1
|
Schenck S, Laeremans T, Steyaert J, Brunner JD. Structures of native SV2A reveal the binding mode for tetanus neurotoxin and anti-epileptic racetams. Nat Commun 2025; 16:4172. [PMID: 40325068 PMCID: PMC12053756 DOI: 10.1038/s41467-025-59545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
The synaptic vesicle glycoprotein 2A (SV2A) is a synaptic vesicle (SV) resident with homology to the major facilitator superfamily (MFS) and essential in vertebrate neurotransmission. Despite its unclear physiological role, SV2A is of high medical relevance as it is the target of the anti-epileptic drug Levetiracetam (LEV) and a receptor for clostridial neurotoxins (CNTs), among them presumably tetanus neurotoxin (TeNT). To obtain detailed insights about these molecular interactions we subjected native SV2A, purified from brain tissue, to cryo-EM. We discover that TeNT binds SV2A strikingly different from botulinum neurotoxin A and unveil the precise geometry of TeNT binding to dipartite SV2-ganglioside receptors. The structures deliver compelling support for SV2A as the protein receptor for TeNT in central neurons and reinforce the concepts of the dual receptor hypothesis for CNT entry into neurons. Further, our LEV-bound structure of SV2A reveals the drug-interacting residues, delineates a putative substrate pocket in SV2A and provides insights into the SV2-isoform-specificity of LEV. Our work has implications for CNT engineering from a hitherto unrecognized SV2 binding interface and for improved designs of anti-convulsant drugs in epilepsy treatment.
Collapse
Affiliation(s)
- Stephan Schenck
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Toon Laeremans
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Janine D Brunner
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
2
|
Carter AC, Koreman GT, Petrocelli JE, Robb JE, Bushinsky EM, Trowbridge SK, Kingsley DM, Walsh CA, Song JHT, Greenberg ME. FOS binding sites are a hub for the evolution of activity-dependent gene regulatory programs in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646366. [PMID: 40236085 PMCID: PMC11996375 DOI: 10.1101/2025.03.31.646366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
After birth, sensory inputs to neurons trigger the induction of activity-dependent genes (ADGs) that mediate many aspects of neuronal maturation and plasticity. To identify human-specific ADGs, we characterized these genes in human-chimpanzee tetraploid neurons. We identified 235 ADGs that are differentially expressed between human and chimpanzee neurons and found that their nearby regulatory sites are species-biased in their binding of the transcription factor FOS. An assessment of these sites revealed that many are enriched for single nucleotide variants that promote or eliminate FOS binding in human neurons. Disrupting the function of individual species-biased FOS-bound enhancers diminishes expression of nearby genes and affects the firing dynamics of human neurons. Our findings indicate that FOS-bound enhancers are frequent sites of evolution and that they regulate human-specific ADGs that may contribute to the unusually protracted and complex process of postnatal human brain development.
Collapse
|
3
|
Bartholome O, Neirinckx V, De La Brassinne O, Desloovere J, Van Den Ackerveken P, Raedt R, Rogister B. Synaptic Vesicle Glycoprotein 2A Knockout in Parvalbumin and Somatostatin Interneurons Drives Seizures in the Postnatal Mouse Brain. J Neurosci 2025; 45:e1169242024. [PMID: 39753304 PMCID: PMC11841765 DOI: 10.1523/jneurosci.1169-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congenital seizures. How SV2A action impacts the epileptic phenotype remains unclear, especially among the diverse neuronal populations that regulate network excitability. This study explored how brain structure and function are affected by SV2A conditional knock-out (SV2A-cKO) in specific neural cell subtypes. We show that SV2A-cKO in all neurons of the postnatal brain triggers lethal seizures, suggesting that the seizures observed in earlier knock-out models were not due to aberrant brain development. Similar lethal seizures are detected in mice in which the loss of SV2A is limited to GABAergic neurons, whereas loss in excitatory neurons produces no noticeable phenotype. No apparent gender difference was ever observed. Further investigation revealed that SV2A-cKO in different GABAergic interneuron populations induces seizure, with variable timescales and severity. Most notably SV2A-cKO in parvalbumin interneurons (PV+) leads to lethal seizures in young animals, while SV2A-cKO in somatostatin (SST) inhibitory neurons results in seizures that were scarcely observed only in adult mice. These results support the crucial role SV2A plays in PV and SST interneurons and suggest that the action of levetiracetam may be due largely to effects on a subset of GABAergic interneurons.
Collapse
Affiliation(s)
- Odile Bartholome
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Virginie Neirinckx
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Orianne De La Brassinne
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | | | | | - Bernard Rogister
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liège, Liège 4000 Belgium
| |
Collapse
|
4
|
Hogg JA, Cousin MA. Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction. J Neurochem 2025; 169:e16308. [PMID: 39853744 PMCID: PMC11758464 DOI: 10.1111/jnc.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade. In this review we will assess the evidence that the primary role of SV2A is to control the expression and localisation of Syt1 at the presynapse. This will integrate biochemical, cell biological and physiological studies where the interaction, trafficking and functional output of Syt1 is altered by SV2A. The potential for SV2A-dependent epilepsy to be a result of dysfunctional Syt1 expression and localisation is also discussed. Finally, a series of key open questions will be posed that require resolution before a definitive role for SV2A in Syt1 function in health and disease can be confirmed.
