1
|
He ZC, Yu YJ, Wang T, Yin HR, Sun YX, Liu X, Xie XM, Wang HL, Su YA, Li JT, Si TM. Early-life stress of limited bedding/nesting material induced recognition memory loss and decreased hippocampal VGluT1 and nectin3 levels in aged male mice. Pharmacol Biochem Behav 2025; 249:173980. [PMID: 39987993 DOI: 10.1016/j.pbb.2025.173980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Exposure to early-life stress has been found to lead to enduring psychiatric symptoms, including cognitive impairments that persist into adulthood and even old age. In this study, we investigated the behavioral effects and molecular changes of a well-established animal model of early-life stress, the limited bedding and nesting (LBN) model, in aged male mice. After 16 months, stressed mice showed a marked impairment in novel and spatial object recognition tasks, but not in temporal order memory or spatial working memory in the Y-maze spontaneous alternation task. These cognitive deficits were accompanied by a reduction in VGluT1 expression and a lower VGluT1/VGAT ratio in the CA1 region of the hippocampus, as well as reduced nectin3 expression in the mouse hippocampus. No significant molecular alterations were observed in the medial prefrontal cortex. These data support the notion that early-life stress leads to cognitive impairments in aged male mice, and these effects may be associated with a dysregulated excitatory/inhibitory balance and reduced nectin3 levels in the hippocampus.
Collapse
Affiliation(s)
- Ze-Cong He
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ya-Jie Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hui-Rong Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; The First Affiliated Hospital of Xinxiang Medical College, 453100 Xinxiang, Henan, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao-Meng Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
2
|
Yadav SS, Srinivasan K, Sharma SS, Datusalia AK. Decoding the Nectin Interactome: Implications for Brain Development, Plasticity, and Neurological Disorders. ACS Chem Neurosci 2025; 16:1000-1020. [PMID: 40025835 DOI: 10.1021/acschemneuro.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The nectin family of cell adhesion molecules (CAMs) comprising nectins and nectin-like molecules has emerged as a key regulator of various pivotal neural processes, including neuronal development, migration, synapse formation, and plasticity. Nectins engage in homophilic and heterophilic interactions to mediate cell-cell adhesion, contributing to the establishment and maintenance of neural circuits. Their extracellular domains facilitate trans-synaptic interactions, while intracellular domains participate in signaling cascades influencing cytoskeletal dynamics and synaptic function. The exhibition of distinct localization patterns in neurons, astrocytes, and the blood-brain barrier underscores their diverse roles in the brain. The dysregulation of nectins has been implicated in several neurological disorders, such as neurodevelopmental disorders, depression, schizophrenia, and Alzheimer's disease. This review examines the structural and functional characteristics of nectins and their distribution and molecular mechanisms governing neural connectivity and cognition. It further discusses experimental studies unraveling nectin-mediated pathophysiology and potential therapeutic interventions targeting nectin-related pathways. Collectively, this comprehensive analysis highlights the significance of nectins in brain development, function, and disorders, paving the way for future research directions and clinical implications.
Collapse
Affiliation(s)
- Shreyash Santosh Yadav
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| |
Collapse
|
3
|
Maruo T, Mizutani K, Miyata M, Kuriu T, Sakakibara S, Takahashi H, Kida D, Maesaka K, Sugaya T, Sakane A, Sasaki T, Takai Y, Mandai K. s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons. J Biol Chem 2023; 299:103040. [PMID: 36803960 PMCID: PMC10040811 DOI: 10.1016/j.jbc.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiko Kuriu
- Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hatena Takahashi
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Daichi Kida
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Kouki Maesaka
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kenji Mandai
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
4
|
Peppercorn K, Kleffmann T, Jones O, Hughes S, Tate W. Secreted Amyloid Precursor Protein Alpha, a Neuroprotective Protein in the Brain Has Widespread Effects on the Transcriptome and Proteome of Human Inducible Pluripotent Stem Cell-Derived Glutamatergic Neurons Related to Memory Mechanisms. Front Neurosci 2022; 16:858524. [PMID: 35692428 PMCID: PMC9179159 DOI: 10.3389/fnins.2022.858524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Secreted amyloid precursor protein alpha (sAPPα) processed from a parent human brain protein, APP, can modulate learning and memory. It has potential for development as a therapy preventing, delaying, or even reversing Alzheimer’s disease. In this study a comprehensive analysis to understand how it affects the transcriptome and proteome of the human neuron was undertaken. Human inducible pluripotent stem cell (iPSC)-derived glutamatergic neurons in culture were exposed to 1 nM sAPPα over a time course and changes in the transcriptome and proteome were identified with RNA sequencing and Sequential Window Acquisition of All THeoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS), respectively. A large subset (∼30%) of differentially expressed transcripts and proteins were functionally involved with the molecular biology of learning and memory, consistent with reported links of sAPPα to memory enhancement, as well as neurogenic, neurotrophic, and neuroprotective phenotypes in previous studies. Differentially regulated proteins included those encoded in previously identified Alzheimer’s risk genes, APP processing related proteins, proteins involved in synaptogenesis, neurotransmitters, receptors, synaptic vesicle proteins, cytoskeletal proteins, proteins involved in protein and organelle trafficking, and proteins important for cell signalling, transcriptional splicing, and functions of the proteasome and lysosome. We have identified a complex set of genes affected by sAPPα, which may aid further investigation into the mechanism of how this neuroprotective protein affects memory formation and how it might be used as an Alzheimer’s disease therapy.
