1
|
Schmuhl-Giesen S, Rollenhagen A, Walkenfort B, Yakoubi R, Sätzler K, Miller D, von Lehe M, Hasenberg M, Lübke JHR. Sublamina-Specific Dynamics and Ultrastructural Heterogeneity of Layer 6 Excitatory Synaptic Boutons in the Adult Human Temporal Lobe Neocortex. Cereb Cortex 2021; 32:1840-1865. [PMID: 34530440 PMCID: PMC9070345 DOI: 10.1093/cercor/bhab315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Synapses “govern” the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 μm2), the majority contained only a single but comparatively large AZ (~0.20 μm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as “amplifiers,” “integrators” but also as “discriminators” for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.
Collapse
Affiliation(s)
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty of the University of Duisburg-Essen, 45147, Essen, Germany
| | - Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry, BT52 1SA, UK
| | - Dorothea Miller
- University Hospital/Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Brandenburg Medical School, Ruppiner Clinics, 16816, Neuruppin, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty of the University of Duisburg-Essen, 45147, Essen, Germany
| | - Joachim H R Lübke
- Address correspondence to Joachim Lübke, Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
2
|
Tanaka S, Masuda Y, Harada A, Okabe S. Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice. ACTA ACUST UNITED AC 2020; 69:44-52. [PMID: 31990031 DOI: 10.1093/jmicro/dfaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Masuda
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Yakoubi R, Rollenhagen A, von Lehe M, Shao Y, Sätzler K, Lübke JHR. Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. Cereb Cortex 2020; 29:2797-2814. [PMID: 29931200 DOI: 10.1093/cercor/bhy146] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Studies of synapses are available for different brain regions of several animal species including non-human primates, but comparatively little is known about their quantitative morphology in humans. Here, synaptic boutons in Layer 5 (L5) of the human temporal lobe (TL) neocortex were investigated in biopsy tissue, using fine-scale electron microscopy, and quantitative three-dimensional reconstructions. The size and organization of the presynaptic active zones (PreAZs), postsynaptic densities (PSDs), and that of the 3 distinct pools of synaptic vesicles (SVs) were particularly analyzed. L5 synaptic boutons were medium-sized (~6 μm2) with a single but relatively large PreAZ (~0.3 μm2). They contained a total of ~1500 SVs/bouton, ~20 constituting the putative readily releasable pool (RRP), ~180 the recycling pool (RP), and the remainder, the resting pool. The PreAZs, PSDs, and vesicle pools are ~3-fold larger than those of CNS synapses in other species. Astrocytic processes reached the synaptic cleft and may regulate the glutamate concentration. Profound differences exist between synapses in human TL neocortex and those described in various species, particularly in the size and geometry of PreAZs and PSDs, the large RRP/RP, and the astrocytic ensheathment suggesting high synaptic efficacy, strength, and modulation of synaptic transmission at human synapses.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Marec von Lehe
- University Hospital/Knappschaftskrankenhaus Bochum, In der Schornau 23-25, Bochum, Germany.,Department of Neurosurgery, Ruppiner Kliniken, Medizinische Hochschule Brandenburg, Fehrbelliner Str. 38, Neuruppin, Germany
| | - Yachao Shao
- Simulation Lab Neuroscience, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,College of Computer, National University of Defense Technology, Changsha, China
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., BT52 1SA, Londonderry, UK
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty/RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen, Germany.,JARA Translational Brain Medicine, Germany
| |
Collapse
|
4
|
Yakoubi R, Rollenhagen A, von Lehe M, Miller D, Walkenfort B, Hasenberg M, Sätzler K, Lübke JH. Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex. eLife 2019; 8:48373. [PMID: 31746736 PMCID: PMC6919978 DOI: 10.7554/elife.48373] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Synapses are fundamental building blocks controlling and modulating the ‘behavior’ of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~20), recycling (~80) and resting pools (~850). Thus, human L4 SBs may act as ‘amplifiers’ of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany.,Department of Neurosurgery, Brandenburg Medical School, Ruppiner Clinics, Neuruppin, Germany
| | - Dorothea Miller
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Bernd Walkenfort
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Mike Hasenberg
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
| | - Joachim Hr Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH University Hospital Aachen, Aachen, Germany.,JARA Translational Brain Medicine, Jülich/Aachen, Germany
| |
Collapse
|
5
|
Rodriguez-Moreno J, Rollenhagen A, Arlandis J, Santuy A, Merchan-Pérez A, DeFelipe J, Lübke JHR, Clasca F. Quantitative 3D Ultrastructure of Thalamocortical Synapses from the "Lemniscal" Ventral Posteromedial Nucleus in Mouse Barrel Cortex. Cereb Cortex 2019; 28:3159-3175. [PMID: 28968773 PMCID: PMC6946031 DOI: 10.1093/cercor/bhx187] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 01/20/2023] Open
Abstract
Thalamocortical synapses from “lemniscal” neurons of the dorsomedial portion of the rodent ventral posteromedial nucleus (VPMdm) are able to induce with remarkable efficacy, despite their relative low numbers, the firing of primary somatosensory cortex (S1) layer 4 (L4) neurons. To which extent this high efficacy depends on structural synaptic features remains unclear. Using both serial transmission (TEM) and focused ion beam milling scanning electron microscopy (FIB/SEM), we 3D-reconstructed and quantitatively analyzed anterogradely labeled VPMdm axons in L4 of adult mouse S1. All VPMdm synapses are asymmetric. Virtually all are established by axonal boutons, 53% of which contact multiple (2–4) elements (overall synapse/bouton ratio = 1.6). Most boutons are large (mean 0.47 μm3), and contain 1–3 mitochondria. Vesicle pools and postsynaptic density (PSD) surface areas are large compared to others in rodent cortex. Most PSDs are complex. Most synapses (83%) are established on dendritic spine heads. Furthermore, 15% of the postsynaptic spines receive a second, symmetric synapse. In addition, 13% of the spine heads have a large protrusion inserted into a membrane pouch of the VPMdm bouton. The unusual combination of structural features in VPMdm synapses is likely to contribute significantly to the high efficacy, strength, and plasticity of these thalamocortical synapses.