Collapse
Affiliation(s)
- James A. Hogg
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| |
Collapse
|
5
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Chang CH, Lim KL, Foo JN. Synaptic Vesicle Glycoprotein 2C: a role in Parkinson's disease. Front Cell Neurosci 2024; 18:1437144. [PMID: 39301216 PMCID: PMC11410587 DOI: 10.3389/fncel.2024.1437144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson's Disease (PD) - a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C's function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights SV2C as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C's role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Small C, Harper C, Jiang A, Kontaxi C, Pronot M, Yak N, Malapaka A, Davenport EC, Wallis TP, Gormal RS, Joensuu M, Martínez-Mármol R, Cousin MA, Meunier FA. SV2A controls the surface nanoclustering and endocytic recruitment of Syt1 during synaptic vesicle recycling. J Neurochem 2024; 168:3188-3208. [PMID: 39091022 DOI: 10.1111/jnc.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
Collapse
Affiliation(s)
- Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Callista Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nyakuoy Yak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Wu PP, Cao BR, Tian FY, Gao ZB. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci Bull 2024; 40:594-608. [PMID: 37897555 PMCID: PMC11127901 DOI: 10.1007/s12264-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023] Open
Abstract
Epilepsy is a common neurological disorder that is primarily treated with antiseizure medications (ASMs). Although dozens of ASMs are available in the clinic, approximately 30% of epileptic patients have medically refractory seizures; other limitations in most traditional ASMs include poor tolerability and drug-drug interactions. Therefore, there is an urgent need to develop alternative ASMs. Levetiracetam (LEV) is a first-line ASM that is well tolerated, has promising efficacy, and has little drug-drug interaction. Although it is widely accepted that LEV acts through a unique therapeutic target synaptic vesicle protein (SV) 2A, the molecular basis of its action remains unknown. Even so, the next-generation SV2A ligands against epilepsy based on the structure of LEV have achieved clinical success. This review highlights the research and development (R&D) process of LEV and its analogs, brivaracetam and padsevonil, to provide ideas and experience for the R&D of novel ASMs.
Collapse
Affiliation(s)
- Peng-Peng Wu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bi-Rong Cao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Yun Tian
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
9
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Diaz-Villegas V, Pichardo-Macías LA, Juárez-Méndez S, Ignacio-Mejía I, Cárdenas-Rodríguez N, Vargas-Hernández MA, Mendoza-Torreblanca JG, Zamudio SR. Changes in the Dentate Gyrus Gene Expression Profile Induced by Levetiracetam Treatment in Rats with Mesial Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:1690. [PMID: 38338984 PMCID: PMC10855401 DOI: 10.3390/ijms25031690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.
Collapse
Affiliation(s)
- Veronica Diaz-Villegas
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | | | - Sergio R. Zamudio
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| |
Collapse
|
11
|
Pertile RAN, Brigden R, Raman V, Cui X, Du Z, Eyles D. Vitamin D: A potent regulator of dopaminergic neuron differentiation and function. J Neurochem 2023; 166:779-789. [PMID: 37084159 DOI: 10.1111/jnc.15829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Vitamin D has been identified as a key factor in dopaminergic neurogenesis and differentiation. Consequently, developmental vitamin D (DVD) deficiency has been linked to disorders of abnormal dopamine signalling with a neurodevelopmental basis such as schizophrenia. Here we provide further evidence of vitamin D's role as a mediator of dopaminergic development by showing that it increases neurite outgrowth, neurite branching, presynaptic protein re-distribution, dopamine production and functional release in various in vitro models of developing dopaminergic cells including SH-SY5Y cells, primary mesencephalic cultures and mesencephalic/striatal explant co-cultures. This study continues to establish vitamin D as an important differentiation agent for developing dopamine neurons, and now for the first time shows chronic exposure to the active vitamin D hormone increases the capacity of developing neurons to release dopamine. This study also has implications for understanding mechanisms behind the link between DVD deficiency and schizophrenia.