Collapse
Affiliation(s)
- Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Owen Jones
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Stephanie Hughes
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- *Correspondence: Warren Tate,
| |
Collapse
|
5
|
Disrupted presynaptic nectin1-based neuronal adhesion in the entorhinal-hippocampal circuit contributes to early-life stress-induced memory deficits. Transl Psychiatry 2022; 12:141. [PMID: 35379771 PMCID: PMC8980071 DOI: 10.1038/s41398-022-01908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule nectin3 and its presynaptic partner nectin1 have been linked to early-life stress-related cognitive disorders, but how the nectin1-nectin3 system contributes to stress-induced neuronal, circuit, and cognitive abnormalities remains to be studied. Here we show that in neonatally stressed male mice, temporal order and spatial working memories, which require the medial entorhinal cortex (MEC)-CA1 pathway, as well as the structural integrity of CA1 pyramidal neurons were markedly impaired in adulthood. These cognitive and structural abnormalities in stressed mice were associated with decreased nectin levels in entorhinal and hippocampal subregions, especially reduced nectin1 level in the MEC and nectin3 level in the CA1. Postnatal suppression of nectin1 but not nectin3 level in the MEC impaired spatial memory, whereas conditional inactivation of nectin1 from MEC excitatory neurons reproduced the adverse effects of early-life stress on MEC-dependent memories and neuronal plasticity in CA1. Our data suggest that early-life stress disrupts presynaptic nectin1-mediated interneuronal adhesion in the MEC-CA1 pathway, which may in turn contribute to stress-induced synaptic and cognitive deficits.
Collapse
|
6
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
7
|
Nectins and Nectin-like molecules in synapse formation and involvement in neurological diseases. Mol Cell Neurosci 2021; 115:103653. [PMID: 34242750 DOI: 10.1016/j.mcn.2021.103653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/11/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Synapses are interneuronal junctions which form neuronal networks and play roles in a variety of functions, including learning and memory. Two types of junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAJs), have been identified. SJs are found at all excitatory and inhibitory synapses whereas PAJs are found at excitatory synapses, but not inhibitory synapses, and particularly well developed at hippocampal mossy fiber giant excitatory synapses. Both SJs and PAJs are mediated by cell adhesion molecules (CAMs). Major CAMs at SJs are neuroligins-neurexins and Nectin-like molecules (Necls)/CADMs/SynCAMs whereas those at PAJs are nectins and cadherins. In addition to synaptic PAJs, extrasynaptic PAJs have been identified at contact sites between neighboring dendrites near synapses and regulate synapse formation. In addition to SJs and PAJs, a new type of cell adhesion apparatus different from these junctional apparatuses has been identified and named nectin/Necl spots. One nectin spot at contact sites between neighboring dendrites at extrasynaptic regions near synapses regulates synapse formation. Several members of nectins and Necls had been identified as viral receptors before finding their physiological functions as CAMs and evidence is accumulating that many nectins and Necls are related to onset and progression of neurological diseases. We review here nectin and Necls in synapse formation and involvement in neurological diseases.
Collapse
|
8
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
9
|
Tomorsky J, Parker PRL, Doe CQ, Niell CM. Precise levels of nectin-3 are required for proper synapse formation in postnatal visual cortex. Neural Dev 2020; 15:13. [PMID: 33160402 PMCID: PMC7648993 DOI: 10.1186/s13064-020-00150-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.
