1
|
Alshammari QA. Redox modulatory role of DJ-1 in Parkinson's disease. Biogerontology 2025; 26:81. [PMID: 40159591 DOI: 10.1007/s10522-025-10227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
In particular, oxidative stress, generated by excessive reactive oxygen species (ROS), plays a major role in the neurodegenerative component of Parkinson's disease (PD) in aged neurons. DJ-1 (PARK7) is a key factor for maintaining redox homeostasis and modulation of mitochondrial function to preserve the cellular survival pathways. DJ-1 also plays a role in redox signaling independently of its antioxidant capacity by preventing the redox chain disulfide formation and stabilizing the master regulator of cellular antioxidant defense, Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). In the DJ-1 or Nrf2 axis, expression of key antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in response to oxidative stress is increased, and decreased neuronal damage resulting from oxidative stress is achieved. It has been demonstrated that DJ-1 functions as an oxidative stress sensor, and mutations like L166P cause loss of antioxidant activity and increased Reactive Oxygen Species (ROS) accumulation with subsequent mitochondrial dysfunction in dopaminergic neurons. The highly conserved cysteine residue at position 106 (Cys106) of DJ-1 becomes stepwise oxidized (Cys-SOH → Cys-SO₂H → Cys-SO3H), functioning as a redox sensor as well as redox modulator of cellular stress responses. Furthermore, by protecting against α-synuclein aggregation, DJ-1 also protects in models lacking DJ-1, whereby DJ-1 deficiency promotes protein misfolding and neurotoxicity. In addition, DJ-1 participates in regulating neuroinflammation since its diminution provokes NF-κB-mediated exacerbation of proinflammatory cytokine production, leading to neuronal death. Oxidized DJ-1 (OxiDJ-1) is generated in aging brains, particularly in the substantia nigra (SN), and is correlated with PD progression both as a biomarker for disease monitoring and diagnosis of PD early in its course. The therapeutic strategies aimed at DJ-1 include small molecular activators, protein supplementation (Tat-DJ-1, ND-13), and gene therapy aiming to restore the neuroprotective function of DJ-1. Since DJ-1 is multitasking to protect neurons from oxidative damage, mitochondrial dysfunction, and even inflammation, it remains a promising therapeutic target. This review highlights the molecular mechanisms through which DJ-1 can protect from PD and aging-related neurodegeneration and has potential utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
2
|
Lv L, Zhang H, Tan J, Wang C. Neuroprotective role and mechanistic insights of DJ-1 dimerization in Parkinson's disease. Cell Commun Signal 2025; 23:129. [PMID: 40065349 PMCID: PMC11892234 DOI: 10.1186/s12964-025-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily driven by the degeneration of dopaminergic neurons, with limited therapeutic interventions currently available. Among the critical factors in PD pathogenesis, DJ-1, a multifunctional protein, has emerged as a key neuroprotective agent against oxidative stress-a major contributor to the disease. Recent research has emphasized the pivotal role of DJ-1 dimerization in enhancing its neuroprotective capabilities. This review provides an in-depth analysis of the molecular mechanisms underlying DJ-1 dimerization and its relevance to PD. Specifically, we specifically explore how dimerization stabilizes DJ-1, enhances its antioxidative properties, improves mitochondrial function, and modulates key cellular pathways essential for neuronal survival. Furthermore, we discuss the molecular determinants governing DJ-1 dimerization, highlighting its potential both as a biomarker for PD diagnosis and a promising therapeutic target. By synthesizing current advancements, we propose that targeting DJ-1 dimerization may offer innovative strategies to slow PD progression and bolster neuronal health. This review positions DJ-1 as a central focus in PD research, paving the way for future studies aimed at developing neuroprotective therapies.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Province Clinical Medical Research Center for Genetic Birth Defects and Rare Diseases, The Second Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
| |
Collapse
|
3
|
Alipour M, Hajipour-Verdom B, Zali A, Ashrafi F, Abdolmaleki P, Oraee-Yazdani S, Akhlaghdoust M, Karimi N. Interaction of α-synuclein with DJ-1 in homodimer and L166P mutant monomer forms in Parkinson's disease: a molecular dynamics study. J Biomol Struct Dyn 2025:1-8. [PMID: 39773404 DOI: 10.1080/07391102.2024.2446660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/23/2024] [Indexed: 01/11/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the formation of Lewy bodies, which are primarily composed of misfolded α-Synuclein (α-Syn). DJ-1 is a crucial protein involved in the correct folding of α-Syn, and mutations impairing its function are associated with the onset of PD. One such mutation, the L166P substitution in DJ-1, which has been linked to early-onset PD and results in the loss of DJ-1's homodimer structure. Recent studies have shown the presence of DJ-1 in Lewy bodies, but its interaction with α-Syn is unknown. Therefore, in this study, we investigated the interaction between α-Syn and DJ-1 in both its wild-type (wDJ-1: homodimer) and L166P mutant (mDJ-1: monomer) forms using molecular dynamics simulation. Our results indicated that α-Syn binds more tightly to mDJ-1 than to wDJ-1. Gibbs free energy landscape analysis showed that the bonded α-Syn to mDJ-1 complex represents a stable conformation, whereas only a partial connection of α-Syn to wDJ-1 was observed. Generally, it appears that the monomer form of DJ-1 resulting from the L166P mutation can form a stable complex with α-Syn, potentially intensifying the formation of Lewy bodies. Thus, the identification of aggregated α-Syn with DJ-1 may serve as a potential biomarker for PD.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|
4
|
Benjamin-Zukerman T, Shimon G, Gaine ME, Dakwar A, Peled N, Aboraya M, Masri-Ismail A, Safadi-Safa R, Solomon M, Lev-Ram V, Rissman RA, Mayrhofer JE, Raffeiner A, Mol MO, Argue BMR, McCool S, Doan B, van Swieten J, Stefan E, Abel T, Ilouz R. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Brain 2024; 147:3890-3905. [PMID: 38743596 PMCID: PMC11531844 DOI: 10.1093/brain/awae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RIβ subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIβ-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIβ is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIβ-L50R mouse model. We define RIβ-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIβ dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RIβ-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIβ-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gilat Shimon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Anwar Dakwar
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Netta Peled
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Mohammad Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Ashar Masri-Ismail
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Rania Safadi-Safa
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Meir Solomon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA 92121, USA
| | - Johanna E Mayrhofer
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Andrea Raffeiner
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Benney M R Argue
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Shaylah McCool
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Binh Doan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - John van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Eduard Stefan
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| |
Collapse
|
5
|
Jia Y, Oyken M, Kim RQ, Tjokrodirijo RT, de Ru AH, Janssen APA, Hacker SM, van Veelen PA, Geurink PP, Sapmaz A. Development of Inhibitors, Probes, and PROTAC Provides a Complete Toolbox to Study PARK7 in the Living Cell. J Med Chem 2024; 67:7935-7953. [PMID: 38713163 PMCID: PMC11129182 DOI: 10.1021/acs.jmedchem.3c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Yuqing Jia
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich CH-8093, Switzerland
| | - Merve Oyken
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Rayman T.N. Tjokrodirijo
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Arnoud H. de Ru
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Antonius P. A. Janssen
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Stephan M. Hacker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Peter A. van Veelen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Paul P. Geurink
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Aysegul Sapmaz
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
6
|
Andrews T, Seravallic J, Powers R. The reversible low-temperature instability of human DJ-1 oxidative states. Biopolymers 2024; 115:e23534. [PMID: 36972340 PMCID: PMC10948107 DOI: 10.1002/bip.23534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO2 - ), and over-oxidized (C106-SO3 - ) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.