Collapse
Affiliation(s)
| | - Rachel Brigden
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Vanshika Raman
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| | - Zilong Du
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
12
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
13
|
Botermans W, Koole M, Van Laere K, Savidge JR, Kemp JA, Sunaert S, Duffy MM, Ramael S, Cesura AM, D’Ostilio K, Gossen D, Madsen TM, Lodeweyckx T, de Hoon J. SDI-118, a novel procognitive SV2A modulator: First-in-human randomized controlled trial including PET/fMRI assessment of target engagement. Front Pharmacol 2023; 13:1066447. [PMID: 36733374 PMCID: PMC9887116 DOI: 10.3389/fphar.2022.1066447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Current treatments for progressive neurodegenerative disorders characterized by cognitive impairment either have limited efficacy or are lacking altogether. SDI-118 is a small molecule which modulates the activity of synaptic vesicle glycoprotein 2A (SV2A) in the brain and shows cognitive enhancing effects in a range of animal models of cognitive deficit. Methods: This first-in-human study evaluated safety, tolerability, and pharmacokinetics/pharmacodynamics of SDI-118 in single ascending oral doses up to 80 mg administered to 32 healthy male subjects. Brain target occupancy was measured in eight subjects using positron emission tomography with PET-ligand [11C]-UCB-J. Food effect was assessed in seven subjects. Mood state was regularly evaluated using standardized questionnaires, and resting state fMRI data were analyzed as exploratory objectives. Key Results: At all doses tested, SDI-118 was well tolerated and appeared safe. Adverse events were mainly dizziness, hypersomnia, and somnolence. All were mild in intensity and increased in frequency with increasing administered dose. No dose-limiting adverse reactions were observed at any dose. SDI-118 displayed a linear pharmacokinetic profile with no significant food effect. Brain penetration and target engagement were demonstrated by a dose-proportional SV2A occupancy. Conclusion: Single oral doses of SDI-118 up to 80 mg were very well tolerated in healthy male subjects. Dose-proportional SV2A occupancy in the brain was demonstrated with brain imaging. Adverse effects in humans mainly occurred in higher dose ranges, with high occupancy levels, and were all mild and self-limiting. These data support further clinical exploration of the compound in patients with cognitive disorders. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05486195.
Collapse
Affiliation(s)
- Wouter Botermans
- Center for Clinical Pharmacology, University Hospital Leuven, Leuven, Belgium,*Correspondence: Wouter Botermans,
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Jonathan R. Savidge
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - John A. Kemp
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - Maeve M. Duffy
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - Steven Ramael
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - Andrea M. Cesura
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | | | | | - Torsten M. Madsen
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven Brain Institute, KU Leuven, Radiology, University Hospital Leuven, Leuven, Belgium
| | - Thomas Lodeweyckx
- Center for Clinical Pharmacology, University Hospital Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Castro PA, Pinto-Borguero I, Yévenes GE, Moraga-Cid G, Fuentealba J. Antiseizure medication in early nervous system development. Ion channels and synaptic proteins as principal targets. Front Pharmacol 2022; 13:948412. [PMID: 36313347 PMCID: PMC9614143 DOI: 10.3389/fphar.2022.948412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The main strategy for the treatment of epilepsy is the use of pharmacological agents known as antiseizure medication (ASM). These drugs control the seizure onset and improves the life expectancy and quality of life of patients. Several ASMs are contraindicated during pregnancy, due to a potential teratogen risk. For this reason, the pharmacological treatments of the pregnant Women with Epilepsy (WWE) need comprehensive analyses to reduce fetal risk during the first trimester of pregnancy. The mechanisms by which ASM are teratogens are still under study and scientists in the field, propose different hypotheses. One of them, which will be addressed in this review, corresponds to the potential alteration of ASM on ion channels and proteins involved in relevant signaling and cellular responses (i.e., migration, differentiation) during embryonic development. The actual information related to the action of ASM and its possible targets it is poorly understood. In this review, we will focus on describing the eventual presence of some ion channels and synaptic proteins of the neurotransmitter signaling pathways present during early neural development, which could potentially interacting as targets of ASM. This information leads to elucidate whether these drugs would have the ability to affect critical signaling during periods of neural development that in turn could explain the fetal malformations observed by the use of ASM during pregnancy.
Collapse
Affiliation(s)
- Patricio A. Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Patricio A. Castro,
| | - Ingrid Pinto-Borguero
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| |
Collapse
|
17
|
Puuvuori E, Rokka J, Carlsson PO, Li Z, Eriksson J, Eriksson O. Potential of [ 11C]UCB-J as a PET tracer for islets of Langerhans. Sci Rep 2021; 11:24466. [PMID: 34963683 PMCID: PMC8714818 DOI: 10.1038/s41598-021-04188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
Biomarkers for the measurement of islets of Langerhans could help elucidate the etiology of diabetes. Synaptic vesicle glycoprotein 2 A (SV2A) is a potential marker reported to be localized in the endocrine pancreas. [11C]UCB-J is a novel positron emission tomography (PET) radiotracer that binds to SV2A and was previously evaluated as a synaptic marker in the central nervous system. Here, we evaluated whether [11C]UCB-J could be utilized as a PET tracer for the islets of Langerhans in the pancreas by targeting SV2A. The mRNA transcription of SV2A was evaluated in human isolated islets of Langerhans and exocrine tissue. In vitro autoradiography was performed on pancreas and brain sections from rats and pigs, and consecutive sections were immunostained for insulin. Sprague-Dawley rats were examined with PET-MRI and ex vivo autoradiography at baseline and with administration of levetiracetam (LEV). Similarly, pigs were examined with dynamic PET-CT over the pancreas and brain after administration of [11C]UCB-J at baseline and after pretreatment with LEV. In vivo radioligand binding was assessed using a one-compartment tissue model. The mRNA expression of SV2A was nearly 7 times higher in endocrine tissue than in exocrine tissue (p < 0.01). In vitro autoradiography displayed focal binding of [11C]UCB-J in the pancreas of rats and pigs, but the binding pattern did not overlap with the insulin-positive areas or with ex vivo autoradiography. In rats, pancreas binding was higher than that in negative control tissues but could not be blocked by LEV. In pigs, the pancreas and brain exhibited accumulation of [11C]UCB-J above the negative control tissue spleen. While brain binding could be blocked by pretreatment with LEV, a similar effect was not observed in the pancreas. Transcription data indicate SV2A to be a valid target for imaging islets of Langerhans, but [11C]UCB-J does not appear to have sufficient sensitivity for this application.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 3rd floor, 75183, Uppsala, Sweden.