Collapse
Affiliation(s)
- Johanna Tomorsky
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
- Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
| | - Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
10
|
Shiotani H, Miyata M, Kameyama T, Mandai K, Yamasaki M, Watanabe M, Mizutani K, Takai Y. Nectin‐2α is localized at cholinergic neuron dendrites and regulates synapse formation in the medial habenula. J Comp Neurol 2020; 529:450-477. [DOI: 10.1002/cne.24958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
- Department of Molecular and Cellular Neurobiology Kitasato University Graduate School of Medical Sciences Sagamihara Japan
- Department of Biochemistry Kitasato University School of Medicine Sagamihara Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine Hokkaido University Sapporo Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine Hokkaido University Sapporo Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
11
|
Wang HL, Li JT, Wang H, Sun YX, Liu R, Wang XD, Su YA, Si TM. Prefrontal Nectin3 Reduction Mediates Adolescent Stress-Induced Deficits of Social Memory, Spatial Working Memory, and Dendritic Structure in Mice. Neurosci Bull 2020; 36:860-874. [PMID: 32385776 PMCID: PMC7410914 DOI: 10.1007/s12264-020-00499-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic stress may disrupt the normal neurodevelopmental trajectory of the adolescent brain (especially the prefrontal cortex) and contribute to the pathophysiology of stress-related mental illnesses, but the underlying molecular mechanisms remain unclear. Here, we investigated how synaptic cell adhesion molecules (e.g., nectin3) are involved in the effects of adolescent chronic stress on mouse medial prefrontal cortex (mPFC). Male C57BL/6N mice were subjected to chronic social instability stress from postnatal days 29 to 77. One week later, the mice exposed to chronic stress exhibited impaired social recognition and spatial working memory, simplified dendritic structure, and reduced spine density in the mPFC. Membrane localization of nectin3 was also altered, and was significantly correlated with behavioral performance. Furthermore, knocking down mPFC nectin3 expression by adeno-associated virus in adolescent mice reproduced the stress-induced changes in behavior and mPFC morphology. These results support the hypothesis that nectin3 is a potential mediator of the effects of adolescent chronic stress on prefrontal structural and functional abnormalities.
Collapse
Affiliation(s)
- Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.,The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Rui Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
12
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
13
|
Baba N, Wang F, Iizuka M, Shen Y, Yamashita T, Takaishi K, Tsuru E, Matsushima S, Miyamura M, Fujieda M, Tsuda M, Sagara Y, Maeda N. Induction of regional chemokine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemia-reperfusion brain injury model. PLoS One 2019; 14:e0221111. [PMID: 31483787 PMCID: PMC6726228 DOI: 10.1371/journal.pone.0221111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerative medicine using umbilical cord blood (UCB) cells shows promise for the treatment of cerebral palsy. Although the efficacy of this therapy has been seen in the clinic, the mechanisms by which UCB cells interact and aid in the improvement of symptoms are not clear. We explored the chemokine expression profile in damaged brain tissue in the neonatal mouse ischemia-reperfusion (IR) brain injury model that was infused with human UCB (hUCB) cells. IR brain injury was induced in 9-day-old NOD/SCID mice. hUCB cells were administered 3 weeks post brain injury. Chemokine expression profiles in the brain extract were determined at various time points. Inflammatory chemokines such as CCL1, CCL17, and CXCL12 were transiently upregulated by 24 hours post brain injury. Upregulation of other chemokines, including CCL5, CCL9, and CXCL1 were prolonged up to 3 weeks post brain injury, but most chemokines dissipated over time. There were marked increases in levels of CCL2, CCL12, CCL20, and CX3CL1 in response to hUCB cell treatment, which might be related to the new recruitment and differentiation of neural stem cells, leading to the induction of tissue regeneration. We propose that the chemokine expression profile in the brain shifted from responding to tissue damage to inducing tissue regeneration. hUCB cell administration further enhanced the production of chemokines, and chemokine networks may play an active role in tissue regeneration in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Nobuyasu Baba
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- * E-mail:
| | - Feifei Wang
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Michiro Iizuka
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Yuan Shen
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuyuki Yamashita
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kimiko Takaishi
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Emi Tsuru
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Sachio Matsushima
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masayuki Tsuda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Yusuke Sagara
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nagamasa Maeda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
14
|
Liu R, Wang H, Wang HL, Sun YX, Su YA, Wang XD, Li JT, Si TM. Postnatal nectin-3 knockdown induces structural abnormalities of hippocampal principal neurons and memory deficits in adult mice. Hippocampus 2019; 29:1063-1074. [PMID: 31066147 PMCID: PMC6850426 DOI: 10.1002/hipo.23098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
The early postnatal stage is a critical period of hippocampal neurodevelopment and also a period of high vulnerability to adverse life experiences. Recent evidence suggests that nectin-3, a cell adhesion molecule, mediates memory dysfunction and dendritic alterations in the adult hippocampus induced by postnatal stress. But it is unknown whether postnatal nectin-3 reduction alone is sufficient to alter hippocampal structure and function in adulthood. Here, we down regulated hippocampal expression of nectin-3 and its heterophilic adhesion partner nectin-1, respectively, from early postnatal stage by injecting adeno-associated virus (AAV) into the cerebral lateral ventricles of neonatal mice (postnatal day 2). We found that suppression of nectin-3, but not nectin-1, expression from the early postnatal stage impaired hippocampus-dependent novel object recognition and spatial object recognition in adult mice. Moreover, AAV-mediated nectin-3 knockdown significantly reduced dendritic complexity and spine density of pyramidal neurons throughout the hippocampus, whereas nectin-1 knockdown only induced the loss of stubby spines in CA3. Our data provide direct evidence that nectins, especially nectin-3, are necessary for postnatal hippocampal development of memory functions and structural integrity.