Collapse
Affiliation(s)
- Tessa Andrews
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| | - Javier Seravallic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0664, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664,USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| |
Collapse
|
7
|
Brontesi L, Imberdis T, Ramalingam N, Dettmer U. The effects of KTKEGV repeat motif and intervening ATVA sequence on α-synuclein solubility and assembly. J Neurochem 2023; 165:246-258. [PMID: 36625497 PMCID: PMC10211470 DOI: 10.1111/jnc.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.
Collapse
Affiliation(s)
| | | | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
8
|
Jimenez-Harrison D, Huseby CJ, Hoffman CN, Sher S, Snyder D, Seal B, Yuan C, Fu H, Wysocki V, Giorgini F, Kuret J. DJ-1 Molecular Chaperone Activity Depresses Tau Aggregation Propensity through Interaction with Monomers. Biochemistry 2023; 62:976-988. [PMID: 36813261 PMCID: PMC9997487 DOI: 10.1021/acs.biochem.2c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Tau aggregate-bearing lesions are pathological markers and potential mediators of tauopathic neurodegenerative diseases, including Alzheimer's disease. The molecular chaperone DJ-1 colocalizes with tau pathology in these disorders, but it has been unclear what functional link exists between them. In this study, we examined the consequences of tau/DJ-1 interaction as isolated proteins in vitro. When added to full-length 2N4R tau under aggregation-promoting conditions, DJ-1 inhibited both the rate and extent of filament formation in a concentration-dependent manner. Inhibitory activity was low affinity, did not require ATP, and was not affected by substituting oxidation incompetent missense mutation C106A for wild-type DJ-1. In contrast, missense mutations previously linked to familial Parkinson's disease and loss of α-synuclein chaperone activity, M26I and E64D, displayed diminished tau chaperone activity relative to wild-type DJ-1. Although DJ-1 directly bound the isolated microtubule-binding repeat region of tau protein, exposure of preformed tau seeds to DJ-1 did not diminish seeding activity in a biosensor cell model. These data reveal DJ-1 to be a holdase chaperone capable of engaging tau as a client in addition to α-synuclein. Our findings support a role for DJ-1 as part of an endogenous defense against the aggregation of these intrinsically disordered proteins.
Collapse
Affiliation(s)
- Daniela Jimenez-Harrison
- Medical
Scientist Training Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Carol J. Huseby
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Claire N. Hoffman
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Steven Sher
- Medical
Scientist Training Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Dalton Snyder
- Department
of Chemistry and Biochemistry, The Ohio
State University College of Medicine, Columbus, Ohio 43210, United States
| | - Brayden Seal
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Chunhua Yuan
- Campus
Chemical Instrument Center, The Ohio State
University College of Medicine, Columbus, Ohio 43210, United States
| | - Hongjun Fu
- Department
of Neuroscience, The Ohio State University
College of Medicine, Columbus, Ohio 43210, United States
| | - Vicki Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University College of Medicine, Columbus, Ohio 43210, United States
| | - Flaviano Giorgini
- Department
of Genetics and Genome Biology, University
of Leicester, Leicester LE1 7RH, United
Kingdom
| | - Jeff Kuret
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Fanning S, Cirka H, Thies JL, Jeong J, Niemi SM, Yoon J, Ho GPH, Pacheco JA, Dettmer U, Liu L, Clish CB, Hodgetts KJ, Hutchinson JN, Muratore CR, Caldwell GA, Caldwell KA, Selkoe D. Lipase regulation of cellular fatty acid homeostasis as a Parkinson's disease therapeutic strategy. NPJ Parkinsons Dis 2022; 8:74. [PMID: 35680956 PMCID: PMC9184586 DOI: 10.1038/s41531-022-00335-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Synucleinopathy (Parkinson's disease (PD); Lewy body dementia) disease-modifying treatments represent a huge unmet medical need. Although the PD-causing protein α-synuclein (αS) interacts with lipids and fatty acids (FA) physiologically and pathologically, targeting FA homeostasis for therapeutics is in its infancy. We identified the PD-relevant target stearoyl-coA desaturase: inhibiting monounsaturated FA synthesis reversed PD phenotypes. However, lipid degradation also generates FA pools. Here, we identify the rate-limiting lipase enzyme, LIPE, as a candidate target. Decreasing LIPE in human neural cells reduced αS inclusions. Patient αS triplication vs. corrected neurons had increased pSer129 and insoluble αS and decreased αS tetramer:monomer ratios. LIPE inhibition rescued all these and the abnormal unfolded protein response. LIPE inhibitors decreased pSer129 and restored tetramer:monomer equilibrium in αS E46K-expressing human neurons. LIPE reduction in vivo alleviated αS-induced dopaminergic neurodegeneration in Caenorhabditis elegans. Co-regulating FA synthesis and degradation proved additive in rescuing PD phenotypes, signifying co-targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Haley Cirka
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer L Thies
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Jooyoung Jeong
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah M Niemi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joon Yoon
- Department of Biostatistics, The Harvard Chan School of Public Health, Boston, MA, 02115, USA
| | - Gary P H Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neuroscience, Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John N Hutchinson
- Department of Biostatistics, The Harvard Chan School of Public Health, Boston, MA, 02115, USA
| | - Christina R Muratore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol 2022; 143:453-469. [PMID: 35141810 PMCID: PMC8960659 DOI: 10.1007/s00401-022-02406-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
The protein α-synuclein, a key player in Parkinson’s disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible “prion-like” propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a “prion-like” aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and “prion-like” aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.
Collapse
|
11
|
Kim TE, Newman AJ, Imberdis T, Brontesi L, Tripathi A, Ramalingam N, Fanning S, Selkoe D, Dettmer U. Excess membrane binding of monomeric alpha-, beta-, and gamma-synuclein is invariably associated with inclusion formation and toxicity. Hum Mol Genet 2021; 30:2332-2346. [PMID: 34254125 PMCID: PMC8600006 DOI: 10.1093/hmg/ddab188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains—Lewy bodies and Lewy neurites—are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs β-synuclein (βS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-β component of plaques (NAC) domain, constituting amino acids 61–95, has been identified to be critical for aggregation in vitro. This domain is partially absent in βS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that βS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased βS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Andrew J Newman
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
12
|
Chen XB, Zhu HY, Bao K, Jiang L, Zhu H, Ying MD, He QJ, Yang B, Sheng R, Cao J. Bis-isatin derivatives: design, synthesis, and biological activity evaluation as potent dimeric DJ-1 inhibitors. Acta Pharmacol Sin 2021; 42:1160-1170. [PMID: 33495517 PMCID: PMC8209122 DOI: 10.1038/s41401-020-00600-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
The PARK7 gene (encode DJ-1 protein) was first discovered as an oncogene and later found to be a causative gene for autosomal recessive early onset Parkinson's disease. DJ-1 has been proposed as a potential therapeutic anticancer target due to its pivotal role in tumorigenesis and cancer progression. Based on the homodimer structure of DJ-1, a series of bis-isatin derivatives with different length linkers were designed, synthesized, and evaluated as dimeric inhibitors targeting DJ-1 homodimer. Among them, DM10 with alkylene chain of C10 displayed the most potent inhibitory activity against DJ-1 deglycase. We further demonstrated that DM10 bound covalently to the homodimer of DJ-1. In human cancer cell lines H1299, MDA-MB-231, BEL7402, and 786-O, DM10 (2.5-20 μM) inhibited the cell growth in a concentration-dependent manner showing better anticancer effects compared with the positive control drug STK793590. In nude mice bearing H1299 cell xenograft, intratumor injection of DM10 (15 mg/kg) produced significantly potent tumor growth inhibition when compared with that caused by STK793590 (30 mg/kg). Moreover, we found that DM10 could significantly enhance N-(4-hydroxyphenyl)retinamide-based apoptosis and erastin-based ferroptosis in H1299 cells. In conclusion, DM10 is identified as a potent inhibitor targeting DJ-1 homodimer with the potential as sensitizing agent for other anticancer drugs, which might provide synergistical therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Bing Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Ying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kun Bao
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
- Cancer Center of Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Rong Sheng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center of Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Jiang L, Chen XB, Wu Q, Zhu HY, Du CY, Ying MD, He QJ, Zhu H, Yang B, Cao J. The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis. Acta Pharmacol Sin 2021; 42:1150-1159. [PMID: 33024240 PMCID: PMC8209194 DOI: 10.1038/s41401-020-00531-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023]
Abstract
DJ-1 is a multifunctional protein associated with cancers and autosomal early-onset Parkinson disease. Besides the well-documented antioxidative stress activity, recent studies show that DJ-1 has deglycation enzymatic activity and anti-ferroptosis effect. It has been shown that DJ-1 forms the homodimerization, which dictates its antioxidative stress activity. In this study, we investigated the relationship between the dimeric structure of DJ-1 and its newly reported activities. In HEK293T cells with Flag-tagged and Myc-tagged DJ-1 overexpression, we performed deletion mutations and point mutations, narrowed down the most critical motif at the C terminus. We found that the deletion mutation of the last three amino acids at the C terminus of DJ-1 (DJ-1 ΔC3) disrupted its homodimerization with the hydrophobic L187 residue being of great importance for DJ-1 homodimerization. In addition, the ability in methylglyoxal (MGO) detoxification and deglycation was almost abolished in the mutation of DJ-1 ΔC3 and point mutant L187E compared with wild-type DJ-1 (DJ-1 WT). We also showed the suppression of erastin-triggered ferroptosis in DJ-1-/- mouse embryonic fibroblast cells was abolished by ΔC3 and L187E, but partially diminished by V51C. Thus, our results demonstrate that the C terminus of DJ-1 is crucial for its homodimerization, deglycation activity, and suppression of ferroptosis.