Collapse
Affiliation(s)
- Javier Rodriguez-Moreno
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich, Germany
| | - Jaime Arlandis
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | - Andrea Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Angel Merchan-Pérez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-Brain Medicine, Aachen, Germany
| | - Francisco Clasca
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| |
Collapse
|
6
|
Yang XK, Tang Y, Qiu QF, Wu WT, Zhang FL, Liu YL, Huang WH. Aβ1–42 Oligomers Induced a Short-Term Increase of Glutamate Release Prior to Its Depletion As Measured by Amperometry on Single Varicosities. Anal Chem 2019; 91:15123-15129. [DOI: 10.1021/acs.analchem.9b03826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiao-Ke Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Quan-Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Tao Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Obashi K, Matsuda A, Inoue Y, Okabe S. Precise Temporal Regulation of Molecular Diffusion within Dendritic Spines by Actin Polymers during Structural Plasticity. Cell Rep 2019; 27:1503-1515.e8. [DOI: 10.1016/j.celrep.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 10/26/2022] Open
|
8
|
Iida T, Tanaka S, Okabe S. Spatial impact of microglial distribution on dynamics of dendritic spines. Eur J Neurosci 2019; 49:1400-1417. [DOI: 10.1111/ejn.14325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Tadatsune Iida
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
9
|
Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience 2017; 368:268-282. [PMID: 28739523 DOI: 10.1016/j.neuroscience.2017.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
The rodent whisker-to-barrel cortex pathway is a classic model to study the effects of sensory experience and deprivation on neuronal circuit formation, not only during development but also in the adult. Decades of research have produced a vast body of evidence highlighting the fundamental role of neuronal activity (spontaneous and/or sensory-evoked) for circuit formation and function. In this context, it has become clear that neuronal adaptation and plasticity is not just a function of the neonatal brain, but persists into adulthood, especially after experience-driven modulation of network status. Mechanisms for structural remodeling of the somatodendritic or axonal domain include microscale alterations of neurites or synapses. At the same time, functional alterations at the nanoscale such as expression or activation changes of channels and receptors contribute to the modulation of intrinsic excitability or input-output relationships. However, it remains elusive how these forms of structural and functional plasticity come together to shape neuronal network formation and function. While specifically somatodendritic plasticity has been studied in great detail, the role of axonal plasticity, (e.g. at presynaptic boutons, branches or axonal microdomains), is rather poorly understood. Therefore, this review will only briefly highlight somatodendritic plasticity and instead focus on axonal plasticity. We discuss (i) the role of spontaneous and sensory-evoked plasticity during critical periods, (ii) the assembly of axonal presynaptic sites, (iii) axonal plasticity in the mature brain under baseline and sensory manipulation conditions, and finally (iv) plasticity of electrogenic axonal microdomains, namely the axon initial segment, during development and in the mature CNS.
Collapse
Affiliation(s)
- Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Merryn Jordan
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany.
| |
Collapse
|
10
|
Dufour A, Rollenhagen A, Sätzler K, Lübke JHR. Development of Synaptic Boutons in Layer 4 of the Barrel Field of the Rat Somatosensory Cortex: A Quantitative Analysis. Cereb Cortex 2015; 26:838-854. [PMID: 26574502 PMCID: PMC4712807 DOI: 10.1093/cercor/bhv270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the structural and functional mechanisms underlying the development of individual brain microcircuits is critical for elucidating their computational properties. As synapses are the key structures defining a given microcircuit, it is imperative to investigate their development and precise structural features. Here, synapses in cortical layer 4 were analyzed throughout the first postnatal month using high-end electron microscopy to generate realistic quantitative 3D models. Besides their overall geometry, the size of active zones and the pools of synaptic vesicles were analyzed. At postnatal day 2 only a few shaft synapses were found, but spine synapses steadily increased with ongoing corticogenesis. From postnatal day 2 to 30 synaptic boutons significantly decreased in size whereas that of active zones remained nearly unchanged despite a reshaping. During the first 2 weeks of postnatal development, a rearrangement of synaptic vesicles from a loose distribution toward a densely packed organization close to the presynaptic density was observed, accompanied by the formation of, first a putative readily releasable pool and later a recycling and reserve pool. The quantitative 3D reconstructions of synapses will enable the comparison of structural and functional aspects of signal transduction thus leading to a better understanding of networks in the developing neocortex.