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Zhanchun Li
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 3rd floor, 75183, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 3rd floor, 75183, Uppsala, Sweden.
| |
Collapse
|
18
|
Li L, Liu H, Krout M, Richmond JE, Wang Y, Bai J, Weeratunga S, Collins BM, Ventimiglia D, Yu Y, Xia J, Tang J, Liu J, Hu Z. A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release. J Cell Biol 2021; 220:211787. [PMID: 33570571 PMCID: PMC7883739 DOI: 10.1083/jcb.202008121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Yu Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Donovan Ventimiglia
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jingyao Xia
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Tang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Distinct synaptic vesicle recycling in inhibitory nerve terminals is coordinated by SV2A. Prog Neurobiol 2020; 194:101879. [DOI: 10.1016/j.pneurobio.2020.101879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
|
20
|
An Epilepsy-Associated SV2A Mutation Disrupts Synaptotagmin-1 Expression and Activity-Dependent Trafficking. J Neurosci 2020; 40:4586-4595. [PMID: 32341095 DOI: 10.1523/jneurosci.0210-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 01/28/2023] Open
Abstract
The epilepsy-linked gene SV2A, has a number of potential roles in the synaptic vesicle (SV) life cycle. However, how loss of SV2A function translates into presynaptic dysfunction and ultimately seizure activity is still undetermined. In this study, we examined whether the first SV2A mutation identified in human disease (R383Q) could provide information regarding which SV2A-dependent events are critical in the translation to epilepsy. We utilized a molecular replacement strategy in which exogenous SV2A was expressed in mouse neuronal cultures of either sex, which had been depleted of endogenous SV2A to mimic the homozygous human condition. We found that the R383Q mutation resulted in a mislocalization of SV2A from SVs to the plasma membrane, but had no effect on its activity-dependent trafficking. This SV2A mutant displayed reduced mobility when stranded on the plasma membrane and reduced binding to its interaction partner synaptotagmin-1 (Syt1). Furthermore, the R383Q mutant failed to rescue reduced expression and dysfunctional activity-dependent trafficking of Syt1 in the absence of endogenous SV2A. This suggests that the inability to control Syt1 expression and trafficking at the presynapse may be key in the transition from loss of SV2A function to seizure activity.SIGNIFICANCE STATEMENT SV2A is a synaptic vesicle (SV) protein, the absence or dysfunction of which is linked to epilepsy. However, the series of molecular events that result in this neurological disorder is still undetermined. We demonstrate here that the first human mutation in SV2A identified in an individual with epilepsy displays reduced binding to synaptotagmin-1 (Syt1), an SV protein essential for synchronous neurotransmitter release. Furthermore, this mutant cannot correct alterations in both Syt1 expression and trafficking when expressed in the absence of endogenous SV2A (to mimic the homozygous human condition). This suggests that the inability to control Syt1 expression and trafficking may be key in the transition from loss of SV2A function to seizure activity.