Collapse
Affiliation(s)
- Rui Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|
15
|
Li Y, Zhang L, Wang C, Tang X, Chen Y, Wang X, Su L, Hu N, Xie K, Yu Y, Wang G. Sevoflurane-induced learning deficits and spine loss via nectin-1/corticotrophin-releasing hormone receptor type 1 signaling. Brain Res 2018; 1710:188-198. [PMID: 30529655 DOI: 10.1016/j.brainres.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
In recent years, the neurotoxicity of general anesthetics in the developing brain has been studied and raised great concern as a major health issue to the public and physicians. Sevoflurane inhalation may induce neurotoxicity expressed as memory and learning impairment in young animals. In the current study, we investigated the role of nectin-1 and corticotrophin-releasing hormone receptor type 1 (CRHR1) in sevoflurane-induced learning deficits and dendritic spines loss in neonatal mice. Neonatal mice (P7) were treated with 3% sevoflurane with 60% O2 or 60% O2 for 6 h. Cognitive function was evaluated by Y Maze, Object recognition test, and Morris Water Maze. Hippocampal nectin-1 and L-afadin expression assessed using western blot analysis. The dendritic spines morphology of the hippocampus was determined using Golgi impregnation on 7 d and 2 months old. Sevoflurane exposed to neonatal mice decreased hippocampal nectin-1 levels from 1 h to 2 months after sevoflurane inhalation and attenuated working and spatial memory and spinal number in adulthood, which could be reversed by nectin-1 overexpression and CRHR1 antagonist Antalarmin. Nectin-1 knockdown caused spatial learning deficits and dendritic spine loss and lower L-afadin protein expression. Sevoflurane-induced nectin-1 and L-afadin expression decrease was mediated by CRHR1 signaling in the hippocampus. This information can be used to develop targeted intervention aimed at decreasing the neurotoxicity of sevoflurane inhalation.
Collapse
Affiliation(s)
- Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Xiaohong Tang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Xin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Lin Su
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Nan Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
16
|
He Z, Guo Q, Yang Y, Wang L, Zhang S, Yuan W, Li L, Zhang J, Hou W, Yang J, Jia R, Tai F. Pre-weaning paternal deprivation impairs social recognition and alters hippocampal neurogenesis and spine density in adult mandarin voles. Neurobiol Learn Mem 2018; 155:452-462. [DOI: 10.1016/j.nlm.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
|
17
|
Maruo T, Sakakibara S, Miyata M, Itoh Y, Kurita S, Mandai K, Sasaki T, Takai Y. Involvement of l-afadin, but not s-afadin, in the formation of puncta adherentia junctions of hippocampal synapses. Mol Cell Neurosci 2018; 92:40-49. [PMID: 29969655 DOI: 10.1016/j.mcn.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Souichi Kurita
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
18
|
Shiotani H, Miyata M, Itoh Y, Wang S, Kaito A, Mizoguchi A, Yamasaki M, Watanabe M, Mandai K, Mochizuki H, Takai Y. Localization of nectin-2α at the boundary between the adjacent somata of the clustered cholinergic neurons and its regulatory role in the subcellular localization of the voltage-gated A-type K+channel Kv4.2 in the medial habenula. J Comp Neurol 2018. [DOI: 10.1002/cne.24425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Osaka 565-0871 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine; Hokkaido University; Sapporo Hokkaido 060-8638 Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine; Hokkaido University; Sapporo Hokkaido 060-8638 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Hideki Mochizuki
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Osaka 565-0871 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