Collapse
Affiliation(s)
- Amandine Dufour
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany.,Institute of Anatomy II, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry BT52 1SA, UK
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/University Hospital Aachen, Aachen 52074, Germany.,JARA Translational Brain Medicine, Aachen 52074, Germany
| |
Collapse
|
11
|
Dempsey B, Turner AJ, Le S, Sun QJ, Bou Farah L, Allen AM, Goodchild AK, McMullan S. Recording, labeling, and transfection of single neurons in deep brain structures. Physiol Rep 2015; 3:3/1/e12246. [PMID: 25602013 PMCID: PMC4387759 DOI: 10.14814/phy2.12246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic tools that permit functional or connectomic analysis of neuronal circuits are rapidly transforming neuroscience. The key to deployment of such tools is selective transfection of target neurons, but to date this has largely been achieved using transgenic animals or viral vectors that transduce subpopulations of cells chosen according to anatomical rather than functional criteria. Here, we combine single‐cell transfection with conventional electrophysiological recording techniques, resulting in three novel protocols that can be used for reliable delivery of conventional dyes or genetic material in vitro and in vivo. We report that techniques based on single cell electroporation yield reproducible transfection in vitro, and offer a simple, rapid and reliable alternative to established dye‐labeling techniques in vivo, but are incompatible with targeted transfection in deep brain structures. In contrast, we show that intracellular electrophoresis of plasmid DNA transfects brainstem neurons recorded up to 9 mm deep in the anesthetized rat. The protocols presented here require minimal, if any, modification to recording hardware, take seconds to deploy, and yield high recovery rates in vitro (dye labeling: 89%, plasmid transfection: 49%) and in vivo (dye labeling: 66%, plasmid transfection: 27%). They offer improved simplicity compared to the juxtacellular labeling technique and for the first time offer genetic manipulation of functionally characterized neurons in previously inaccessible brain regions. The ability to label individual neurons after electrophysiological characterization of their functional properties is a foundational technique in neuroscience. A number of approaches that achieve this goal have been described, but all are technically challenging. Here, we describe a simple approach that is rapid, reliable, and compatible with delivery of conventional dyes or large plasmid DNA molecules.
Collapse
Affiliation(s)
- Bowen Dempsey
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Anita J Turner
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Sheng Le
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Qi-Jian Sun
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Lama Bou Farah
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Ann K Goodchild
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| |
Collapse
|
12
|
Structural determinants underlying the high efficacy of synaptic transmission and plasticity at synaptic boutons in layer 4 of the adult rat 'barrel cortex'. Brain Struct Funct 2014; 220:3185-209. [PMID: 25084745 DOI: 10.1007/s00429-014-0850-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/10/2014] [Indexed: 02/01/2023]
Abstract
Excitatory layer 4 (L4) neurons in the 'barrel field' of the rat somatosensory cortex represent an important component in thalamocortical information processing. However, no detailed information exists concerning the quantitative geometry of synaptic boutons terminating on these neurons. Thus, L4 synaptic boutons were investigated using serial ultrathin sections and subsequent quantitative 3D reconstructions. In particular, parameters representing structural correlates of synaptic transmission and plasticity such as the number, size and distribution of pre- and postsynaptic densities forming the active zone (AZ) and of the three functionally defined pools of synaptic vesicles were analyzed. L4 synaptic boutons varied substantially in shape and size; the majority had a single, but large AZ with opposing pre- and postsynaptic densities that matched perfectly in size and position. More than a third of the examined boutons showed perforations of the postsynaptic density. Synaptic boutons contained on average a total pool of 561 ± 108 vesicles, with ~5% constituting the putative readily releasable, ~23% the recycling, and the remainder the reserve pool. These pools are comparably larger than other characterized central synapses. Synaptic complexes were surrounded by a dense network of fine astrocytic processes that reached as far as the synaptic cleft, thus regulating the temporal and spatial glutamate concentration, and thereby shaping the unitary EPSP amplitude. In summary, the geometry and size of AZs, the comparably large readily releasable and recycling pools, together with the tight astrocytic ensheathment, may explain and contribute to the high release probability, efficacy and modulation of synaptic transmission at excitatory L4 synaptic boutons. Moreover, the structural variability as indicated by the geometry of L4 synaptic boutons, the presence of mitochondria and the size and shape of the AZs strongly suggest that synaptic reliability, strength and plasticity is governed and modulated individually at excitatory L4 synaptic boutons.