Collapse
|
21
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
22
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
23
|
Lee SE, Jeong S, Lee U, Chang S. SGIP1α functions as a selective endocytic adaptor for the internalization of synaptotagmin 1 at synapses. Mol Brain 2019; 12:41. [PMID: 31053155 PMCID: PMC6499997 DOI: 10.1186/s13041-019-0464-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
Proper sorting of exocytosed synaptic vesicle (SV) proteins into individual SVs during endocytosis is of the utmost importance for the fidelity of subsequent neurotransmission. Recent studies suggest that each SV protein is sorted into individual SVs by its own dedicated adaptors as well as by association between SV proteins. The SH3-containing GRB2-like protein 3-interacting protein 1 (SGIP1), an ortholog of Fer/Cip4 homology domain-only (FCHo) proteins, contains a μ-homology domain (μHD) and binds AP-2 and Eps15, thus functioning as an endocytic regulator of clathrin-mediated endocytosis (CME). Its longest isoform SGIP1α is predominantly expressed in the brain but the functional significance of SGIP1 in SV recycling remains unknown. Here, we found that SGIP1α, a brain-specific long isoform of SGIP1 binds synaptotagmin1 (Syt1) via its μHD and promotes the internalization of Syt1 on the neuronal surface. The small hairpin RNA (shRNA)-mediated knockdown (KD) of SGIP1α caused selective impairment of Syt1 internalization at hippocampal synapses and it was fully rescued by coexpression of the shRNA-resistant form of SGIP1α in KD neurons. We further found that the μHD of SGIP1α is structurally similar to those of AP-2 and stonin2, and mutations at Trp771 and Lys781, which correspond to Syt1-recognition motifs of AP-2 and stonin2, to Ala bound less efficiently to Syt1 and failed to rescue the endocytic defect of Syt1 caused by KD. Our results indicate that SGIP1α is an endocytic adaptor dedicated to the retrieval of surface-stranded Syt1. Since endocytic sorting of Syt1 is also mediated by the overlapping activities of synaptic vesicle glycoprotein 2A/B (SV2A/B) and stonin2, our results suggest that complementary fail-safe mechanism by these proteins ensures high fidelity of Syt1 retrieval.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Soomin Jeong
- Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Unghwi Lee
- Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
24
|
Ciruelas K, Marcotulli D, Bajjalieh SM. Synaptic vesicle protein 2: A multi-faceted regulator of secretion. Semin Cell Dev Biol 2019; 95:130-141. [PMID: 30826548 DOI: 10.1016/j.semcdb.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Kristine Ciruelas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Daniele Marcotulli
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
25
|
Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. Neurosci Bull 2018; 34:747-758. [PMID: 29713895 DOI: 10.1007/s12264-018-0230-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Collapse
|
26
|
Talbot CJ, Kubilus JK. Developmental analysis of SV2 in the embryonic chicken corneal epithelium. Exp Eye Res 2018; 172:137-143. [PMID: 29654771 DOI: 10.1016/j.exer.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Intraepithelial corneal nerves (ICNs) help protect the cornea as part of the blink reflex and by modulating tear production. ICNs are also thought to regulate the health and homeostasis of the cornea through the release of trophic factors. Disruption to these nerves can lead to vision loss. Despite their importance little is known about how corneal nerves function and even less is known about how the cornea is initially innervated during its embryonic development. Here, we investigated the innervation of the embryonic chicken cornea. Western blot and immunohistochemistry were used to characterize the localization of the synaptic vesicle marker SV2, a molecule thought to be involved in the release of trophic factors from sensory nerves. The data show that both SV2 and synaptotagmin co-localize to ICNs. Nerves in the conjunctiva also contained SV2 and synaptotagmin, but these were localized to below the basal layers of the conjunctiva epithelium. SV2 isolated from corneal epithelium migrates in western blot at a heavier weight than SV2 isolated from brain, which suggests a role in vesicle targeting, as the deglycosylating enzyme PnGase does not affect corneal SV2.
Collapse
Affiliation(s)
- Christopher J Talbot
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - James K Kubilus
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
27
|
Dunn AR, Hoffman CA, Stout KA, Ozawa M, Dhamsania RK, Miller GW. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res 2017; 1702:85-95. [PMID: 29274878 DOI: 10.1016/j.brainres.2017.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinson's disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.
Collapse
Affiliation(s)
- Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Carlie A Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Minagi Ozawa
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Rohan K Dhamsania
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
28
|
Kaempf N, Maritzen T. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function. Front Cell Neurosci 2017; 11:320. [PMID: 29085282 PMCID: PMC5649181 DOI: 10.3389/fncel.2017.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis.
Collapse
Affiliation(s)
- Natalie Kaempf
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
29
|
Synaptic vesicle 2C and its synaptic-related function. Clin Chim Acta 2017; 472:112-117. [PMID: 28774501 DOI: 10.1016/j.cca.2017.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle 2 C (SV2C) is a novel isoform belonging to the synaptic vesicle 2 (SV2) protein superfamily; a family of proteins known to have roles in vesicle trafficking, exocytosis and neurotransmission. In humans, SV2C is expressed in evolutionarily older brain regions, and is a known receptor for botulinum neurotoxin/A (BoNT/A), controlling glucose-evoked granule recruitment and regulating dopamine release, thus serving as a potential target molecule in the treatment of psychosis. In addition, recent researches have shown that SV2C regulates hypertension and accelerates venous thromboembolism (VTE) and coagulation pathways and may play roles in several non-nervous system diseases. In terms of regulation, SV2C is positively regulated by both alendronate and statins. As SV2C may provide a potential novel therapeutic target for psychosis and other diseases, this article reviews the progress made thus far in understanding the structure, distribution, function and regulation of SV2C.
Collapse
|
30
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
31
|
Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 2017; 114:E2253-E2262. [PMID: 28246328 PMCID: PMC5358362 DOI: 10.1073/pnas.1616892114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis. Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.