19
|
Gong Q, Su YA, Wu C, Si TM, Deussing JM, Schmidt MV, Wang XD. Chronic Stress Reduces Nectin-1 mRNA Levels and Disrupts Dendritic Spine Plasticity in the Adult Mouse Perirhinal Cortex. Front Cell Neurosci 2018; 12:67. [PMID: 29593501 PMCID: PMC5859075 DOI: 10.3389/fncel.2018.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/28/2022] Open
Abstract
In adulthood, chronic exposure to stressful experiences disrupts synaptic plasticity and cognitive function. Previous studies have shown that perirhinal cortex-dependent object recognition memory is impaired by chronic stress. However, the stress effects on molecular expression and structural plasticity in the perirhinal cortex remain unclear. In this study, we applied the chronic social defeat stress (CSDS) paradigm and measured the mRNA levels of nectin-1, nectin-3 and neurexin-1, three synaptic cell adhesion molecules (CAMs) implicated in the adverse stress effects, in the perirhinal cortex of wild-type (WT) and conditional forebrain corticotropin-releasing hormone receptor 1 conditional knockout (CRHR1-CKO) mice. Chronic stress reduced perirhinal nectin-1 mRNA levels in WT but not CRHR1-CKO mice. In conditional forebrain corticotropin-releasing hormone conditional overexpression (CRH-COE) mice, perirhinal nectin-1 mRNA levels were also reduced, indicating that chronic stress modulates nectin-1 expression through the CRH-CRHR1 system. Moreover, chronic stress altered dendritic spine morphology in the main apical dendrites and reduced spine density in the oblique apical dendrites of perirhinal layer V pyramidal neurons. Our data suggest that chronic stress disrupts cell adhesion and dendritic spine plasticity in perirhinal neurons, which may contribute to stress-induced impairments of perirhinal cortex-dependent memory.
Collapse
Affiliation(s)
- Qian Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Chen Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry (MPG), Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry (MPG), Munich, Germany
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Transl Psychiatry 2017; 7:e1228. [PMID: 28872640 PMCID: PMC5639241 DOI: 10.1038/tp.2017.196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Nectin-3, a cell adhesion molecule enriched in hippocampal neurons, has been implicated in stress-related cognitive disorders. Nectin-3 is expressed by granule cells in the dentate gyrus (DG), but it remains unclear whether nectin-3 in DG modulates the structural plasticity of dentate granule cells and hippocampus-dependent memory. In this study, we found that DG nectin-3 expression levels were developmentally regulated and reduced by early postnatal stress exposure in adult mice. Most importantly, knockdown of nectin-3 levels in all DG neuron populations by adeno-associated virus (AAV) mimicked the cognitive effects of early-life stress, and impaired long-term spatial memory and temporal order memory. Moreover, AAV-mediated DG nectin-3 knockdown increased the density of doublecortin-immunoreactive differentiating cells under proliferation and calretinin-immunoreactive immature neurons, but markedly decreased calbindin immunoreactivity, indicating that nectin-3 modulates the differentiation and maturation of adult-born DG granule cells. Using retrovirus to target newly generated DG neurons, we found that selective nectin-3 knockdown in new DG neurons also impaired long-term spatial memory. In addition, suppressing nectin-3 expression in new DG neurons evoked a reduction of dendritic spines, especially thin spines. Our data indicate that nectin-3 expressed in DG neurons may modulate adult neurogenesis, dendritic spine plasticity and the cognitive effects of early-life stress.