Collapse
|
13
|
Bourne JN, Chirillo MA, Harris KM. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus. J Comp Neurol 2013; 521:3898-912. [PMID: 23784793 PMCID: PMC3838200 DOI: 10.1002/cne.23384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/12/2022]
Abstract
In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long-term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta-burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters <0.45 μm). Docked vesicles were reduced at 30 minutes and then returned to control levels by 2 hours following induction of LTP. By 2 hours there were fewer small synaptic vesicles overall in the presynaptic vesicle pool. Clathrin-mediated endocytosis was used as a marker of local activity, and axonal boutons containing clathrin-coated pits showed a more pronounced decrease in presynaptic vesicles at both 30 minutes and 2 hours after induction of LTP relative to control values. Putative transport packets, identified as a cluster of less than 10 axonal vesicles occurring between synaptic boutons, were stable at 30 minutes but markedly reduced by 2 hours after the induction of LTP. APV blocked these effects, suggesting that the loss of axonal boutons and presynaptic vesicles was dependent on N-methyl-D-aspartic acid (NMDA) receptor activation during LTP. These findings show that specific presynaptic ultrastructural changes complement postsynaptic ultrastructural plasticity during LTP.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas, 78712; Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045
| | | | | |
Collapse
|
14
|
Dai X, Iwasaki H, Watanabe M, Okabe S. Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 2013; 39:531-47. [DOI: 10.1111/ejn.12413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojing Dai
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Masahiko Watanabe
- Department of Anatomy; Hokkaido University School of Medicine; Sapporo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| |
Collapse
|
15
|
Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 2013; 6:375-85. [PMID: 24228073 DOI: 10.1177/1756285613490051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal dysfunction has been proposed during the last decade as one of the main mechanisms involved in the aetiology of several neurodegenerative diseases. Microtubules are basic elements of the cytoskeleton and the dysregulation of microtubule stability has been demonstrated to be causative for axonal transport impairment, synaptic contact degeneration, impaired neuronal function leading finally to neuronal loss. Several pathways are implicated in the microtubule assembly/disassembly process. Emerging evidence is focusing on Notch as a microtubule dynamics regulator. We demonstrated that activation of Notch signalling results in increased microtubule stability and changes in axonal morphology and branching. By contrast, Notch inhibition leads to an increase in cytoskeleton plasticity with intense neurite remodelling. Until now, several microtubule-binding compounds have been tested and the results have provided proof of concept that microtubule-binding agents or compounds with the ability to stabilize microtubules may have therapeutic potential for the treatment of Alzheimer's disease and other neurodegenerative diseases. In this review, based on its key role in cytoskeletal dynamics modulation, we propose Notch as a new potential target for microtubule stabilization.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
16
|
Abstract
Synapses undergo substantial activity-dependent and independent remodeling over time scales of minutes, hours, and days. Presumably, changes in presynaptic properties should be matched by corresponding changes in postsynaptic properties and vice versa. Wherever measured, presynaptic and postsynaptic molecular properties tend to correlate, yet these correlations are often quite imperfect, raising questions as the origins of such mismatches: Are these the outcome of "single snapshot" analyses of asynchronous remodeling processes? Alternatively, do these indicate that synapses genuinely vary in the "stoichiometries" of their presynaptic and postsynaptic molecular contents? If so, are these "stoichiometries" preserved over time? To address these questions, we followed the matching dynamics of the presynaptic active-zone molecule Munc13-1 and the postsynaptic molecule PSD-95 in networks of cultured cortical mouse neurons. We find that presynaptic and postsynaptic remodeling were generally well correlated, but the degree of this correlation was highly variable, with little and even negative correlation observed at some synapses. No evidence was found that remodeling in one compartment consistently preceded remodeling in the other. Interestingly, even though the Munc13-1 and PSD-95 contents of individual synapses changed considerably over 15-22 h, Munc13-1/PSD-95 ratios, which varied over a fourfold range, were well conserved over these durations. These findings indicate that the "stoichiometries" of presynaptic and postsynaptic molecules can genuinely differ among synapses and that synapses can maintain their specific stoichiometries even in face of extensive presynaptic and postsynaptic remodeling.
Collapse
|
17
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
19
|
|
20
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
21
|
Ostroff LE, Cain CK, Jindal N, Dar N, Ledoux JE. Stability of presynaptic vesicle pools and changes in synapse morphology in the amygdala following fear learning in adult rats. J Comp Neurol 2012; 520:295-314. [PMID: 21674493 DOI: 10.1002/cne.22691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in synaptic strength in the lateral amygdala (LA) that occur with fear learning are believed to mediate memory storage, and both presynaptic and postsynaptic mechanisms have been proposed to contribute. In a previous study we used serial section transmission electron microscopy (ssTEM) to observe differences in dendritic spine morphology in the adult rat LA after fear conditioning, conditioned inhibition (safety conditioning), or naïve control handling (Ostroff et al. [2010] Proc Natl Acad Sci U S A 107:9418-9423). We have now reconstructed axons from the same dataset and compared their morphology and relationship to the postsynaptic spines between the three training groups. Relative to the naïve control and conditioned inhibition groups, the ratio of postsynaptic density (PSD) area to docked vesicles at synapses was greater in the fear-conditioned group, while the size of the synaptic vesicle pools was unchanged. There was significant coherence in synapse size between neighboring boutons on the same axon in the naïve control and conditioned inhibition groups, but not in the fear-conditioned group. Within multiple-synapse boutons, both synapse size and the PSD-to-docked vesicle ratio were variable between individual synapses. Our results confirm that synaptic connectivity increases in the LA with fear conditioning. In addition, we provide evidence that boutons along the same axon and even synapses on the same bouton are independent in their structure and learning-related morphological plasticity.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
22
|
Kuriu T, Yanagawa Y, Konishi S. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers. Mol Cell Neurosci 2012; 49:184-95. [DOI: 10.1016/j.mcn.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/17/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022] Open
|
23
|
Miller-Sims VC, Bottjer SW. Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches. J Neurophysiol 2011; 107:1142-56. [PMID: 22157116 DOI: 10.1152/jn.00614.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experience-dependent changes in neural connectivity underlie developmental learning and result in life-long changes in behavior. In songbirds axons from the cortical region LMAN(core) (core region of lateral magnocellular nucleus of anterior nidopallium) convey the output of a basal ganglia circuit necessary for song learning to vocal motor cortex [robust nucleus of the arcopallium (RA)]. This axonal projection undergoes remodeling during the sensitive period for learning to achieve topographic organization. To examine how auditory experience instructs the development of connectivity in this pathway, we compared the morphology of individual LMAN(core)→RA axon arbors in normal juvenile songbirds to those raised in white noise. The spatial extent of axon arbors decreased during the first week of vocal learning, even in the absence of normal auditory experience. During the second week of vocal learning axon arbors of normal birds showed a loss of branches and varicosities; in contrast, experience-deprived birds showed no reduction in branches or varicosities and maintained some arbors in the wrong topographic location. Thus both experience-independent and experience-dependent processes are necessary to establish topographic organization in juvenile birds, which may allow birds to modify their vocal output in a directed manner and match their vocalizations to a tutor song. Many LMAN(core) axons of juvenile birds, but not adults, extended branches into dorsal arcopallium (Ad), a region adjacent to RA that is part of a parallel basal ganglia pathway also necessary for vocal learning. This transient projection provides a point of integration between the two basal ganglia pathways, suggesting that these branches convey corollary discharge signals as birds are actively engaged in learning.