Collapse
|
32
|
Gordon SL, Cousin MA. The iTRAPs: Guardians of Synaptic Vesicle Cargo Retrieval During Endocytosis. Front Synaptic Neurosci 2016; 8:1. [PMID: 26903854 PMCID: PMC4746236 DOI: 10.3389/fnsyn.2016.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
The reformation of synaptic vesicles (SVs) during endocytosis is essential for the maintenance of neurotransmission in central nerve terminals. Newly formed SVs must be generated with the correct protein cargo in the correct stoichiometry to be functional for exocytosis. Classical clathrin adaptor protein complexes play a key role in sorting and clustering synaptic vesicle cargo in this regard. However it is becoming increasingly apparent that additional “fail-safe” mechanisms exist to ensure the accurate retrieval of essential cargo molecules. For example, the monomeric adaptor proteins AP180/CALM and stonin-2 are required for the efficient retrieval of synaptobrevin II (sybII) and synaptotagmin-1 respectively. Furthermore, recent studies have revealed that sybII and synaptotagmin-1 interact with other SV cargoes to ensure a high fidelity of retrieval. These cargoes are synaptophysin (for sybII) and SV2A (for synaptotagmin-1). In this review, we summarize current knowledge regarding the retrieval mechanisms for both sybII and synaptotagmin-1 during endocytosis. We also define and set criteria for a new functional group of SV molecules that facilitate the retrieval of their interaction partners. We have termed these molecules intrinsic trafficking partners (iTRAPs) and we discuss how the function of this group impacts on presynaptic performance in both health and disease.
Collapse
Affiliation(s)
- Sarah L Gordon
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| |
Collapse
|
33
|
Phosphorylation of synaptic vesicle protein 2A at Thr84 by casein kinase 1 family kinases controls the specific retrieval of synaptotagmin-1. J Neurosci 2015; 35:2492-507. [PMID: 25673844 DOI: 10.1523/jneurosci.4248-14.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synaptic vesicle protein 2A (SV2A) is a ubiquitous component of synaptic vesicles (SVs). It has roles in both SV trafficking and neurotransmitter release. We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1. We show by crystallographic and other analyses that the phosphorylated Thr84 residue binds to a pocket formed by three conserved Lys residues (Lys314, Lys326, and Lys328) on the surface of the synaptotagmin-1 C2B domain. Finally, we observed dysfunctional synaptotagmin-1 retrieval during SV endocytosis by ablating its phospho-dependent interaction with SV2A, knockdown of SV2A, or rescue with a phosphorylation-null Thr84 SV2A mutant in primary cultures of mouse neurons. This study reveals fundamental details of how phosphorylation of Thr84 on SV2A controls its interaction with synaptotagmin-1 and implicates SV2A as a phospho-dependent chaperone required for the specific retrieval of synaptotagmin-1 during SV endocytosis.
Collapse
|
34
|
Correa-Basurto J, Cuevas-Hernández RI, Phillips-Farfán BV, Martínez-Archundia M, Romo-Mancillas A, Ramírez-Salinas GL, Pérez-González ÓA, Trujillo-Ferrara J, Mendoza-Torreblanca JG. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations. Front Cell Neurosci 2015; 9:125. [PMID: 25914622 PMCID: PMC4392693 DOI: 10.3389/fncel.2015.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 01/21/2023] Open
Abstract
Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression.
Collapse
Affiliation(s)
- José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Roberto I Cuevas-Hernández
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro Mexico
| | - Gema L Ramírez-Salinas
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Óscar A Pérez-González
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - José Trujillo-Ferrara
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Julieta G Mendoza-Torreblanca
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| |
Collapse
|
35
|
Daniels V, Wood M, Leclercq K, Kaminski RM, Gillard M. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays. Br J Pharmacol 2015; 169:1091-101. [PMID: 23530581 DOI: 10.1111/bph.12192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. EXPERIMENTAL APPROACH UCB1244283 was characterized in vitro using radioligand binding assays with [(3)H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. KEY RESULTS Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [(3)H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [(3)H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. CONCLUSIONS AND IMPLICATIONS These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies.
Collapse
Affiliation(s)
- V Daniels
- NewMedicines, CNS Discovery Research, UCB Pharma, Braine-l'Alleud, Belgium
| | | | | | | | | |
Collapse
|
36
|
Vogl C, Tanifuji S, Danis B, Daniels V, Foerch P, Wolff C, Whalley BJ, Mochida S, Stephens GJ. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci 2014; 41:398-409. [PMID: 25484265 DOI: 10.1111/ejn.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/01/2022]
Abstract
Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca(2+) -dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca(2+) responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca(2+) channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A-siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca(2+) current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.
Collapse
|
37
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
38
|
Kammerer RA, Benoit RM. Botulinum neurotoxins: new questions arising from structural biology. Trends Biochem Sci 2014; 39:517-26. [PMID: 25282537 DOI: 10.1016/j.tibs.2014.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic substances known and cause botulism in vertebrates. They have also emerged as effective and powerful reagents for cosmetic and medical applications. One important prerequisite for understanding BoNT function in disease, and the further development of the toxins for cosmetic and medical applications, is a detailed knowledge of BoNT interactions with non-toxic neurotoxin-associated proteins and cell surface receptors. Based on the substantial recent progress in obtaining high-resolution crystal structures of key BoNT complexes, we summarize the major advances in understanding BoNT interactions and discuss the resulting potential implications, in particular those relating to BoNT serotype A.