Collapse
Affiliation(s)
- Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Bing Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Ying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Yong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
- Cancer center of Zhejiang University, Hangzhou, 310058, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer center of Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
15
|
Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson's disease-associated DJ-1/PARK 7 missense mutants. Sci Rep 2021; 11:7320. [PMID: 33795807 PMCID: PMC8016953 DOI: 10.1038/s41598-021-86847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
DJ-1/PARK7 mutations are linked with familial forms of early-onset Parkinson's disease (PD). We have studied the degradation of untagged DJ-1 wild type (WT) and missense mutants in mouse embryonic fibroblasts obtained from DJ-1-null mice, an approach closer to the situation in patients carrying homozygous mutations. The results showed that the mutants L10P, M26I, A107P, P158Δ, L166P, E163K, and L172Q are unstable proteins, while A39S, E64D, R98Q, A104T, D149A, A171S, K175E, and A179T are as stable as DJ-1 WT. Inhibition of proteasomal and autophagic-lysosomal pathways had little effect on their degradation. Immunofluorescence and biochemical fractionation studies indicated that M26I, A107P, P158Δ, L166P, E163K, and L172Q mutants associate with mitochondria. Silencing of mitochondrial matrix protease LonP1 produced a strong reduction of the degradation of the mitochondrial-associated DJ-1 mutants A107P, P158Δ, L166P, E163K, and L172Q but not of mutant L10P. These results demonstrated a mitochondrial pathway of degradation of those DJ-1 missense mutants implicated in PD pathogenesis.
Collapse
|
16
|
Solti K, Kuan WL, Fórizs B, Kustos G, Mihály J, Varga Z, Herberth B, Moravcsik É, Kiss R, Kárpáti M, Mikes A, Zhao Y, Imre T, Rochet JC, Aigbirhio F, Williams-Gray CH, Barker RA, Tóth G. DJ-1 can form β-sheet structured aggregates that co-localize with pathological amyloid deposits. Neurobiol Dis 2019; 134:104629. [PMID: 31669752 DOI: 10.1016/j.nbd.2019.104629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into β-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue. These findings suggest that the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could then contribute to AD and PD disease onset and progression.
Collapse
Affiliation(s)
- Katalin Solti
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Balázs Fórizs
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA
| | | | - Judith Mihály
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Herberth
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA
| | | | - Róbert Kiss
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | | | - Anna Mikes
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Franklin Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Gergely Tóth
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, Termine D, Ramalingam N, Ho GPH, Noble T, Sandoe J, Lou Y, Landgraf D, Freyzon Y, Newby G, Soldner F, Terry-Kantor E, Kim TE, Hofbauer HF, Becuwe M, Jaenisch R, Pincus D, Clish CB, Walther TC, Farese RV, Srinivasan S, Welte MA, Kohlwein SD, Dettmer U, Lindquist S, Selkoe D. Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. Mol Cell 2019; 73:1001-1014.e8. [PMID: 30527540 PMCID: PMC6408259 DOI: 10.1016/j.molcel.2018.11.028] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
Collapse
Affiliation(s)
- Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aftabul Haque
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Valeriya Baru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Termine
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary P H Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tallie Noble
- Mira Costa College, 1 Barnard Drive, Oceanside, CA 92056, USA
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yali Lou
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dirk Landgraf
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Gregory Newby
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Frank Soldner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elizabeth Terry-Kantor
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Harald F Hofbauer
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, 8010 Graz, Austria
| | - Michel Becuwe
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; HHMI, Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, CA 92056, USA; The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sepp D Kohlwein
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, 8010 Graz, Austria
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; HHMI, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Kumar A, Mukherjee D, Satpati P. Mutations in Parkinson's Disease Associated Protein DJ-1 Alter the Energetics of DJ-1 Dimerization. J Chem Inf Model 2019; 59:1497-1507. [PMID: 30789733 DOI: 10.1021/acs.jcim.8b00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Patients suffering from familial Parkinson's disease are linked to mutated DJ-1 protein. Wild-type DJ-1 occurs as a homodimer, which appears to be crucial for its function. It has been established that mutation (L166P) in DJ-1 protein could destabilize the DJ-1 homodimer. Hence, dimerization aspect of DJ-1 is fundamentally important for understanding its link to the disease. X-ray structures of wild-type DJ-1 dimer have given an atomic insight into the interaction network at the dimer interface. However, the energetics of dimerization in the wild-type and its mutant protein is unknown. Using the X-ray structure of wild-type DJ-1 as the template, we report ∼1.55 μs of molecular dynamics simulations to quantitatively estimate the relative free energy of DJ-1 dimerization in the disease linked variant (L166P, A104T, and M26I) with respect to its wild-type analogue. The results suggest that dimerization is disfavored for L166P and A104T mutations, severely for the former. Notably, the M26I mutation does not alter the energetics of DJ-1 dimerization. The dynamics of the DJ-1 dimer is significantly altered in response to the L166P and A104T mutations, resulting in the significant loss of interactions at the dimer interface. L166P mutant showed the structural difference and increased flexibility in α6, α7, α8 regions with respect to the WT. A structural difference in the α6 region was noticeable between WT and A104T mutant of DJ-1. The interaction network in the dimer interface is identical for the wild-type protein and the M26I mutant. No significant change in secondary structural content was observed for DJ-1 mutants (L166P, A104T, M26I) with respect to its WT analogue.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Debaditya Mukherjee
- School of Bio Science & Technology (SBST) , VIT University , Vellore , Tamil Nadu 632014 , India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
19
|
Imberdis T, Fanning S, Newman A, Ramalingam N, Dettmer U. Studying α-Synuclein Conformation by Intact-Cell Cross-Linking. Methods Mol Biol 2019; 1948:77-91. [PMID: 30771172 DOI: 10.1007/978-1-4939-9124-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
β-Sheet-rich aggregates of α-synuclein (αS) are the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies, whereas the native conformations of αS in healthy cells are under debate. Cross-linking analyses in intact cells detect a large portion of endogenous αS in apparent multimeric states, most notably as putative tetramers (αS60) that run around 60 kDa on SDS-PAGE, but also point at the dynamic nature of cellular αS states. Standardization of αS cross-linking methods will facilitate efforts to study the effects of genetic, pharmacological, and environmental factors on αS conformation. Here, we present detailed protocols for cross-linking cellular αS multimers in cultured cells and brain tissues. These protocols will benefit future studies aimed at characterizing αS conformation in its cellular environment, both at steady state and upon perturbation, be it chronic or acute.