Collapse
Affiliation(s)
- Vanessa C Miller-Sims
- Section of Neurobiology, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
24
|
Abstract
In this study, we evaluated whether a cross talk between nuclear factor κB (NF-κB) and Notch may take place and contribute to regulate cell morphology and/or neuronal network in primary cortical neurons. We found that lack of p50, either induced acutely by inhibiting p50 nuclear translocation or genetically in p50(-/-) mice, results in cortical neurons characterized by reduced neurite branching, loss of varicosities, and Notch1 signaling hyperactivation. The neuronal morphological effects found in p50(-/-) cortical cells were reversed after treatment with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-1-alanyl 1]-S-phenylglycine t-butyl ester) or Notch RNA interference. Together, these data suggested that morphological abnormalities in p50(-/-) cortical neurons were dependent on Notch pathway hyperactivation, with Notch ligand Jagged1 being a major player in mediating such effect. In this line, we demonstrated that the p50 subunit acts as transcriptional repressor of Jagged1. We also found altered distribution of Notch1 and Jagged1 immunoreactivity in the cortex of p50(-/-) mice compared with wild-type littermates at postnatal day 1. These data suggest the relevance of future studies on the role of Notch/NF-κB cross talk in regulating cortex structural plasticity in physiological and pathological conditions.
Collapse
|
25
|
Abstract
Single-cell electroporation (SCE) is a versatile technique for delivering electrically charged macromolecules including DNA, RNA, synthetic oligonucleotides, peptides, dyes, and drugs to individual cells within intact tissues. Here, we describe methods for in vivo-targeted electroporation of single tectal neurons within the albino Xenopus laevis tadpole. Focal electroporation is achieved using a pipette electrode filled with a solution of the delivery molecules and with a tip diameter much smaller than the width of the target cell. The small tip allows for localization of an electric field, which restricts pore formation to only the individual cell in direct contact with the tip. Thus, the small tip permits focal delivery of the charged molecules within the pipette into individual cells. Factors affecting the efficiency of SCE, as well as various applications of this technique, are discussed. Particular focus is directed toward combining SCE with in vivo two-photon microscopy for three-dimensional (3D) imaging of neuron growth and cell-autonomous effects of altered protein function.
Collapse
|
26
|
Kasai H, Hayama T, Ishikawa M, Watanabe S, Yagishita S, Noguchi J. Learning rules and persistence of dendritic spines. Eur J Neurosci 2010; 32:241-9. [DOI: 10.1111/j.1460-9568.2010.07344.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Clustering of excess growth resources within leading growth cones underlies the recurrent "deposition" of varicosities along developing neurites. Exp Neurol 2010; 225:140-53. [PMID: 20558161 DOI: 10.1016/j.expneurol.2010.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/30/2010] [Accepted: 06/07/2010] [Indexed: 11/21/2022]
Abstract
Varicosities (VRs) are ubiquitous neuronal structures that are considered to serve as presynaptic structures. The mechanisms of their assembly are unknown. Using cultured Aplysia neurons, we found that in the absence of postsynaptic targets, VRs form at the leading edge of extending neurites when anterogradely transported organelles accumulate within the palm of the growth cone (GC) at a rate that exceeds their utilization by the GC machinery. The aggregation of excess organelles at the palm of the GC leads to slowdown of the GC's advance. As the size of the organelle clusters increases, the rate of organelle sequestration diminishes and the supply of building blocks to the GC resumes. The GCs' advance is re-initiated, "leaving behind" an organelle-loaded nascent VR. These mechanisms account for the recurrent "deposition" of almost equally spaced VRs by advancing GCs. Consistent with the view that VRs serve as "ready-to-go" presynaptic terminals, we found that a short train of action potentials leads to exocytosis of labeled vesicles within the varicosities. We propose that the formation and spacing of VRs by advancing GCs is the default outcome of the balance between the rate of supply of growth-supporting resources and the usage of these resources by the GC's machinery at the leading edges of specific neurites.
Collapse
|
28
|
Yu DM, Tang WC, Wu P, Deng TX, Liu B, Li MS, Deng JB. The synaptic remodeling between regenerated perforant pathway and granule cells in slice culture. Cell Mol Neurobiol 2010; 30:309-16. [PMID: 19757022 PMCID: PMC11498793 DOI: 10.1007/s10571-009-9454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
In order to understand the synaptic remodeling in the course of axonal regeneration, the synaptic remodeling of the perforant path in hippocampus was investigated in the present study with entorhino-hippocampal coculture, DiI DiOlistic assay and transmission electron microscopy. The results showed that the regeneration of the perforant pathway occurred in entorhino-hippocampal slice coculture, and putative synaptic contacts formed between the regenerated fibers and dendritic spines of granule cells. Ultrastructural analysis confirmed the formation of new synaptic contacts. In conclusion, the synaptic formation implicated in the neuroregeneration could integrate into the network in CNS.