Collapse
Affiliation(s)
- Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
39
|
Lack of synaptic vesicle protein SV2B protects against amyloid-β25–35-induced oxidative stress, cholinergic deficit and cognitive impairment in mice. Behav Brain Res 2014; 271:277-85. [DOI: 10.1016/j.bbr.2014.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
|
40
|
Medrihan L, Ferrea E, Greco B, Baldelli P, Benfenati F. Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse. Cereb Cortex 2014; 25:3356-68. [PMID: 24962993 PMCID: PMC4585492 DOI: 10.1093/cercor/bhu141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII−/− epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Enrico Ferrea
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Barbara Greco
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
41
|
Boddul SV, Meng J, Dolly JO, Wang J. SNAP-23 and VAMP-3 contribute to the release of IL-6 and TNFα from a human synovial sarcoma cell line. FEBS J 2013; 281:750-65. [DOI: 10.1111/febs.12620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjay V. Boddul
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - Jianghui Meng
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - James Oliver Dolly
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - Jiafu Wang
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| |
Collapse
|
42
|
Harada S, Tanaka S, Takahashi Y, Matsumura H, Shimamoto C, Nakano T, Kuwabara H, Sawabe Y, Nakahari T. Inhibition of Ca(2+)-regulated exocytosis by levetiracetam, a ligand for SV2A, in antral mucous cells of guinea pigs. Eur J Pharmacol 2013; 721:185-92. [PMID: 24076180 DOI: 10.1016/j.ejphar.2013.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Levtiracetam (Lev), an inhibitor of SV2A (synaptic vesicle protein A2), affected the ATP-dependent priming of Ca(2+)-regulated exocytosis in antral mucous cells of guinea pig. In antral mucous cells, the Ca(2+)-regulated exocytosis, which is activated by acetylcholine (ACh), consists of an initial peak that declines rapidly (initial phase) followed by a second slower decline (late phase). Dinitrophenol (DNP), which depletes ATP, inhibits the ATP-dependent priming. DNP abolished the initial phase by reducing the number of primed granules, Lev decreased the frequency of initial phase, but not in the presence of DNP. Moreover, 8-bromoguanosine 3'5'-cyclic monophosphate (8BrcGMP) accelerates the ATP-dependent priming. 8BrcGMP enhances the frequency of initial phase by increasing the number of primed granule. Lev added prior to 8BrcGMP addition decreased the frequency of initial phase, but Lev added after 8BrcGMP addition did not. Thus, Lev affected the granules in the process of priming, but it did not affect the granules already primed. Lev did not affect [Ca(2+)]i in unstimulated or ACh-stimulated antral mucous cells. Immunohistochemistry and western blotting demonstrated that SV2A exists in antral mucous cells. The results suggest that SV2A plays an essential role in maintaining the process of ATP-dependent priming in antral mucous cells. In conclusion, Lev decreases the frequency of Ca(2+)-regulated exocytosis the number of primed granules by inhibiting SV2A functions, leading to a decrease in antral mucous cells.
Collapse
Affiliation(s)
- Saeko Harada
- Nakahari Project of Central Research Laboratory, Osaka Medical College, Takatsuki 569-8686, Japan; Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|
44
|
Levetiracetam has opposite effects on alcohol- and cocaine-related behaviors in C57BL/6J mice. Neuropsychopharmacology 2013; 38:1322-33. [PMID: 23353709 PMCID: PMC3656375 DOI: 10.1038/npp.2013.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antiepileptic drug levetiracetam (LEV) is a potential treatment for alcohol use disorders, yet few preclinical studies exist on its effects in animal models relevant to drug or alcohol abuse. We investigated the effects of LEV on locomotor stimulation following acute and repeated administration of alcohol or cocaine and on alcohol- and cocaine-mediated changes in responding for brain stimulation reward (BSR) in C57BL/6J mice. LEV alone (10.0-100.0 mg/kg intraperitoneally) had no significant effect on locomotor activity or intracranial self-stimulation. Pretreatment with LEV reduced acute locomotor stimulation by 2.0 g/kg alcohol, attenuated the development of locomotor sensitization to alcohol with repeated exposure, and produced a shift in the dose-response curve for alcohol on BSR threshold without affecting maximum operant response rate (MAX). Conversely, LEV pretreatment enhanced both acute locomotor stimulation by 15 mg/kg cocaine and development of locomotor sensitization following repeated exposure and produced a leftward shift in the dose-response curve for cocaine on BSR threshold without affecting MAX. Electrophysiological recordings in vitro showed that LEV reduced excitatory currents in both ventral tegmental area (VTA) dopamine neurons and nucleus accumbens (NAc) medium spiny neurons, consistent with a presynaptic effect. The opposite effects of LEV pretreatment on alcohol- and cocaine-related behaviors may predict its clinical utility in the treatment of patients with alcohol, but not psychostimulant abuse disorders.