Collapse
|
21
|
Maruo T, Mandai K, Miyata M, Sakakibara S, Wang S, Sai K, Itoh Y, Kaito A, Fujiwara T, Mizoguchi A, Takai Y. NGL-3-induced presynaptic differentiation of hippocampal neurons in an afadin-dependent, nectin-1-independent manner. Genes Cells 2017; 22:742-755. [DOI: 10.1111/gtc.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| |
Collapse
|
22
|
Geng X, Maruo T, Mandai K, Supriyanto I, Miyata M, Sakakibara S, Mizoguchi A, Takai Y, Mori M. Roles of afadin in functional differentiations of hippocampal mossy fiber synapse. Genes Cells 2017. [DOI: 10.1111/gtc.12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqi Geng
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| | - Tomohiko Maruo
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Kenji Mandai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Irwan Supriyanto
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Akira Mizoguchi
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Masahiro Mori
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
23
|
Sai K, Wang S, Kaito A, Fujiwara T, Maruo T, Itoh Y, Miyata M, Sakakibara S, Miyazaki N, Murata K, Yamaguchi Y, Haruta T, Nishioka H, Motojima Y, Komura M, Kimura K, Mandai K, Takai Y, Mizoguchi A. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses. J Comp Neurol 2017; 525:2719-2734. [PMID: 28498492 DOI: 10.1002/cne.24238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure in which mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions (PAJs) and wrap around a multiply-branched spine, forming synaptic junctions. Here, we electron microscopically analyzed the ultrastructure of this synapse in afadin-deficient mice. Transmission electron microscopy analysis revealed that typical PAJs with prominent symmetrical plasma membrane darkening undercoated with the thick filamentous cytoskeleton were observed in the control synapse, whereas in the afadin-deficient synapse, atypical PAJs with the symmetrical plasma membrane darkening, which was much less in thickness and darkness than those of the control typical PAJs, were observed. Immunoelectron microscopy analysis revealed that nectin-1, nectin-3, and N-cadherin were localized at the control typical PAJs, whereas nectin-1 and nectin-3 were localized at the afadin-deficient atypical PAJs to extents lower than those in the control synapse and N-cadherin was localized at their nonjunctional flanking regions. These results indicate that the atypical PAJs are formed by nectin-1 and nectin-3 independently of afadin and N-cadherin and that the typical PAJs are formed by afadin and N-cadherin cooperatively with nectin-1 and nectin-3. Serial block face-scanning electron microscopy analysis revealed that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities, and the density of synaptic vesicles docked to active zones were decreased in the afadin-deficient synapse. These results indicate that afadin plays multiple roles in the complex ultrastructural morphogenesis of hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Kousyoku Sai
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takeshi Fujiwara
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| | - Tomohiko Maruo
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Yu Itoh
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yuuki Yamaguchi
- SM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Tomohiro Haruta
- EM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Hideo Nishioka
- EM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Yuki Motojima
- Scientific Solutions Department, Olympus Corp., Tokyo, 163-0914, Japan
| | - Miyuki Komura
- Scientific Solutions Department, Olympus Corp., Tokyo, 163-0914, Japan
| | - Kazushi Kimura
- Faculty of Human Science, Department of Physical Therapy, Hokkaido Bunkyo University, Eniwa, Hokkaido, 061-1449, Japan
| | - Kenji Mandai
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Yoshimi Takai
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
24
|
Shiotani H, Maruo T, Sakakibara S, Miyata M, Mandai K, Mochizuki H, Takai Y. Aging-dependent expression of synapse-related proteins in the mouse brain. Genes Cells 2017; 22:472-484. [DOI: 10.1111/gtc.12489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- Department of Neurology; Osaka University Graduate School of Medicine; Suita 565-0871 Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Hideki Mochizuki
- Department of Neurology; Osaka University Graduate School of Medicine; Suita 565-0871 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| |
Collapse
|
25
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
26
|
Minami A, Saito M, Mamada S, Ieno D, Hikita T, Takahashi T, Otsubo T, Ikeda K, Suzuki T. Role of Sialidase in Long-Term Potentiation at Mossy Fiber-CA3 Synapses and Hippocampus-Dependent Spatial Memory. PLoS One 2016; 11:e0165257. [PMID: 27783694 PMCID: PMC5081204 DOI: 10.1371/journal.pone.0165257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
Sialic acid bound to glycans in glycolipids and glycoproteins is essential for synaptic plasticity and memory. Sialidase (EC 3.2.1.18), which has 4 isozymes including Neu1, Neu2, Neu3 and Neu4, regulates the sialylation level of glycans by removing sialic acid from sialylglycoconjugate. In the present study, we investigated the distribution of sialidase activity in rat hippocampus and the role of sialidase in hippocampal memory processing. We previously developed a highly sensitive histochemical imaging probe for sialidase activity, BTP3-Neu5Ac. BTP3-Neu5Ac was cleaved efficiently by rat Neu2 and Neu4 at pH 7.3 and by Neu1 and Neu3 at pH 4.6. When a rat hippocampal acute slice was stained with BTP3-Neu5Ac at pH 7.3, mossy fiber terminal fields showed relatively intense sialidase activity. Thus, the role of sialidase in the synaptic plasticity was investigated at mossy fiber terminal fields. The long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses was impaired by 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), a sialidase inhibitor. DANA also failed to decrease paired-pulse facilitation after LTP induction. We also investigated the role of sialidase in hippocampus-dependent spatial memory by using the Morris water maze. The escape latency time to reach the platform was prolonged by DANA injection into the hippocampal CA3 region or by knockdown of Neu4 without affecting motility. The results show that the regulation of sialyl signaling by Neu4 is involved in hippocampal memory processing.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Masakazu Saito
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Shou Mamada
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Daisuke Ieno
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Tomoya Hikita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure-shi, Hiroshima 737–0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure-shi, Hiroshima 737–0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
27
|
Togashi H. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia. Front Cell Dev Biol 2016; 4:104. [PMID: 27695692 PMCID: PMC5023662 DOI: 10.3389/fcell.2016.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine Kobe, Japan
| |
Collapse
|
28
|
Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, Komori T, Shimono Y, Takai Y. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem 2016; 291:5817-5831. [PMID: 26757815 PMCID: PMC4786717 DOI: 10.1074/jbc.m115.685917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.