Collapse
Affiliation(s)
- Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Newman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Oxidized DJ-1 Levels in Urine Samples as a Putative Biomarker for Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:1241757. [PMID: 29887985 PMCID: PMC5985070 DOI: 10.1155/2018/1241757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/25/2018] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Oxidative stress is the most critical risk factor for neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). Numerous reports have demonstrated that oxidative stress aggravates cytotoxicity in dopaminergic neurons and accelerates the formation of protein inclusions. In addition, oxidative stress, such as 4-hydroxynonenal (HNE), oxidized protein, and dopamine quinone, are related to PD progression. DJ-1 is a PD-causative gene, and it plays a pivotal role as a sensor and eliminator of oxidative stress. Several studies have shown that oxidized DJ-1 (OxiDJ-1) formation is induced by oxidative stress. Hence, previous studies suggest that oxidized DJ-1 could be a biomarker for PD. We previously reported higher DJ-1 levels in Korean male PD patient urine exosomes than male non-PD controls. We speculate that OxiDJ-1 levels in PD patient urine might be higher than that in non-PD controls. In this study, we established an ELISA for OxiDJ-1 using recombinant DJ-1 treated with H2O2. Using Western blot assay and ELISA, we confirmed an increase of OxiDJ-1 from HEK293T cells treated with H2O2. Using our ELISA, we observed significantly higher, 2-fold, OxiDJ-1 levels in the urine of Korean PD patients than in non-PD controls.
Collapse
|
21
|
Piston D, Alvarez-Erviti L, Bansal V, Gargano D, Yao Z, Szabadkai G, Odell M, Puno MR, Björkblom B, Maple-Grødem J, Breuer P, Kaut O, Larsen JP, Bonn S, Møller SG, Wüllner U, Schapira AHV, Gegg ME. DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis. Hum Mol Genet 2018; 26:4028-4041. [PMID: 29016861 PMCID: PMC5886150 DOI: 10.1093/hmg/ddx294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 01/20/2023] Open
Abstract
DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson’s disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease.
Collapse
Affiliation(s)
- Dominik Piston
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Vikas Bansal
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniela Gargano
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Zhi Yao
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Mark Odell
- Department of Molecular and Applied Biosciences, University of Westminster, London, UK
| | - M Rhyan Puno
- Department of Molecular and Applied Biosciences, University of Westminster, London, UK
| | - Benny Björkblom
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jodi Maple-Grødem
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Peter Breuer
- Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Oliver Kaut
- Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Jan Petter Larsen
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Stefan Bonn
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Geir Møller
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ullrich Wüllner
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Matthew E Gegg
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
22
|
Hauser DN, Primiani CT, Cookson MR. The Effects of Variants in the Parkin, PINK1, and DJ-1 Genes along with Evidence for their Pathogenicity. Curr Protein Pept Sci 2017; 18:702-714. [PMID: 26965687 DOI: 10.2174/1389203717666160311121954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 09/15/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022]
Abstract
Early onset Parkinson's disease can be caused by variants in the PINK1, Parkin, and DJ-1 genes. Since their initial discoveries, hundreds of variants have been found in these genes that are associated with a Parkinsonian phenotype. This review will briefly discuss the functions of the protein products of the three genes, then focus on the effects that disease associated variants have on these functions. We will also discuss how experimental findings can help decide whether individual variants are pathogenic or not.
Collapse
Affiliation(s)
- David N Hauser
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, MD, United States
| | - Christopher T Primiani
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, MD, United States
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, NIA, Building 35, Room 1A116, 5 Convent Drive, MSC 3707, Bethesda, MD 20892-3707, United States
| |
Collapse
|
23
|
Di Nottia M, Masciullo M, Verrigni D, Petrillo S, Modoni A, Rizzo V, Di Giuda D, Rizza T, Niceta M, Torraco A, Bianchi M, Santoro M, Bentivoglio AR, Bertini E, Piemonte F, Carrozzo R, Silvestri G. DJ-1 modulates mitochondrial response to oxidative stress: clues from a novel diagnosis of PARK7. Clin Genet 2016; 92:18-25. [PMID: 27460976 DOI: 10.1111/cge.12841] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/24/2016] [Indexed: 12/13/2022]
Abstract
DJ-1 mutations are associated to early-onset Parkinson's disease and accounts for about 1-2% of the genetic forms. The protein is involved in many biological processes and its role in mitochondrial regulation is gaining great interest, even if its function in mitochondria is still unclear. We describe a 47-year-old woman affected by a multisystem disorder characterized by progressive, early-onset parkinsonism plus distal spinal amyotrophy, cataracts and sensory-neural deafness associated with a novel homozygous c.461C>A [p.T154K] mutation in DJ-1. Patient's cultured fibroblasts showed low ATP synthesis, high ROS levels and reduced amount of some subunits of mitochondrial complex I; biomarkers of oxidative stress also resulted abnormal in patient's blood. The clinical pattern of multisystem involvement and the biochemical findings in our patient highlight the role for DJ-1 in modulating mitochondrial response against oxidative stress.
Collapse
Affiliation(s)
- M Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Masciullo
- SPInal REhabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - D Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Petrillo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Modoni
- Institute of Neurology, Rome, Italy
| | - V Rizzo
- Department of Nuclear Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico A.Gemelli Rome, Rome, Italy
| | - D Di Giuda
- Department of Nuclear Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico A.Gemelli Rome, Rome, Italy
| | - T Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Niceta
- Division of Genetic Disorders and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Bianchi
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Santoro
- Department of Neuroscience, Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | | | - E Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Piemonte
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - R Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
24
|
Corbillé AG, Neunlist M, Derkinderen P. Cross-linking for the analysis of α-synuclein in the enteric nervous system. J Neurochem 2016; 139:839-847. [PMID: 27637918 DOI: 10.1111/jnc.13845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022]
Abstract
Since the observation that aggregated α-synuclein, the pathological hallmark of Parkinson's disease (PD), is found in the gut in almost all patients, it has been suggested that the enteric nervous system (ENS) could be a starting point for α-synuclein pathology. α-synuclein has long been thought to occur as a monomer in living cells, but recent studies reported that it instead exists as a tetramer in non-neuronal cells and in neurons. Given the possible key role of the ENS in PD pathophysiology, we undertook the current research to characterize the native state of α-synuclein in rat primary culture of ENS and in adult human healthy ENS. Using amine-reactive cross-linking, we showed that, by contrast to cell lines and brain neurons, α-synuclein exists primarily as a monomer in intact enteric neurons, suggesting that the native state of α-synuclein is different between the ENS and the brain. Our results provide new insights into the widely discussed concepts of α-synuclein aggregation and misfolding in PD and raise issue about the possible transmission of α-synuclein from the ENS to the brain.
Collapse
Affiliation(s)
- Anne-Gaëlle Corbillé
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France
| | - Pascal Derkinderen
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
25
|
dos Santos RN, Morcos F, Jana B, Andricopulo AD, Onuchic JN. Dimeric interactions and complex formation using direct coevolutionary couplings. Sci Rep 2015; 5:13652. [PMID: 26338201 PMCID: PMC4559900 DOI: 10.1038/srep13652] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022] Open
Abstract
We develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer's or Parkinson's.