Collapse
|
45
|
Kaltwaßer B, Schulenborg T, Beck F, Klotz M, Schäfer KH, Schmitt M, Sickmann A, Friauf E. Developmental changes of the protein repertoire in the rat auditory brainstem: a comparative proteomics approach in the superior olivary complex and the inferior colliculus with DIGE and iTRAQ. J Proteomics 2012. [PMID: 23201114 DOI: 10.1016/j.jprot.2012.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein profiles of developing neural circuits undergo manifold changes. The aim of this proteomic analysis was to quantify postnatal changes in two auditory brainstem areas in a comparative approach. Protein samples from the inferior colliculus (IC) and the superior olivary complex (SOC) were obtained from neonatal (P4) and young adult (P60) rats. The cytosolic fractions of both areas were examined by 2-D DIGE, and the plasma membrane-enriched fraction of the IC was analyzed via iTRAQ. iTRAQ showed a regulation in 34% of the quantified proteins. DIGE revealed 12% regulated spots in both the SOC and IC and, thus, numeric congruency. Although regulation in KEGG pathways displayed a similar pattern in both areas, only 13 of 71 regulated DIGE proteins were regulated in common, implying major area-specific differences. 89% of regulated glycolysis/gluconeogenesis and citrate cycle proteins were up-regulated in the SOC or IC, suggesting a higher energy demand in adulthood. Seventeen cytoskeleton proteins were regulated, consistent with complex morphological reorganization between P4 and P60. Fourteen were uniquely regulated in the SOC, providing further evidence for area-specific differences. Altogether, we provide the first elaborate catalog of proteins involved in auditory brainstem development, several of them possibly of particular developmental relevance.
Collapse
Affiliation(s)
- Bernd Kaltwaßer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rare protein sequence variation in SV2A gene does not affect response to levetiracetam. Epilepsy Res 2012; 101:277-9. [DOI: 10.1016/j.eplepsyres.2012.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/09/2012] [Accepted: 04/07/2012] [Indexed: 11/23/2022]
|
47
|
Hanaya R, Hosoyama H, Sugata S, Tokudome M, Hirano H, Tokimura H, Kurisu K, Serikawa T, Sasa M, Arita K. Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure. Neuroscience 2012; 221:12-20. [DOI: 10.1016/j.neuroscience.2012.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
48
|
Venkatesan K, Alix P, Marquet A, Doupagne M, Niespodziany I, Rogister B, Seutin V. Altered balance between excitatory and inhibitory inputs onto CA1 pyramidal neurons from SV2A-deficient but not SV2B-deficient mice. J Neurosci Res 2012; 90:2317-27. [DOI: 10.1002/jnr.23111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/07/2022]
|
49
|
Higuera-Matas A, Montoya GL, Coria SM, Miguéns M, García-Lecumberri C, Ambrosio E. Differential gene expression in the nucleus accumbens and frontal cortex of lewis and Fischer 344 rats relevant to drug addiction. Curr Neuropharmacol 2011; 9:143-50. [PMID: 21886580 PMCID: PMC3137170 DOI: 10.2174/157015911795017290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse.
Collapse
Affiliation(s)
- A Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, UNED, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Meehan AL, Yang X, McAdams BD, Yuan L, Rothman SM. A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol 2011; 106:1227-39. [PMID: 21653714 PMCID: PMC3174821 DOI: 10.1152/jn.00279.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/03/2011] [Indexed: 11/22/2022] Open
Abstract
Levetiracetam (LEV) is one of the most commonly prescribed antiepileptic drugs, but its mechanism of action is uncertain. Based on prior information that LEV binds to the vesicular protein synaptic vesicle protein 2A and reduces presynaptic neurotransmitter release, we wanted to more rigorously characterize its effect on transmitter release and explain the requirement for a prolonged incubation period for its full effect to manifest. During whole cell patch recordings from rat hippocampal pyramidal neurons in vitro, we found that LEV decreased synaptic currents in a frequency-dependent manner and reduced the readily releasable pool of vesicles. When we manipulated spontaneous activity and stimulation paradigms, we found that synaptic activity during LEV incubation alters the time at which LEV's effect appears, as well as its magnitude. We believe that synaptic activity and concomitant vesicular release allow LEV to enter recycling vesicles to reach its binding site, synaptic vesicle protein 2A. In support of this hypothesis, a vesicular "load-unload" protocol using hypertonic sucrose in the presence of LEV quickly induced LEV's effect. The effect rapidly disappeared after unloading in the absence of LEV. These findings are compatible with LEV acting at an intravesicular binding site to modulate the release of transmitter and with its most marked effect on rapidly discharging neurons. Our results identify a unique neurobiological explanation for LEV's highly selective antiepileptic effect and suggest that synaptic vesicle proteins might be appropriate targets for the development of other neuroactive drugs.
Collapse
Affiliation(s)
- Anna L Meehan
- Department of Neurology, University of Minnesota Medical School, 420 Delaware St., MMC 295, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|