Collapse
Affiliation(s)
- Midori Kitayama
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and; Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Masahiro Maruoka
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Kenji Mandai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Shotaro Sakakibara
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Yuki Ueda
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and.
| |
Collapse
|
29
|
Okuyama H, Kondo J, Sato Y, Endo H, Nakajima A, Piulats JM, Tomita Y, Fujiwara T, Itoh Y, Mizoguchi A, Ohue M, Inoue M. Dynamic Change of Polarity in Primary Cultured Spheroids of Human Colorectal Adenocarcinoma and Its Role in Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:899-911. [PMID: 26878211 DOI: 10.1016/j.ajpath.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells possess apical-basal polarity, which governs the exchange of nutrients and waste. Perturbation of cell polarity appears to be a general feature of cancers, although most colorectal cancers are differentiated adenocarcinomas, in which polarity is maintained to some extent. Little is known about the role of dysregulated polarity in cancer. The cancer tissue-originated spheroid method was applied to the preparation and culture of spheroids. Spheroids were cultured in suspension or in type I collagen gel. Polarity was assessed by IHC of apical markers and electron microscopy. Two types of polarity status in spheroids were observed: apical-in, with apical membrane located at cavities inside the spheroids in type I collagen gel; and apical-out, with apical membrane located at the outermost layer of spheroids in suspension. These polarities were highly interchangeable. Inhibitors of Src and dynamin attenuated the polarity switch. In patients, clusters of cancer cells that invaded vessels had both apical-in and apical-out morphologic features, whereas primary and metastatic tumors had apical-in features. In a mouse liver metastasis model, apical-out spheroids injected into the portal vein became apical-in spheroids in the liver within a few days. Inhibitors of Src and dynamin significantly decreased liver metastasis. Polarity switching was observed in spheroids and human cancer. The polarity switch was critical in an experimental liver metastasis model.
Collapse
Affiliation(s)
- Hiroaki Okuyama
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jumpei Kondo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yumi Sato
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiroko Endo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jose M Piulats
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasuhiko Tomita
- Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Fujiwara
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Yu Itoh
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Akira Mizoguchi
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan.
| |
Collapse
|
30
|
Geng X, Mandai K, Maruo T, Wang S, Fujiwara T, Mizoguchi A, Takai Y, Mori M. Regulatory role of the cell adhesion molecule nectin-1 in GABAergic inhibitory synaptic transmission in the CA3 region of mouse hippocampus. Genes Cells 2015; 21:88-98. [DOI: 10.1111/gtc.12322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoqi Geng
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- Division of Neurophysiology; Department of Cellular Physiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| | - Kenji Mandai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Tomohiko Maruo
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Shujie Wang
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Takeshi Fujiwara
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Masahiro Mori
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- Division of Neurophysiology; Department of Cellular Physiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
31
|
Inoue T, Fujiwara T, Rikitake Y, Maruo T, Mandai K, Kimura K, Kayahara T, Wang S, Itoh Y, Sai K, Mori M, Mori K, Mizoguchi A, Takai Y. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. J Comp Neurol 2015; 523:1824-39. [DOI: 10.1002/cne.23762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Takahito Inoue
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Tomohiko Maruo
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kenji Mandai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kazushi Kimura
- Department of Physical Therapy; Faculty of Human Science; Hokkaido Bunkyo University; Eniwa Hokkaido 061-1449 Japan
| | - Tetsuro Kayahara
- Department of Medical Rehabilitation; Faculty of Rehabilitation; Kobe Gakuin University; Kobe Hyogo 651-2180 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency; Kobe Japan
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
| | - Kensaku Mori
- Department of Physiology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| |
Collapse
|
32
|
Mandai K, Rikitake Y, Mori M, Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015; 112:197-231. [PMID: 25733141 DOI: 10.1016/bs.ctdb.2014.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nectins and nectin-like molecules (Necls)/Cadms are Ca(2+)-independent immunoglobulin superfamily cell adhesion molecules, expressed in most cell types. Nectins mediate not only homotypic but also heterotypic cell-cell adhesion, in contrast to classic cadherins which participate only in homophilic adhesion. Nectins and Necls function in organogenesis of the eye, inner ear, tooth, and cerebral cortex and in a variety of developmental processes including spermatogenesis, axon guidance, synapse formation, and myelination. They are also involved in various diseases, such as viral infection, hereditary ectodermal dysplasia, Alzheimer's disease, autism spectrum disorder, and cancer. Thus, nectins and Necls are crucial for both physiology and pathology. This review summarizes recent advances in research on these cell adhesion molecules in development and pathogenesis.