Collapse
Affiliation(s)
- Dong-ming Yu
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Wen-chun Tang
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Ping Wu
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Tong-xing Deng
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Bin Liu
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Ming-shan Li
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| | - Jin-bo Deng
- Institute of Neurobiology and Laboratory of Neurobiology, Henan University, 475004 Kaifeng, Henan Province People’s Republic of China
| |
Collapse
|
29
|
McKinney RA. Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 2009; 588:107-16. [PMID: 19933758 DOI: 10.1113/jphysiol.2009.178905] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system, most excitatory synapses occur on dendritic spines, which are small protrusions from the dendritic tree. In the mature cortex and hippocampus, dendritic spines are heterogeneous in shape. It has been shown that the shapes of the spine can affect synapse stability and synaptic function. Dendritic spines are highly motile structures that can undergo actin-dependent shape changes, which occur over a time scale ranging from seconds to tens of minutes or even days. The formation, remodelling and elimination of excitatory synapses on dendritic spines represent ways of refining the microcircuitry in the brain. Here I review the current knowledge on the effects of modulation of AMPA and NMDA ionotropic glutamate receptors on dendritic spine formation, motility and remodelling.
Collapse
Affiliation(s)
- R Anne McKinney
- Department of Pharmacology and Therapeutics, Bellini Life Science Building, McGill University, Montreal, H3G 0B1, Canada.
| |
Collapse
|
30
|
Rittenhouse CD, Majewska AK. Synaptic Mechanisms of Activity-Dependent Remodeling in Visual Cortex during Monocular Deprivation. J Exp Neurosci 2009. [DOI: 10.4137/jen.s2559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
It has long been appreciated that in the visual cortex, particularly within a postnatal critical period for experience-dependent plasticity, the closure of one eye results in a shift in the responsiveness of cortical cells toward the experienced eye. While the functional aspects of this ocular dominance shift have been studied for many decades, their cortical substrates and synaptic mechanisms remain elusive. Nonetheless, it is becoming increasingly clear that ocular dominance plasticity is a complex phenomenon that appears to have an early and a late component. Early during monocular deprivation, deprived eye cortical synapses depress, while later during the deprivation open eye synapses potentiate. Here we review current literature on the cortical mechanisms of activity-dependent plasticity in the visual system during the critical period. These studies shed light on the role of activity in shaping neuronal structure and function in general and can lead to insights regarding how learning is acquired and maintained at the neuronal level during normal and pathological brain development.
Collapse
Affiliation(s)
| | - Ania K Majewska
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY
| |
Collapse
|
31
|
Ferrari-Toninelli G, Bonini SA, Uberti D, Napolitano F, Stante M, Santoro F, Minopoli G, Zambrano N, Russo T, Memo M. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells. Dev Neurobiol 2009; 69:378-91. [PMID: 19263417 DOI: 10.1002/dneu.20710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Notch proteins are definitely recognized as key regulators of the neuronal fate during embryo development, but their function in the adult brain is still largely unknown. We have previously demonstrated that Notch pathway stimulation increases microtubules stability followed by the remodeling of neuronal morphology with neurite varicosities loss, thicker neuritis, and enlarged growth cones. Here we show that the neurite remodeling is a dynamic event, dependent on transcription and translation, and with functional implications. Exposure of differentiated human SH-SY5Y neuroblastoma cells to the Notch ligand Jagged1 induces varicosities loss all along the neurites, accompanied by the redistribution of presynaptic vesicles and the decrease in neurotransmitters release. As evaluated by time lapse digital imaging, dynamic changes in neurite morphology were rapidly reversible and dependent on the activation of the Notch signaling pathway. In fact, it was prevented by the inhibition of the proteolytic gamma-secretase enzyme or the transcription machinery, and was mimicked by the transfection of the intracellular domain of Notch. One hour after treatment with Jagged1, several genes were downregulated. Many of these genes encode proteins that are known to be involved in protein synthesis. These data suggest that in adult neurons, Notch pathway activates a transcriptional program that regulates the equilibrium between varicosities formation and varicosities loss in the neuronal presynaptic compartment involving the expression and redistribution of both structural and functional proteins.
Collapse
Affiliation(s)
- Giulia Ferrari-Toninelli
- Department of Biomedical Sciences and Biotechnologies, and National Institute of Neuroscience - Italy, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Becker N, Wierenga CJ, Fonseca R, Bonhoeffer T, Nägerl UV. LTD Induction Causes Morphological Changes of Presynaptic Boutons and Reduces Their Contacts with Spines. Neuron 2008; 60:590-7. [DOI: 10.1016/j.neuron.2008.09.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/24/2008] [Accepted: 09/03/2008] [Indexed: 11/15/2022]
|
34
|
Pratt KG, Taft CE, Burbea M, Turrigiano GG. Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons. Dev Neurobiol 2008; 68:143-51. [PMID: 17948240 DOI: 10.1002/dneu.20577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in connectivity between pairs of neurons can serve as a substrate for information storage and for experience-dependent changes in neuronal circuitry. Early in development, synaptic contacts form and break, but how these dynamics influence the connectivity between pairs of neurons is not known. Here we used time-lapse imaging to examine the synaptic interactions between pairs of cultured cortical pyramidal neurons, and found that the axon-dendrite contacts between each neuronal pair were composed of both a relatively stable and a more labile population. Under basal conditions, loss and gain of contacts within this labile population was well balanced and there was little net change in connectivity. Selectively increasing the levels of activated CaMKII in the postsynaptic neuron increased connectivity between pairs of neurons by increasing the rate of gain of new contacts without affecting the probability of contact loss, or the proportion of stable and labile contacts, and this increase required Calcium/calmodulin binding to CaMKII. Our data suggest that activating CaMKII can increase synaptic connectivity through a CaM-dependent increase in contact formation, followed by stabilization of a constant fraction of new contacts.
