of Phelan-McDermid syndrome patients (ages three to 21 years) enrolled in a prospective natural history study (ClinicalTrials.gov NCT02461420). Using MRI segmentations carried out with PSTAPLE algorithm, we measured relative volumes (volume of the structure divided by the volume of the brain parenchyma) of basal ganglia and cerebellar structures. We compared these measurements to those of age- and sex-matched healthy controls part of another study. Among the patients, we performed linear regression of each relative volume using Repetitive Behavior Scale-Revised total score and Aberrant Behavior Checklist stereotypy score. Eleven patients with Phelan-McDermid syndrome (six females, five males) and 11 healthy controls were in this analysis. RESULTS At time of MRI, the mean age of the patients and controls was 9.24 (5.29) years and 9.00 (4.49) years, respectively (P = 0.66). Compared to controls, patients had decreased caudate (P ≤ 0.013), putamen (P ≤ 0.026), and left pallidum (P = 0.033) relative volumes. Relative volume of cerebellar vermal lobules I to V (beta coefficient = -17119, P = 0.017) decreased with increasing Repetitive Behavior Scale-Revised total score. CONCLUSIONS The volumes of the striatum and left pallidum are decreased in individuals with Phelan-McDermid syndrome. Cerebellar vermis volume may predict repetitive behavior severity in Phelan-McDermid syndrome. These findings warrant further investigation in larger samples.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts,USA,F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Benoit Scherrer
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anna K. Prohl
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajna Filip-Dhima
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts,USA
| | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts,USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA,Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig M. Powell
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Psychiatry and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | | |
Collapse
|
27
|
Hackett TA. Adenosine A 1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain. Anat Rec (Hoboken) 2018; 301:1882-1905. [PMID: 30315630 PMCID: PMC6282551 DOI: 10.1002/ar.23907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Andreassi C, Crerar H, Riccio A. Post-transcriptional Processing of mRNA in Neurons: The Vestiges of the RNA World Drive Transcriptome Diversity. Front Mol Neurosci 2018; 11:304. [PMID: 30210293 PMCID: PMC6121099 DOI: 10.3389/fnmol.2018.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their extraordinary cytoarchitecture. This formidable task is achieved, at least in part, by targeting mRNA to subcellular compartments where they are rapidly translated. mRNA transcripts are the conveyor of genetic information from DNA to the translational machinery, however, they are also endowed with additional functions linked to both the coding sequence (open reading frame, or ORF) and the flanking 5′ and 3′ untranslated regions (UTRs), that may harbor coding-independent functions. In this review, we will highlight recent evidences supporting new coding-dependent and -independent functions of mRNA and discuss how nuclear and cytoplasmic post-transcriptional modifications of mRNA contribute to localization and translation in mammalian cells with specific emphasis on neurons. We also describe recently developed techniques that can be employed to study RNA dynamics at subcellular level in eukaryotic cells in developing and regenerating neurons.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Hamish Crerar
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Taylor SE, Taylor RD, Price J, Andreae LC. Single-molecule fluorescence in-situ hybridization reveals that human SHANK3 mRNA expression varies during development and in autism-associated SHANK3 heterozygosity. Stem Cell Res Ther 2018; 9:206. [PMID: 30064494 PMCID: PMC6069870 DOI: 10.1186/s13287-018-0957-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/13/2018] [Accepted: 07/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions and mutations in the SHANK3 gene are strongly associated with autism spectrum disorder and underlie the autism-associated disorder Phelan-McDermid syndrome. SHANK3 is a scaffolding protein found at the post-synaptic membrane of excitatory neurons. METHODS Single-molecule fluorescence in-situ hybridization (smFISH) allows the visualization of single mRNA transcripts in vitro. Here we perform and quantify smFISH in human inducible pluripotent stem cell (hiPSC)-derived cortical neurons, targeting the SHANK3 transcript. RESULTS Both smFISH and conventional immunofluorescence staining demonstrated a developmental increase in SHANK3 mRNA and protein, respectively, in control human cortical neurons. Analysis of single SHANK3 mRNA molecules in neurons derived from an autistic individual heterozygous for SHANK3 indicated that while the number of SHANK3 mRNA transcripts remained comparable with control levels in the cell soma, there was a 50% reduction within neuronal processes, suggesting that local, dendritic targeting of SHANK3 mRNA may be specifically affected in SHANK3 haploinsufficiency. CONCLUSION Human SHANK3 mRNA shows developmentally regulated dendritic localization in hiPSC-derived neurons, which is reduced in neurons generated from a haploinsufficient individual with autism. Although further replication is needed, given the importance of local mRNA translation in synaptic function, this could represent an important early abnormality.