Collapse
Affiliation(s)
- Ricardo N. dos Santos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| |
Collapse
|
26
|
KTKEGV repeat motifs are key mediators of normal α-synuclein tetramerization: Their mutation causes excess monomers and neurotoxicity. Proc Natl Acad Sci U S A 2015; 112:9596-601. [PMID: 26153422 DOI: 10.1073/pnas.1505953112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
α-Synuclein (αS) is a highly abundant neuronal protein that aggregates into β-sheet-rich inclusions in Parkinson's disease (PD). αS was long thought to occur as a natively unfolded monomer, but recent work suggests it also occurs normally in α-helix-rich tetramers and related multimers. To elucidate the fundamental relationship between αS multimers and monomers in living neurons, we performed systematic mutagenesis to abolish self-interactions and learn which structural determinants underlie native multimerization. Unexpectedly, tetramers/multimers still formed in cells expressing each of 14 sequential 10-residue deletions across the 140-residue polypeptide. We postulated compensatory effects among the six highly conserved and one to three additional αS repeat motifs (consensus: KTKEGV), consistent with αS and its homologs β- and γ-synuclein all forming tetramers while sharing only the repeats. Upon inserting in-register missense mutations into six or more αS repeats, certain mutations abolished tetramer formation, shown by intact-cell cross-linking and independently by fluorescent-protein complementation. For example, altered repeat motifs KLKEGV, KTKKGV, KTKEIV, or KTKEGW did not support tetramerization, indicating the importance of charged or small residues. When we expressed numerous different in-register repeat mutants in human neural cells, all multimer-abolishing but no multimer-neutral mutants caused frank neurotoxicity akin to the proapoptotic protein Bax. The multimer-abolishing variants became enriched in buffer-insoluble cell fractions and formed round cytoplasmic inclusions in primary cortical neurons. We conclude that the αS repeat motifs mediate physiological tetramerization, and perturbing them causes PD-like neurotoxicity. Moreover, the mutants we describe are valuable tools for studying normal and pathological properties of αS and screening for tetramer-stabilizing therapeutics.
Collapse
|
27
|
Mathiassen SG, Larsen IB, Poulsen EG, Madsen CT, Papaleo E, Lindorff-Larsen K, Kragelund BB, Nielsen ML, Kriegenburg F, Hartmann-Petersen R. A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast. J Biol Chem 2015; 290:21141-21153. [PMID: 26152728 DOI: 10.1074/jbc.m115.662312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/30/2022] Open
Abstract
A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.
Collapse
Affiliation(s)
- Søs G Mathiassen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Ida B Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Christian T Madsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elena Papaleo
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
28
|
Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 2015; 6:7314. [PMID: 26076669 PMCID: PMC4490410 DOI: 10.1038/ncomms8314] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.
Collapse
|
29
|
A new method for quantitative immunoblotting of endogenous α-synuclein. PLoS One 2013; 8:e81314. [PMID: 24278419 PMCID: PMC3835431 DOI: 10.1371/journal.pone.0081314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/16/2013] [Indexed: 12/15/2022] Open
Abstract
β-Sheet-rich aggregates of α-synuclein (αSyn) are the hallmark neuropathology of Parkinson’s disease and related synucleinopathies, whereas the principal native structure of αSyn in healthy cells - unfolded monomer or α-helically folded oligomer - is under debate. Our recent crosslinking analysis of αSyn in intact cells showed that a large portion of endogenous αSyn can be trapped as oligomers, most notably as apparent tetramers. One challenge in such studies is accurately quantifying αSyn Western blot signals among samples, as crosslinked αSyn trends toward increased immunoreactivity. Here, we analyzed this phenomenon in detail and found that treatment with the reducible amine-reactive crosslinker DSP strongly increased αSyn immunoreactivity even after cleavage with the reducing agent β-mercaptoethanol. The effect was observed with all αSyn antibodies tested and in all sample types from human brain homogenates to untransfected neuroblastoma cells, permitting easy detection of endogenous αSyn in the latter, which had long been considered impossible. Coomassie staining of blots before and after several hours of washing revealed complete retention of αSyn after DSP/β-mercaptoethanol treatment, in contrast to a marked loss of αSyn without this treatment. The treatment also enhanced immunodetection of the homologs β- and γ-synuclein and of histones, another group of small, lysine-rich proteins. We conclude that by neutralizing positive charges and increasing protein hydrophobicity, amine crosslinker treatment promotes adhesion of αSyn to blotting membranes. These data help explain the recent report of fixing αSyn blots with paraformaldehyde after transfer, which we find produces similar but weaker effects. DSP/β-mercaptoethanol treatment of Western blots should be particularly useful to quantify low-abundance αSyn forms such as extracellular and post-translationally modified αSyn and splice variants.
Collapse
|
30
|
Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J Biol Chem 2013; 288:6371-85. [PMID: 23319586 DOI: 10.1074/jbc.m112.403311] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of α-synuclein (αSyn) in neurons produces the hallmark cytopathology of Parkinson disease and related synucleinopathies. Since its discovery, αSyn has been thought to exist normally in cells as an unfolded monomer. We recently reported that αSyn can instead exist in cells as a helically folded tetramer that resists aggregation and binds lipid vesicles more avidly than unfolded recombinant monomers (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107-110). However, a subsequent study again concluded that cellular αSyn is an unfolded monomer (Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E., and Lashuel, H. A. (2012) J. Biol. Chem. 287, 15345-15364). Here we describe a simple in vivo cross-linking method that reveals a major ~60-kDa form of endogenous αSyn (monomer, 14.5 kDa) in intact cells and smaller amounts of ~80- and ~100-kDa forms with the same isoelectric point as the 60-kDa species. Controls indicate that the apparent 60-kDa tetramer exists normally and does not arise from pathological aggregation. The pattern of a major 60-kDa and minor 80- and 100-kDa species plus variable amounts of free monomers occurs endogenously in primary neurons and erythroid cells as well as neuroblastoma cells overexpressing αSyn. A similar pattern occurs for the homologue, β-synuclein, which does not undergo pathogenic aggregation. Cell lysis destabilizes the apparent 60-kDa tetramer, leaving mostly free monomers and some 80-kDa oligomer. However, lysis at high protein concentrations allows partial recovery of the 60-kDa tetramer. Together with our prior findings, these data suggest that endogenous αSyn exists principally as a 60-kDa tetramer in living cells but is lysis-sensitive, making the study of natural αSyn challenging outside of intact cells.
Collapse
Affiliation(s)
- Ulf Dettmer
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
32
|
Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:524-33. [PMID: 22173095 DOI: 10.1016/j.bbamcr.2011.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic dysfunction and degeneration. DJ-1/PARK7 mutations have been linked with a familial form of early onset PD. In this study, we found that human DJ-1 wild type and the missense mutants M26I, R98Q, A104T and D149A were stable proteins in cells, only the L166P mutant was unstable. In parallel, the former were not degraded and the L166P mutant was directly degraded in vitro by proteasome-mediated endoproteolytic cleavage. Furthermore, genetic evidence in fission yeast showed the direct involvement of proteasome in the degradation of human DJ-1 L166P and the corresponding L169P mutant of SPAC22E12.03c, the human orthologue of DJ-1 in Schizosaccharomyces Pombe, as their protein levels were increased at restrictive temperature in fission yeast (mts4 and pts1-732) harboring temperature sensitive mutations in proteasomal subunits. In total, our results provide evidence that direct proteasomal endoproteolytic cleavage of DJ-1 L166P is the mechanism of degradation contributing to the loss-of-function of the mutant protein, a property not shared by other DJ-1 missense mutants associated with PD.