Collapse
Affiliation(s)
- Kara G Pratt
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
35
|
Bastrikova N, Gardner GA, Reece JM, Jeromin A, Dudek SM. Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci U S A 2008; 105:3123-7. [PMID: 18287055 PMCID: PMC2268595 DOI: 10.1073/pnas.0800027105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Indexed: 11/18/2022] Open
Abstract
A critical component of nervous system development is synapse elimination during early postnatal life, a process known to depend on neuronal activity. Changes in synaptic strength in the form of long-term potentiation (LTP) and long-term depression (LTD) correlate with dendritic spine enlargement or shrinkage, respectively, but whether LTD can lead to an actual separation of the synaptic structures when the spine shrinks or is lost remains unknown. Here, we addressed this issue by using concurrent imaging and electrophysiological recording of live synapses. Slices of rat hippocampus were cultured on multielectrode arrays, and the neurons were labeled with genes encoding red or green fluorescent proteins to visualize presynaptic and postsynaptic neuronal processes, respectively. LTD-inducing stimulation led to a reduction in the synaptic green and red colocalization, and, in many cases, it induced a complete separation of the presynaptic bouton from the dendritic spine. This type of synapse loss was associated with smaller initial spine size and greater synaptic depression but not spine shrinkage during LTD. All cases of synapse separation were observed without an accompanying loss of the spine during this period. We suggest that repeated low-frequency stimulation simultaneous with LTD induction is capable of restructuring synaptic contacts. Future work with this model will be able to provide critical insight into the molecular mechanisms of activity- and experience-dependent refinement of brain circuitry during development.
Collapse
Affiliation(s)
| | | | - Jeff M. Reece
- Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | | | | |
Collapse
|
36
|
Harms KJ, Dunaevsky A. Dendritic spine plasticity: Looking beyond development. Brain Res 2007; 1184:65-71. [PMID: 16600191 DOI: 10.1016/j.brainres.2006.02.094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 11/24/2022]
Abstract
Most excitatory synapses in the CNS form on dendritic spines, tiny protrusions from the dendrites of excitatory neurons. As such, spines are likely loci of synaptic plasticity. Spines are dynamic structures, but the functional consequences of dynamic changes in these structures in the mature brain are unclear. Changes in spine density, morphology, and motility have been shown to occur with paradigms that induce synaptic plasticity, as well as altered sensory experience and neuronal activity. These changes potentially lead to an alteration in synaptic connectivity and strength between neuronal partners, affecting the efficacy of synaptic communication. Here, we review the formation and modification of excitatory synapses on dendritic spines as it relates to plasticity in the central nervous system after the initial phase of synaptogenesis. We will also discuss some of the molecular links that have been implicated in both synaptic plasticity and the regulation of spine morphology.
Collapse
Affiliation(s)
- Kimberly J Harms
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | |
Collapse
|
37
|
Bestman JE, Ewald RC, Chiu SL, Cline HT. In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 2007; 1:1267-72. [PMID: 17406410 DOI: 10.1038/nprot.2006.186] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell electroporation allows transfection of plasmid DNA or macromolecules into individual living cells using modified patch electrodes and common electrophysiological equipment. This protocol is optimized for rapid in vivo electroporation of Xenopus laevis tadpole brains with DNA, dextrans, morpholinos and combinations thereof. Experienced users can electroporate roughly 40 tadpoles per hour. The technique can be adapted for use with other charged transfer materials and in other systems and tissues where cells can be targeted with a micropipette. Under visual guidance, an electrode filled with transfer material is placed in a cell body-rich area of the tadpole brain and a train of voltage pulses applied, which electroporates a nearby cell. We show examples of successfully electroporated single cells, instances of common problems and troubleshooting suggestions. Single-cell electroporation is an affordable method to fluorescently label and genetically manipulate individual cells. This powerful technique enables observation of single cells in an otherwise normal environment.
Collapse
Affiliation(s)
- Jennifer E Bestman
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
38
|
Malkinson G, Fridman ZM, Kamber D, Dormann A, Shapira E, Spira ME. Calcium-induced exocytosis from actomyosin-driven, motile varicosities formed by dynamic clusters of organelles. ACTA ACUST UNITED AC 2007; 35:57-73. [DOI: 10.1007/s11068-006-9007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 11/02/2006] [Accepted: 11/22/2006] [Indexed: 11/29/2022]
|
39
|
Nevian T, Helmchen F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 2007; 454:675-88. [PMID: 17334778 DOI: 10.1007/s00424-007-0234-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/15/2007] [Accepted: 02/12/2007] [Indexed: 12/26/2022]
Abstract
Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.