Collapse
Affiliation(s)
- Samuel E Taylor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Ruth D Taylor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Jack Price
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
30
|
Eltokhi A, Rappold G, Sprengel R. Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. Front Mol Neurosci 2018; 11:240. [PMID: 30072871 PMCID: PMC6060255 DOI: 10.3389/fnmol.2018.00240] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
The SHANK scaffolding proteins are important organizers for signaling proteins in the postsynapse of excitatory neurons. The functional significance of SHANK proteins becomes apparent by the wide spectrum of neurodevelopmental and neuropsychiatric disorders associated with SHANK variants in human patients. A similar diversity of neuropsychiatric-like phenotypes is described for numerous Shank2 and Shank3 knockout (KO) mouse lines. In this review, we will focus on and discuss the experimental results obtained from different, but genetically related and therefore comparable, Shank2 mouse models. First, we will describe the distinct SHANK2 variant-mediated neurodevelopmental and neuropsychiatric disorders in human patients. Then we will discuss the current knowledge of the expressed SHANK2 isoforms in the mouse, and we will describe the genetic strategies used for generating three conventional and seven conditional Shank2 mouse lines. The distinct impairments i.e., autistic-like and mania-like behavior and the alterations on the molecular, electrophysiological and behavioral levels will be compared between the different Shank2 mouse models. We will present our view as to why in these mouse models a spectrum of phenotypes can arise from similar Shank2 gene manipulations and how Shank2 mutant mice can be used and should be analyzed on the behavioral level in future research.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
31
|
Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7 -/- Mice. eNeuro 2018; 5:eN-NWR-0398-17. [PMID: 30023428 PMCID: PMC6049608 DOI: 10.1523/eneuro.0398-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic etiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are used for a mechanistic understanding of ASDs and the development of therapeutic strategies. SHANKs are scaffold proteins in the postsynaptic density of mammalian excitatory synapses with proposed functions in synaptogenesis, regulation of dendritic spine morphology, and instruction of structural synaptic plasticity. In contrast to all studies so far on the function of SHANK proteins, we have previously observed enhanced synaptic plasticity in Shank2 Δex7−/− mice. In a series of experiments, we now reproduce these results, further explore the synaptic phenotype, and directly compare our model to the independently generated Shank2 Δex6-7−/− mice. Minimal stimulation experiments reveal that Shank2 Δex7−/− mice possess an excessive fraction of silent (i.e., α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, short, AMPA receptor lacking) synapses. The synaptic maturation deficit emerges during the third postnatal week and constitutes a plausible mechanistic explanation for the mutants’ increased capacity for long-term potentiation, both in vivo and in vitro. A direct comparison with Shank2 Δex6-7−/− mice adds weight to the hypothesis that both mouse models show a different set of synaptic phenotypes, possibly due to differences in their genetic background. These findings add to the diversity of synaptic phenotypes in neurodevelopmental disorders and further support the supposed existence of “modifier genes” in the expression and inheritance of ASDs.
Collapse
|
32
|
Modi ME, Brooks JM, Guilmette ER, Beyna M, Graf R, Reim D, Schmeisser MJ, Boeckers TM, O'Donnell P, Buhl DL. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism. Front Mol Neurosci 2018; 11:107. [PMID: 29970986 PMCID: PMC6018399 DOI: 10.3389/fnmol.2018.00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD). The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD) in the striatum but opposing morphological and cellular alterations in the hippocampus (HP). Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG) spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the traditional hyperactive and repetitive behaviors observed in mouse models. The hypermotivated and hyperactive phenotype is associated with striatal dysfunction, which should be explored further as a targetable mechanism for impairment in ASD.