Collapse
|
33
|
Ramsey CP, Giasson BI. L10p and P158DEL DJ-1 mutations cause protein instability, aggregation, and dimerization impairments. J Neurosci Res 2011; 88:3111-24. [PMID: 20806408 DOI: 10.1002/jnr.22477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A variety of mutations in the gene encoding DJ-1 protein cause autosomal recessive early-onset parkinsonism. Recently, a novel pathogenic homozygous DJ-1 missense mutation resulting in the L10P amino acid substitution was reported. In a separate study, a novel homozygous mutation resulting in the deletion of DJ-1 residue P158 was also reported to be causative of disease. The specific effects of the novel L10P and P158DEL mutations on protein function have not been studied. Here, L10P and P158DEL DJ-1 proteins were assessed for protein stability, dimerization, solubility, subcellular localization, and protective function in comparison with WT and the L166P DJ-1 pathogenic variant. It was discovered that, compared with WT protein, L10P, L166P, and P158DEL DJ-1 variants exhibited dramatically reduced protein stabilities. Degradation of each of the pathogenic mutants appeared to be mediated in part by the proteasome. Interestingly, unlike L166P DJ-1, the L10P and P158DEL DJ-1 variants retained the ability to dimerize with WT DJ-1 protein; however, neither of these mutants was able to form homodimers. Additionally, the L10P, L166P, and P158DEL DJ-1 variants exhibited altered profiles on size-exclusion chromatography and demonstrated reduced solubilities in comparison with WT protein, and the latter aberration could be exacerbated in the presence of MG-132. Furthermore, cells stably expressing L10P DJ-1 were more vulnerable to treatments with proteasome inhibitors, suggesting that L10P DJ-1 may be toxic to cells under conditions of proteasome stress. Taken together, these findings suggest that diverse aberrant mechanisms, including alterations in protein stability and protein folding, are associated with the pathogenicity of the L10P and P158DEL DJ-1 variants.
Collapse
Affiliation(s)
- Chenere P Ramsey
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
34
|
Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 2010; 13:193-247. [PMID: 19951033 DOI: 10.1089/ars.2009.2629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a CNS reaction to injury in which some severe pathologies, regardless of their origin, converge. The phenomenon emphasizes crosstalk between neurons and glia and reveals a complex interaction with oxidizing agents through redox sensors localized in enzymes, receptors, and transcription factors. When oxidizing pressures cause reversible molecular changes, such as minimal or transitory proinflammatory cytokine overproduction, redox couples provide a means of translating the presence of reactive oxygen or nitrogen species into useful signals in the cell. Additionally, thiol-based redox sensors convey information about localized changes in redox potential induced by physiologic or pathologic situations. They are susceptible to oxidative changes and become key events during neuroinflammation, altering the course of a signaling response or the behavior of specific transcription factors. When oxidative stress augments the pressure on the intracellular environment, the effective reduction potential of redox pairs diminishes, and cell signaling shifts toward proinflammatory and proapoptotic signals, creating a vicious cycle between oxidative stress and neuroinflammation. In addition, electrophilic compounds derived from the oxidative cascade react with key protein thiols and interfere with redox signaling. This article reviews the relevant functional aspects of redox control during the neuroinflammatory process.
Collapse
Affiliation(s)
- Sergio Rosales-Corral
- Lab. Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano del Seguro Social (IMSS) , Guadalajara, Jalisco. Mexico.
| | | | | | | | | |
Collapse
|
35
|
Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Dissembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients. Mol Neurodegener 2009; 4:23. [PMID: 19497122 PMCID: PMC2704189 DOI: 10.1186/1750-1326-4-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/04/2009] [Indexed: 11/10/2022] Open
Abstract
The PARK7 gene encodes a protein, DJ-1, with several functions such as protection of cells from oxidative stress, sperm maturation and fertilization, and chaperone activity. Mutations in the PARK7 gene are associated with autosomal recessive early-onset Parkinson's disease (PD). DJ-1 has been reported to be expressed in multiple cells in the central nerve system. Here, by using both native and denatured Western blots, we examined levels of total DJ-1 and high molecular weight complexes of DJ-1 (HMW) in both the substantia nigra and cortex from rapidly autopsied 18 PD and 9 non-pathological control (NPC) brains. We have discovered that the level of total DJ-1 protein is significantly reduced in the substantia nigra in brains of sporadic PD patients. Moreover, in the PD cortex mitochondria fraction, the HMW DJ-1 complex is significantly lower than in the NPC. These results suggest abnormal DJ-1 expression levels and DJ-1 complex changes may contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Hikmet Nural
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, Arizona, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Waak J, Weber SS, Görner K, Schall C, Ichijo H, Stehle T, Kahle PJ. Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1. J Biol Chem 2009; 284:14245-57. [PMID: 19293155 DOI: 10.1074/jbc.m806902200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parkinson disease (PD)-associated genomic deletions and the destabilizing L166P point mutation lead to loss of the cytoprotective DJ-1 protein. The effects of other PD-associated point mutations are less clear. Here we demonstrate that the M26I mutation reduces DJ-1 expression, particularly in a null background (knockout mouse embryonic fibroblasts). Thus, homozygous M26I mutation causes loss of DJ-1 protein. To determine the cellular consequences, we measured suppression of apoptosis signal-regulating kinase 1 (ASK1) and cytotoxicity for [M26I]DJ-1, and systematically all other DJ-1 methionine and cysteine mutants. C106A mutation of the central redox site specifically abolished binding to ASK1 and the cytoprotective activity of DJ-1. DJ-1 was apparently recruited into the ASK1 signalosome via Cys-106-linked mixed disulfides. The designed higher order oxidation mimicking [C106DD]DJ-1 non-covalently bound to ASK1 even in the absence of hydrogen peroxide and conferred partial cytoprotection. Interestingly, mutations of peripheral redox sites (C46A and C53A) and M26I also led to constitutive ASK1 binding. Cytoprotective [wt]DJ-1 bound to the ASK1 N terminus (which is known to bind another negative regulator, thioredoxin 1), whereas [M26I]DJ-1 bound to aberrant C-terminal site(s). Consequently, the peripheral cysteine mutants retained cytoprotective activity, whereas the PD-associated mutant [M26I]DJ-1 failed to suppress ASK1 activity and nuclear export of the death domain-associated protein Daxx and did not promote cytoprotection. Thus, cytoprotective binding of DJ-1 to ASK1 depends on the central redox-sensitive Cys-106 and may be modulated by peripheral cysteine residues. We suggest that impairments in oxidative conformation changes of DJ-1 might contribute to PD neurodegeneration.
Collapse
Affiliation(s)
- Jens Waak
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, Tübingen 72076, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Zucchelli S, Vilotti S, Calligaris R, Lavina ZS, Biagioli M, Foti R, De Maso L, Pinto M, Gorza M, Speretta E, Casseler C, Tell G, Del Sal G, Gustincich S. Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson's disease-associated DJ-1 missense mutations. Cell Death Differ 2009; 16:428-38. [PMID: 19023331 DOI: 10.1038/cdd.2008.169] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in PARK7 DJ-1 have been associated with autosomal-recessive early-onset Parkinson's disease (PD). This gene encodes for an atypical peroxiredoxin-like peroxidase that may act as a regulator of transcription and a redox-dependent chaperone. Although large gene deletions have been associated with a loss-of-function phenotype, the pathogenic mechanism of several missense mutations is less clear. By performing a yeast two-hybrid screening from a human fetal brain library, we identified TRAF and TNF receptor-associated protein (TTRAP), an ubiquitin-binding domain-containing protein, as a novel DJ-1 interactor, which was able to bind the PD-associated mutations M26I and L166P more strongly than wild type. TTRAP protected neuroblastoma cells from apoptosis induced by proteasome impairment. In these conditions, endogenous TTRAP relocalized to a detergent-insoluble fraction and formed cytoplasmic aggresome-like structures. Interestingly, both DJ-1 mutants blocked the TTRAP protective activity unmasking a c-jun N-terminal kinase (JNK)- and p38-MAPK (mitogen-activated protein kinase)-mediated apoptosis. These results suggest an active role of DJ-1 missense mutants in the control of cell death and position TTRAP as a new player in the arena of neurodegeneration.