Collapse
Affiliation(s)
- Thomas Nevian
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | |
Collapse
|
40
|
De Simoni A, Edwards FA. Pathway specificity of dendritic spine morphology in identified synapses onto rat hippocampal CA1 neurons in organotypic slices. Hippocampus 2007; 16:1111-24. [PMID: 17068782 DOI: 10.1002/hipo.20236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The output of the hippocampus is largely determined by interaction of the three excitatory pathways that impinge on CA1 pyramidal neurons. These synapses, formed by axons of: (1) CA3 pyramidal neurons; (2) neurons of the entorhinal cortex (EC); and (3) neighboring CA1 neurons, are all potentially plastic. Here, we take advantage of the accessibility of the organotypic slice preparation to identify the type of spines with which each of these pathways forms synapses, at different developmental stages. Recent reports have shown that morphology of dendritic spines is activity-dependent with large mushroom spines being thought to represent stronger synaptic connections than thin or stubby spines. Although in a wide range of preparations, mushroom spines represent only 15% of spines across the whole dendritic tree, we find that this proportion is highly pathway specific. Thus in organotypic slices, the axons of CA3 neurons form synapses with mushroom spines on CA1 neurons in approximately 50% of cases, whereas this spine type is rare (<10%) in either of the other two pathways. This high proportion of mushroom spines only occurs after spontaneous excitatory activity in the CA1 cells increases over the second week in vitro. Previous studies suggest that pathway specificity also occurs in vivo. In tissue fixed in vivo, it is the synapses of distal apical dendrites thought to be formed by axons originating in the EC that are richer in mushroom spines. Hence, contrary to previous suggestions, the proportion of mushroom spines is clearly not an intrinsic property of the pathway but rather a characteristic dependent on the environment. We suggest that this is most likely a result of the previous activity of the synapses. The fact that, despite the large differences in pathway specificity between preparations, the overall proportion of different spine types remains unchanged, suggests a strong influence of homeostasis across the network.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
41
|
Mateos JM, Lüthi A, Savic N, Stierli B, Streit P, Gähwiler BH, McKinney RA. Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices. J Physiol 2007; 581:129-38. [PMID: 17303644 PMCID: PMC2075211 DOI: 10.1113/jphysiol.2006.120550] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Maintenance of dendritic spines, the postsynaptic elements of most glutamatergic synapses in the central nervous system, requires continued activation of AMPA receptors. In organotypic hippocampal slice cultures, chronic blockade of AMPA receptors for 14 days induces a substantial loss of dendritic spines on CA1 pyramidal neurons. Here, using serial section electron microscopy, we show that loss of dendritic spines is paralleled by a significant reduction in synapse density. In contrast, we observed an increased number of asymmetric synapses onto the dendritic shaft, suggesting that spine retraction does not inevitably lead to synapse elimination. Functional analysis of the remaining synapses revealed that hippocampal circuitry compensates for the anatomical loss of synapses by increasing synaptic efficacy. Moreover, we found that the observed morphological and functional changes were associated with altered bidirectional synaptic plasticity. We conclude that continued activation of AMPA receptors is necessary for maintaining structure and function of central glutamatergic synapses.
Collapse
Affiliation(s)
- José María Mateos
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Astrocytes contribute on both development and function of synapses, but it remains unclear whether direct astrocytic contacts regulate development of individual synapses. Two-photon time-lapse imaging of astrocytic and dendritic protrusive activity revealed the correlation of astrocytic contacts with both lifetime and morphological maturation of dendritic protrusions. Astrocytic motility was essential in maturation of spines, because its suppression by manipulating Rac1-dependent signaling in astrocytes resulted in induction of longer, filopodia-like dendritic protrusions. Manipulation of ephrin/Eph-dependent neuron-astrocyte signaling suggested involvement of this signaling pathway in astrocyte-dependent stabilization of newly generated dendritic protrusions. Our data support a model in which astrocytic protrusive activity in development acts as a key local regulator for stabilization of individual dendritic protrusions and subsequent maturation into spines.
Collapse
Affiliation(s)
- Hideko Nishida
- Department of Cell Biology, School of Medicine, and
- COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shigeo Okabe
- Department of Cell Biology, School of Medicine, and
- COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan, and
- Molecular Neurophysiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| |
Collapse
|
43
|
Sanchez AL, Matthews BJ, Meynard MM, Hu B, Javed S, Cohen Cory S. BDNF increases synapse density in dendrites of developing tectal neurons in vivo. Development 2006; 133:2477-86. [PMID: 16728478 DOI: 10.1242/dev.02409] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal connections are established through a series of developmental events that involve close communication between pre- and postsynaptic neurons. In the visual system, BDNF modulates the development of neuronal connectivity by influencing presynaptic retinal ganglion cell (RGC) axons. Increasing BDNF levels in the optic tectum of Xenopus tadpoles significantly increases both axon arborization and synapse density per axon terminal within a few hours of treatment. Here, we have further explored the mechanisms by which BDNF shapes synaptic connectivity by imaging tectal neurons, the postsynaptic partners of RGCs. Individual neurons were co-labeled with DsRed2 and a GFP-tagged postsynaptic density protein (PSD95-GFP) to visualize dendritic morphology and postsynaptic specializations simultaneously in vivo. Immunoelectron microscopy confirmed that PSD95-GFP predominantly localized to ultrastructurally identified synapses. Time-lapse confocal microscopy of individual, double-labeled neurons revealed a coincident, activity-dependent mechanism of synaptogenesis and axon and dendritic arbor growth, which is differentially modulated by BDNF. Microinjection of BDNF into the optic tectum significantly increased synapse number in tectal neuron dendritic arbors within 24 hours, without significantly influencing arbor morphology. BDNF function-blocking antibodies had opposite effects. The BDNF-elicited increase in synapse number complements the previously observed increase in presynaptic sites on RGC axons. These results, together with the timescale of the response by tectal neurons, suggest that the effects of BDNF on dendritic synaptic connectivity are secondary to its effects on presynaptic RGCs. Thus, BDNF influences synaptic connectivity in multiple ways: it enhances axon arbor complexity expanding the synaptic territory of the axon, while simultaneously coordinating synapse formation and stabilization with individual postsynaptic cells.
Collapse
Affiliation(s)
- Analiza L Sanchez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|