Collapse
Affiliation(s)
- Meera E Modi
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Julie M Brooks
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Edward R Guilmette
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Mercedes Beyna
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Radka Graf
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Patricio O'Donnell
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Derek L Buhl
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
33
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
34
|
Zhu M, Idikuda VK, Wang J, Wei F, Kumar V, Shah N, Waite CB, Liu Q, Zhou L. Shank3-deficient thalamocortical neurons show HCN channelopathy and alterations in intrinsic electrical properties. J Physiol 2018; 596:1259-1276. [PMID: 29327340 DOI: 10.1113/jp275147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Shank3 increases the HCN channel surface expression in heterologous expression systems. Shank3Δ13-16 deficiency causes significant reduction in HCN2 expression and Ih current amplitude in thalamocortical (TC) neurons. Shank3Δ13-16 - but not Shank3Δ4-9 -deficient TC neurons share changes in basic electrical properties which are comparable to those of HCN2-/- TC neurons. HCN channelopathy may critically mediate events downstream from Shank3 deficiency. ABSTRACT SHANK3 is a scaffolding protein that is highly enriched in excitatory synapses. Mutations in the SHANK3 gene have been linked to neuropsychiatric disorders especially the autism spectrum disorders. SHANK3 deficiency is known to cause impairments in synaptic transmission, but its effects on basic neuronal electrical properties that are more localized to the soma and proximal dendrites remain unclear. Here we confirmed that in heterologous expression systems two different mouse Shank3 isoforms, Shank3A and Shank3C, significantly increase the surface expression of the mouse hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channel. In Shank3Δ13-16 knockout mice, which lack exons 13-16 in the Shank3 gene (both Shank3A and Shank3C are removed) and display a severe behavioural phenotype, the expression of HCN2 is reduced to an undetectable level. The thalamocortical (TC) neurons from the ventrobasal (VB) complex of Shank3Δ13-16 mice demonstrate reduced Ih current amplitude and correspondingly increased input resistance, negatively shifted resting membrane potential, and abnormal spike firing in both tonic and burst modes. Impressively, these changes closely resemble those of HCN2-/- TC neurons but not of the TC neurons from Shank3Δ4-9 mice, which lack exons 4-9 in the Shank3 gene (Shank3C still exists) and demonstrate moderate behavioural phenotypes. Additionally, Shank3 deficiency increases the ratio of excitatory/inhibitory balance in VB neurons but has a limited impact on the electrical properties of connected thalamic reticular (RTN) neurons. These results provide new understanding about the role of HCN channelopathy in mediating detrimental effects downstream from Shank3 deficiency.
Collapse
Affiliation(s)
- Mengye Zhu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Vinay Kumar Idikuda
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jianbing Wang
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Anesthesiology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Fusheng Wei
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Virang Kumar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nikhil Shah
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher B Waite
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
35
|
Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet 2018; 26:293-302. [PMID: 29358616 PMCID: PMC5838980 DOI: 10.1038/s41431-017-0042-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Chromosome 22q13.3 deletion (Phelan McDermid) syndrome (PMS) is a rare genetic neurodevelopmental disorder resulting from deletions or other genetic variants on distal 22q. Pathological variants of the SHANK3 gene have been identified, but terminal chromosomal deletions including SHANK3 are most common. Terminal deletions disrupt up to 108 protein-coding genes. The impact of these losses is highly variable and includes both significantly impairing neurodevelopmental and somatic manifestations. The current review combines two metrics, prevalence of gene loss and predicted loss pathogenicity, to identify likely contributors to phenotypic expression. These genes are grouped according to function as follows: molecular signaling at glutamate synapses, phenotypes involving neuropsychiatric disorders, involvement in multicellular organization, cerebellar development and functioning, and mitochondrial. The likely most impactful genes are reviewed to provide information for future clinical and translational investigations.
Collapse
|
36
|
Pappas AL, Bey AL, Wang X, Rossi M, Kim YH, Yan H, Porkka F, Duffney LJ, Phillips SM, Cao X, Ding JD, Rodriguiz RM, Yin HH, Weinberg RJ, Ji RR, Wetsel WC, Jiang YH. Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight 2017; 2:92052. [PMID: 29046483 PMCID: PMC5846902 DOI: 10.1172/jci.insight.92052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.