Collapse
Affiliation(s)
- S Zucchelli
- Sector of Neurobiology, International School for Advanced Studies (SISSA), AREA Science Park, Basovizza, Trieste 34012, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains. Mol Neurodegener 2009; 4:12. [PMID: 19243613 PMCID: PMC2654450 DOI: 10.1186/1750-1326-4-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/25/2009] [Indexed: 11/10/2022] Open
Abstract
Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.
Collapse
|
39
|
Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res 2009; 87:123-9. [PMID: 18711745 PMCID: PMC2752655 DOI: 10.1002/jnr.21831] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in DJ-1 (PARK7) cause recessively inherited Parkinson's disease. DJ-1 is a multifunctional protein with antioxidant and transcription modulatory activity. Its localization in cytoplasm, mitochondria, and nucleus is recognized, but the relevance of this subcellular compartmentalization to its cytoprotective activity is not fully understood. Here we report that under basal conditions DJ-1 is present mostly in the cytoplasm and to a lesser extent in mitochondria and nucleus of dopaminergic neuroblastoma SK-N-BE(2)C cells. Upon oxidant challenge, more DJ-1 translocates to mitochondria within 3 hr and subsequently to the nucleus by 12 hr. The predominant DJ-1 species in both mitochondria and nucleus is a dimer believed to be the functional form. Mutating cysteine 106, 53, or 46 had no impact on the translocation of DJ-1 to mitochondria. To study the relative neuroprotective activity of DJ-1 in mitochondria and nucleus, DJ-1 cDNA constructs fused to the appropriate localization signal were transfected into cells. Compared with 30% protection against oxidant-induced cell death in wild-type DJ-1-transfected cells, mitochondrial targeting of DJ-1 provided a significantly stronger (55%) cytoprotection based on lactate dehydrogenase release. Nuclear targeting of DJ-1 preserved cells equally as well as the wild-type protein. These observations suggest that the time frame for the translocation of DJ-1 from the cytoplasm to mitochondria and to the nucleus following oxidative stress is quite different and that dimerized DJ-1 in mitochondria is functional as an antioxidant not related to cysteine modification. These findings further highlight the multifaceted functions of DJ-1 as a cytoprotector in different cellular compartments.
Collapse
Affiliation(s)
- Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Won Hee Jang
- Center for Neurodegenerative and Neuroimmunologic diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Department of Biochemistry, College of Medicine, Inje University, Busan Korea
| | - Xin Zhao
- Center for Neurodegenerative and Neuroimmunologic diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Byeong Seon Jeong
- Center for Neurodegenerative and Neuroimmunologic diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| |
Collapse
|
40
|
Ramsey CP, Giasson BI. The E163K DJ-1 mutant shows specific antioxidant deficiency. Brain Res 2008; 1239:1-11. [PMID: 18822273 PMCID: PMC2783860 DOI: 10.1016/j.brainres.2008.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 08/25/2008] [Accepted: 09/01/2008] [Indexed: 12/13/2022]
Abstract
Recent discoveries of genetic mutations linked to familial forms of Parkinson's disease (PD), including mutations in DJ-1, have provided insights into the pathogenesis of sporadic PD. Recently, a novel homozygous missense mutation in the gene encoding human DJ-1 protein resulting in the E163K amino acid substitution has been reported. This mutation is associated with early-onset and clinical presentations that include parkinsonism, cognitive decline, and amyotrophic lateral sclerosis. The specific effect of this mutation on the function of DJ-1 protein as it relates to disease pathogenesis is currently unknown. Herein we show that the E163K pathogenic mutant retains similar properties to wild-type DJ-1 protein as it relates to protein stability, solubility, and dimerization. However, we show that the E163K mutant loses the ability to protect against oxidative stress while demonstrating a reduced redistribution towards mitochondria, but retains the ability to mitigate toxicity due to mitochondrial stress and proteasomal impairment. These findings suggest that DJ-1 influences several neuroprotective pathways and that the E163K mutation impairs the mechanism that is more specific to oxidative stress.
Collapse
Affiliation(s)
- Chenere P. Ramsey
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Benoit I. Giasson
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
41
|
Cha SS, Jung HI, Jeon H, An YJ, Kim IK, Yun S, Ahn HJ, Chung KC, Lee SH, Suh PG, Kang SO. Crystal structure of filamentous aggregates of human DJ-1 formed in an inorganic phosphate-dependent manner. J Biol Chem 2008; 283:34069-75. [PMID: 18922803 DOI: 10.1074/jbc.m804243200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutations in the DJ-1 gene have been implicated in the autosomal recessive early onset parkinsonism. DJ-1 is a soluble dimeric protein with critical roles in response to oxidative stress and in neuronal maintenance. However, several lines of evidence suggest the existence of a nonfunctional aggregated form of DJ-1 in the brain of patients with some neurodegenerative diseases. Here, we show that inorganic phosphate, an important anion that exhibits elevated levels in patients with Parkinson disease, transforms DJ-1 into filamentous aggregates. According to the 2.4-A crystal structure, DJ-1 dimers are linearly stacked through P(i)-mediated interactions to form protofilaments, which are then bundled into a filamentous assembly.
Collapse
Affiliation(s)
- Sun-Shin Cha
- Marine and Extreme Genome Research Center, Korea Ocean Research & Development Institute, Ansan 426-744, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anderson PC, Daggett V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson's disease. Biochemistry 2008; 47:9380-93. [PMID: 18707128 PMCID: PMC2646841 DOI: 10.1021/bi800677k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DJ-1 is a dimeric protein of unknown function in vivo. A mutation in the human DJ-1 gene causing substitution of proline for leucine at residue 166 (L166P) has been linked to early onset Parkinson's disease. Lack of structural stability has precluded experimental determination of atomic-resolution structures of the L166P DJ-1 polymorph. We have performed multiple molecular dynamics (MD) simulations ( approximately 1/3 mus) of the wild-type and L166P DJ-1 polymorph at physiological temperature to predict specific structural effects of the L166P substitution. L166P disrupted helices alpha1, alpha5, alpha6 and alpha8 with alpha8 undergoing particularly severe disruption. Secondary structural elements critical for protein stability and dimerization were significantly disrupted across the entire dimer interface, as were extended hydrophobic surfaces involved in dimer formation. Relative to wild-type DJ-1, L166P DJ-1 populated a broader ensemble of structures, many of which corresponded to distorted conformations. In a L166P dimer model the substitution significantly destabilized the dimer interface, interrupting >100 intermolecular contacts that are important for dimer formation. The L166P substitution also led to major perturbations in the region of a highly conserved cysteine residue (Cys-106) that participates in dimerization and that is critical for a proposed chaperone function of DJ-1. Cys-106 is located approximately 16 A from the substitution site, demonstrating that structural disruptions propagate throughout the whole protein. Furthermore, L166P DJ-1 showed a significant increase in hydrophobic surface area relative to wild-type protein, possibly explaining the tendency of the mutant protein to aggregate. These simulations provide details about specific structural disturbances throughout L166P DJ-1 that previous studies have not revealed.