Collapse
Affiliation(s)
- Andrea L. Pappas
- Department of Neurobiology
- Cellular and Molecular Biology Program
| | | | | | | | | | | | - Fiona Porkka
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | | | | | | | - Jin-dong Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Henry H. Yin
- Department of Neurobiology
- Department of Psychology and Neuroscience
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ru-Rong Ji
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Anesthesiology, and
| | - William C. Wetsel
- Department of Neurobiology
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Cell Biology
- Duke Institute of Brain Science, and
| | - Yong-hui Jiang
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Pediatrics
- Duke Institute of Brain Science, and
- Genomics and Genetics Graduate Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
37
|
Sungur AÖ, Schwarting RKW, Wöhr M. Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behav Brain Res 2017; 352:46-61. [PMID: 28963042 DOI: 10.1016/j.bbr.2017.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, characterized by early-onset deficits in social behavior and communication across multiple contexts, together with restricted, repetitive patterns of behavior, interests, or activities. ASD is among the most heritable neuropsychiatric conditions with heritability estimates higher than 80%, and while available evidence points to a complex set of genetic factors, the SHANK (also known as ProSAP) gene family has emerged as one of the most promising candidates. Several genetic Shank mouse models for ASD were generated, including Shank1 knockout mice. Behavioral studies focusing on the Shank1 knockout mouse model for ASD included assays for detecting ASD-relevant behavioral phenotypes in the following domains: (I) social behavior, (II) communication, and (III) repetitive and stereotyped patterns of behavior. In addition, assays for detecting behavioral phenotypes with relevance to comorbidities in ASD were performed, including but not limited to (IV) cognitive functioning. Here, we summarize and discuss behavioral and neuronal findings obtained in the Shank1 knockout mouse model for ASD. We identify open research questions by comparing such findings with the symptoms present in humans diagnosed with ASD and carrying SHANK1 deletions. We conclude by discussing the implications of the behavioral and neuronal phenotypes displayed by the Shank1 knockout mouse model for the development of future pharmacological interventions in ASD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
38
|
Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors. J Neurosci 2017; 36:12129-12143. [PMID: 27903723 DOI: 10.1523/jneurosci.1849-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/14/2023] Open
Abstract
Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2-/- mice, remains unexplored. Here we show that Shank2-/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2-/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2-/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. SIGNIFICANCE STATEMENT The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum. We found that Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors, but is not associated with autistic-like social deficits or repetitive behaviors.
Collapse
|
39
|
Sungur AÖ, Jochner MCE, Harb H, Kılıç A, Garn H, Schwarting RKW, Wöhr M. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus 2017; 27:906-919. [PMID: 28500650 DOI: 10.1002/hipo.22741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1-/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1-/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1-/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Magdalena C E Jochner
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Ayşe Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
40
|
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality. eNeuro 2017; 4:eN-NWR-0369-16. [PMID: 28484738 PMCID: PMC5413318 DOI: 10.1523/eneuro.0369-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.
Collapse
|
41
|
Abstract
Several large-scale genomic studies have supported an association between cases of autism spectrum disorder and mutations in the genes SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2 and SHANK3, which encode a family of postsynaptic scaffolding proteins that are present at glutamatergic synapses in the CNS. An evaluation of human genetic data, as well as of in vitro and in vivo animal model data, may allow us to understand how disruption of SHANK scaffolding proteins affects the structure and function of neural circuits and alters behaviour.
Collapse
|
42
|
Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:1-25. [PMID: 28551748 DOI: 10.1007/978-3-319-52498-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for which clues towards molecular and cellular pathogenesis were uncovered by genetic identification of susceptibility genes. Currently several hundreds of risk genes have been assigned, with a recurrence below 1% in the ASD population. The multitude and diversity of known ASD genes has extended the clinical notion that ASD comprises very heterogeneous conditions ranging from severe intellectual disabilities to mild high-functioning forms. The results of genetics have allowed to pinpoint a limited number of cellular and molecular processes likely involved in ASD including protein synthesis, signal transduction, transcription/chromatin remodelling and synaptic function all playing an essential role in the regulation of synaptic homeostasis during brain development. In this context, we highlight the role of protein synthesis as a key process in ASD pathogenesis as it might be central in synaptic deregulation and a potential target for intervention. These current insights should lead to a rational design of interventions in molecular and cellular pathways of ASD pathogenesis that may be applied to affected individuals in the future.
Collapse
|
43
|
Uchino S, Waga C. Novel Therapeutic Approach for Autism Spectrum Disorder: Focus on SHANK3. Curr Neuropharmacol 2016; 13:786-92. [PMID: 26511836 PMCID: PMC4759317 DOI: 10.2174/1570159x13666151029105547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/16/2015] [Accepted: 03/15/2015] [Indexed: 01/12/2023] Open
Abstract
SHANK3 is a synaptic scaffolding protein and plays an important role in neuronal
development. SHANK3 interacts with various synaptic molecules, including post-synaptic density-95
(PSD-95), homer and GluR1 AMPA receptor. SHANK3 gene is a causable gene of the Phelan-
McDermid syndrome (also known as the 22q13.3 deletion syndrome), whose manifestation is global
developmental delay and autistic behavior, especially shows severe speech and language deficit.
Additionally since cumulative gene analysis in autistic subjects identified several mutations in
SHANK3 gene, including deletion and duplication in a particular region, abnormality of SHANK3
gene is thought the be related with the neuropathology of autism spectrum disorder (ASD). We here review the recent
findings in regard to the roles of SHANK3 in higher brain functions, molecular-biologic studies of the complex
expression of Shank3 transcripts and production of SHANK3 isoforms, and behavioral studies of Shank3-mutant mice,
including our recent findings, and discuss a novel therapeutic approach for ASD.
Collapse
Affiliation(s)
- Shigeo Uchino
- Department of Neurobiology, Faculty of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| | | |
Collapse
|
44
|
Peter S, ten Brinke MM, Stedehouder J, Reinelt CM, Wu B, Zhou H, Zhou K, Boele HJ, Kushner SA, Lee MG, Schmeisser MJ, Boeckers TM, Schonewille M, Hoebeek FE, De Zeeuw CI. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun 2016; 7:12627. [PMID: 27581745 PMCID: PMC5025785 DOI: 10.1038/ncomms12627] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD.
Collapse
Affiliation(s)
- Saša Peter
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
| | | | | | - Claudia M. Reinelt
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Haibo Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Min Goo Lee
- Yonsei University College of Medicine, Seoul 120–752, Korea
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | | | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| |
Collapse
|
45
|
Zinc Stabilizes Shank3 at the Postsynaptic Density of Hippocampal Synapses. PLoS One 2016; 11:e0153979. [PMID: 27144302 PMCID: PMC4856407 DOI: 10.1371/journal.pone.0153979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
Shank3 is a postsynaptic density (PSD) scaffold protein of the Shank family. Here we use pre-embedding immunogold electron microscopy to investigate factors influencing the distribution of Shank3 at the PSD. In dissociated rat hippocampal cultures under basal conditions, label for Shank3 was concentrated in a broad layer of the PSD, ~20–80 nm from the postsynaptic membrane. Upon depolarization with high K+ (90 mM, 2 min), or application of NMDA (50 μM, 2 min), both the labeling intensity at the PSD and the median distance of label from the postsynaptic membrane increased significantly, indicating that Shank3 molecules are preferentially recruited to the distal layer of the PSD. Incubation in medium supplemented with zinc (50 μM ZnCl2, 1 hr) also significantly increased labeling intensity for Shank3 at the PSD, but this addition of Shank3 was not preferential to the distal layer. When cells were incubated with zinc and then treated with NMDA, labeling intensity of Shank3 became higher than with either treatment alone and manifested a preference for the distal layer of the PSD. Without zinc supplementation, NMDA-induced accumulation of Shank3 at the PSD was transient, reversing within 30 min after return to control medium. However, when zinc was included in culture media throughout the experiment, the NMDA-induced accumulation of Shank3 was largely retained, including Shank3 molecules recruited to the distal layer of the PSD. These results demonstrate that activity induces accumulation of Shank3 at the PSD and that zinc stabilizes PSD-associated Shank3, possibly through strengthening of Shank-Shank association.