Collapse
Affiliation(s)
- Peter C Anderson
- Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, Washington 98195-5013, USA
| | | |
Collapse
|
43
|
|
44
|
Van Humbeeck C, Waelkens E, Corti O, Brice A, Vandenberghe W. Parkin occurs in a stable, non-covalent, approximately 110-kDa complex in brain. Eur J Neurosci 2008; 27:284-93. [PMID: 18190519 PMCID: PMC2253705 DOI: 10.1111/j.1460-9568.2007.06000.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the gene for parkin, a 52-kDa E3 ubiquitin ligase, are a major cause of hereditary Parkinson's disease (PD). In vitro studies have identified a large number of parkin-interacting proteins. Whether parkin exists as a monomer or as part of a stable protein complex in vivo is uncertain. Here we demonstrate that endogenous parkin occurs in a stable, non-covalent, ∼110-kDa complex in native extracts from mouse brain, heart and skeletal muscle, while monomeric parkin is undetectable. Partial denaturation experiments indicate that this complex is at least a tetramer. Reported parkin-binding partners do not show detectable association with the parkin complex on native gels. Upon overexpression in COS1, SH-SY5Y or CHO cells, parkin accumulates predominantly as a monomer, suggesting that the interactors required for complex formation are available in limiting amounts in these cells. Importantly, PD-linked parkin mutations significantly impair parkin complex formation. These data demonstrate that parkin oligomerizes into a stable, non-covalent, heteromeric complex in vivo, and suggest that parkin may have as yet unidentified stable binding partners.
Collapse
Affiliation(s)
- Cindy Van Humbeeck
- Department of Neurosciences, Division of Experimental Neurology, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
45
|
Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 2007; 178:1025-38. [PMID: 17846173 PMCID: PMC2064625 DOI: 10.1083/jcb.200611128] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 08/09/2007] [Indexed: 11/22/2022] Open
Abstract
Sequestration of misfolded proteins into pericentriolar inclusions called aggresomes is a means that cells use to minimize misfolded protein-induced cytotoxicity. However, the molecular mechanism by which misfolded proteins are recruited to aggresomes remains unclear. Mutations in the E3 ligase parkin cause autosomal recessive Parkinson's disease that is devoid of Lewy bodies, which are similar to aggresomes. Here, we report that parkin cooperates with heterodimeric E2 enzyme UbcH13/Uev1a to mediate K63-linked polyubiquitination of misfolded DJ-1. K63-linked polyubiquitination of misfolded DJ-1 serves as a signal for interaction with histone deacetylase 6, an adaptor protein that binds the dynein-dynactin complex. Through this interaction, misfolded DJ-1 is linked to the dynein motor and transported to aggresomes. Furthermore, fibroblasts lacking parkin display deficits in targeting misfolded DJ-1 to aggresomes. Our findings reveal a signaling role for K63-linked polyubiquitination in dynein-mediated transport, identify parkin as a key regulator in the recruitment of misfolded DJ-1 to aggresomes, and have important implications regarding the biogenesis of Lewy bodies.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Herrera FE, Zucchelli S, Jezierska A, Lavina ZS, Gustincich S, Carloni P. On the oligomeric state of DJ-1 protein and its mutants associated with Parkinson Disease. A combined computational and in vitro study. J Biol Chem 2007; 282:24905-14. [PMID: 17504761 DOI: 10.1074/jbc.m701013200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the DJ-1 protein are present in patients suffering from familial Parkinson disease. Here we use computational methods and biological assays to investigate the relationship between DJ-1 missense mutations and the protein oligomeric state. Molecular dynamics calculations suggest that: (i) the structure of DJ-1 wild type (WT) in aqueous solution, in both oxidized and reduced forms, is similar to the crystal structure of the reduced form; (ii) the Parkinson disease-causing M26I variant is structurally similar to the WT, consistent with the experimental evidence showing the protein is a dimer as WT; (iii) R98Q is structurally similar to the WT, consistent with the fact that this is a physiological variant; and (iv) the L166P monomer rapidly evolves toward a conformation significantly different from WT, suggesting a change in its ability to oligomerize. Our combined computational and experimental approach is next used to identify a mutant (R28A) that, in contrast to L166P, destabilizes the dimer subunit-subunit interface without significantly changing secondary structure elements.
Collapse
Affiliation(s)
- Fernando E Herrera
- International School for Advanced Studies, INFM DEMOCRITOS, SISSA Unit, Italian Institute of Technology, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Lev N, Roncevic D, Roncevich D, Ickowicz D, Melamed E, Offen D. Role of DJ-1 in Parkinson's disease. J Mol Neurosci 2007; 29:215-25. [PMID: 17085780 DOI: 10.1385/jmn:29:3:215] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 11/30/1999] [Accepted: 02/16/2006] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD), one of the most common neurodegenerative diseases, is a multifactorial disease caused by both genetic and environmental factors. Although most patients suffering from PD have a sporadic disease, several genetic causes have been identified in recent years, including alpha-synuclein, parkin, PINK1, dardarin (LRRK2), and DJ-1. DJ-1 deletions and point mutations have been found worldwide, and loss of functional protein was shown to cause autosomal recessive PD. Moreover, DJ-1 immunoreactive inclusions are found in other alpha-synucleopathies and tauopathies, indicating that different neurodegenerative diseases might share a common mechanism in which DJ-1 might play a key role. The function of DJ-1 is still unknown; however, it is associated with various cellular processes, including response to oxidative stress, cellular transformation, RNAbinding, androgen-receptor signaling, spermatogenesis, and fertilization. This article reviews the current knowledge on DJ-1, focusing on its importance in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nirit Lev
- Laboratory of Neuroscience, Department of Neurology, FMRC, Rabin Medical Center, Tel Aviv University, Israel.
| | | | | | | | | | | |
Collapse
|
48
|
Waragai M, Wei J, Fujita M, Nakai M, Ho GJ, Masliah E, Akatsu H, Yamada T, Hashimoto M. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease. Biochem Biophys Res Commun 2006; 345:967-72. [PMID: 16707095 DOI: 10.1016/j.bbrc.2006.05.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/03/2006] [Indexed: 12/13/2022]
Abstract
DJ-1 is an antioxidant protein whose loss of function by gene mutations has been linked to familial Parkinson's disease (PD). The main objective of the present study was to determine if this molecule was also involved in the pathogenesis of sporadic PD. For this purpose, quantitative immunoblot assays were performed to evaluate DJ-1 in cerebrospinal fluids (CSF) collected from sporadic PD patients (n=40) and non-PD controls (n=38). The results showed that the CSF DJ-1 levels in PD were significantly higher than those in non-PD controls. Especially, upregulation of CSF DJ-1 in the early stage of PD (Yahr I-II) were distinct compared to those in the advanced stage of PD (Yahr III-IV) and non-PD controls (p<0.001 by ANOVA with post hoc Bonferroni's test), suggesting a protective role of DJ-1 against oxidative stress during the early stage. Thus, we propose that CSF DJ-1 could be a possible biomarker for early sporadic PD.
Collapse
Affiliation(s)
- Masaaki Waragai
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Heutink P. PINK-1 and DJ-1--new genes for autosomal recessive Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:215-9. [PMID: 17017532 DOI: 10.1007/978-3-211-45295-0_33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our genetic knowledge of Parkinson's disease (PD) is moving forward at an impressive speed. In less then 10 years family-based linkage analysis and positional cloning have led to the identification of several genes for familial forms of PD, which has been of critical importance to the scientific advance of PD research as the causal genes have offered new tools to model and understand pathways leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- P Heutink
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Meulener MC, Graves CL, Sampathu DM, Armstrong-Gold CE, Bonini NM, Giasson BI. DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synuclein. J Neurochem 2005; 93:1524-32. [PMID: 15935068 DOI: 10.1111/j.1471-4159.2005.03145.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.
Collapse
Affiliation(s)
- Marc C Meulener
- Department of Biology and Laboratory of Medicine of University of Pennsylvania, Philadelphia 19104-6084, USA
| | | | | | | | | | | |
Collapse
|