Collapse
|
46
|
Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 2016; 9:10. [PMID: 26819149 PMCID: PMC4729132 DOI: 10.1186/s13041-016-0192-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A reduction of the number of parvalbumin (PV)-immunoreactive (PV(+)) GABAergic interneurons or a decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD. Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation hereafter called "Pvalb neurons". The two alternatives have important implications as they likely result in opposing effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss of the Pvalb neuron subpopulation in reduced inhibition. METHODS Stereology was used to determine the number of Pvalb neurons in ASD-associated brain regions including the medial prefrontal cortex, somatosensory cortex and striatum of PV-/-, PV+/-, Shank1-/- and Shank3B-/- mice. As a second marker for the identification of Pvalb neurons, we used Vicia Villosa Agglutinin (VVA), a lectin recognizing the specific extracellular matrix enwrapping Pvalb neurons. PV protein and Pvalb mRNA levels were determined quantitatively by Western blot analyses and qRT-PCR, respectively. RESULTS Our analyses of total cell numbers in different brain regions indicated that the observed "reduction of PV(+) neurons" was in all cases, i.e., in PV+/-, Shank1-/- and Shank3B-/- mice, due to a reduction in Pvalb mRNA and PV protein, without any indication of neuronal cell decrease/loss of Pvalb neurons evidenced by the unaltered numbers of VVA(+) neurons. CONCLUSIONS Our findings suggest that the PV system might represent a convergent downstream endpoint for some forms of ASD, with the excitation/inhibition balance shifted towards enhanced inhibition due to the down-regulation of PV being a promising target for future pharmacological interventions. Testing whether approaches aimed at restoring normal PV protein expression levels and/or Pvalb neuron function might reverse ASD-relevant phenotypes in mice appears therefore warranted and may pave the way for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Federica Filice
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
| | - Karl Jakob Vörckel
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
47
|
Proteostasis and RNA Binding Proteins in Synaptic Plasticity and in the Pathogenesis of Neuropsychiatric Disorders. Neural Plast 2016; 2016:3857934. [PMID: 26904297 PMCID: PMC4745388 DOI: 10.1155/2016/3857934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 12/30/2022] Open
Abstract
Decades of research have demonstrated that rapid alterations in protein abundance are required for synaptic plasticity, a cellular correlate for learning and memory. Control of protein abundance, known as proteostasis, is achieved across a complex neuronal morphology that includes a tortuous axon as well as an extensive dendritic arbor supporting thousands of individual synaptic compartments. To regulate the spatiotemporal synthesis of proteins, neurons must efficiently coordinate the transport and metabolism of mRNAs. Among multiple levels of regulation, transacting RNA binding proteins (RBPs) control proteostasis by binding to mRNAs and mediating their transport and translation in response to synaptic activity. In addition to synthesis, protein degradation must be carefully balanced for optimal proteostasis, as deviations resulting in excess or insufficient abundance of key synaptic factors produce pathologies. As such, mutations in components of the proteasomal or translational machinery, including RBPs, have been linked to the pathogenesis of neurological disorders such as Fragile X Syndrome (FXS), Fragile X Tremor Ataxia Syndrome (FXTAS), and Autism Spectrum Disorders (ASD). In this review, we summarize recent scientific findings, highlight ongoing questions, and link basic molecular mechanisms to the pathogenesis of common neuropsychiatric disorders.
Collapse
|
48
|
Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, Barak B, Zeng M, Li C, Lu C, Wells M, Amaya A, Nguyen S, Lewis M, Sanjana N, Zhou Y, Zhang M, Zhang F, Fu Z, Feng G. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron 2015; 89:147-62. [PMID: 26687841 DOI: 10.1016/j.neuron.2015.11.023] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/27/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.
Collapse
Affiliation(s)
- Yang Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Tobias Kaiser
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrícia Monteiro
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, 3000-214 Coimbra, Portugal
| | - Xiangyu Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marie S Van der Goes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boaz Barak
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Menglong Zeng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Life Science, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Chenchen Li
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Congyi Lu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Wells
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aldo Amaya
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shannon Nguyen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Neville Sanjana
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yongdi Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Mingjie Zhang
- Division of Life Science, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhanyan Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
49
|
Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep 2015; 5:16102. [PMID: 26531852 PMCID: PMC4632040 DOI: 10.1038/srep16102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1.
Collapse
Affiliation(s)
- Yusuke Hatanaka
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical &Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
50
|
Zhang Y, Gaetano CM, Williams KR, Bassell GJ, Mihailescu MR. FMRP interacts with G-quadruplex structures in the 3'-UTR of its dendritic target Shank1 mRNA. RNA Biol 2015; 11:1364-74. [PMID: 25692235 DOI: 10.1080/15476286.2014.996464] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3'-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ' -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Yang Zhang
- a Graduate School of Pharmaceutical Sciences; Mylan School of Pharmacy ; Duquesne University ; Pittsburgh , PA USA
| | | | | | | | | |
Collapse
|