Collapse
Affiliation(s)
- Kenji Mandai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan
| | - Yoshiyuki Rikitake
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Neurophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan.
| |
Collapse
|
33
|
Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014; 45:111. [PMID: 25359626 PMCID: PMC4252008 DOI: 10.1186/s13567-014-0111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Sylvia van Drunen Littel-van den Hurk
- Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| |
Collapse
|
34
|
van der Kooij MA, Fantin M, Rejmak E, Grosse J, Zanoletti O, Fournier C, Ganguly K, Kalita K, Kaczmarek L, Sandi C. Role for MMP-9 in stress-induced downregulation of nectin-3 in hippocampal CA1 and associated behavioural alterations. Nat Commun 2014; 5:4995. [PMID: 25232752 PMCID: PMC4199199 DOI: 10.1038/ncomms5995] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023] Open
Abstract
Chronic stress is a risk factor for the development of psychopathologies characterized by cognitive dysfunction and deregulated social behaviours. Emerging evidence suggests a role for cell adhesion molecules, including nectin-3, in the mechanisms that underlie the behavioural effects of stress. We tested the hypothesis that proteolytic processing of nectins by matrix metalloproteinases (MMPs), an enzyme family that degrades numerous substrates, including cell adhesion molecules, is involved in hippocampal effects induced by chronic restraint stress. A reduction in nectin-3 in the perisynaptic CA1, but not in the CA3, compartment is observed following chronic stress and is implicated in the effects of stress in social exploration, social recognition and a CA1-dependent cognitive task. Increased MMP-9-related gelatinase activity, involving N-methyl-D-aspartate receptor, is specifically found in the CA1 and involved in nectin-3 cleavage and chronic stress-induced social and cognitive alterations. Thus, MMP-9 proteolytic processing emerges as an important mediator of stress effects in brain function and behaviour.
Collapse
Affiliation(s)
- Michael A. van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Emilia Rejmak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street 02-093 Warsaw, Poland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Celine Fournier
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Krishnendu Ganguly
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street 02-093 Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street 02-093 Warsaw, Poland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
35
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
36
|
Belvindrah R, Nosten-Bertrand M, Francis F. Neuronal migration and its disorders affecting the CA3 region. Front Cell Neurosci 2014; 8:63. [PMID: 24624057 PMCID: PMC3941003 DOI: 10.3389/fncel.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Richard Belvindrah
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Marika Nosten-Bertrand
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
37
|
Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, Mori M, Takai Y. Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS One 2014; 9:e89763. [PMID: 24587018 PMCID: PMC3937348 DOI: 10.1371/journal.pone.0089763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 01/25/2014] [Indexed: 12/31/2022] Open
Abstract
The formation and remodeling of mossy fiber-CA3 pyramidal cell synapses in the stratum lucidum of the hippocampus are implicated in the cellular basis of learning and memory. Afadin and its binding cell adhesion molecules, nectin-1 and nectin-3, together with N-cadherin, are concentrated at puncta adherentia junctions (PAJs) in these synapses. Here, we investigated the roles of afadin in PAJ formation and presynaptic differentiation in mossy fiber-CA3 pyramidal cell synapses. At these synapses in the mice in which the afadin gene was conditionally inactivated before synaptogenesis by using nestin-Cre mice, the immunofluorescence signals for the PAJ components, nectin-1, nectin-3 and N-cadherin, disappeared almost completely, while those for the presynaptic components, VGLUT1 and bassoon, were markedly decreased. In addition, these signals were significantly decreased in cultured afadin-deficient hippocampal neurons. Furthermore, the interevent interval of miniature excitatory postsynaptic currents was prolonged in the cultured afadin-deficient hippocampal neurons compared with control neurons, indicating that presynaptic functions were suppressed or a number of synapse was reduced in the afadin-deficient neurons. Analyses of presynaptic vesicle recycling and paired recordings revealed that the cultured afadin-deficient neurons showed impaired presynaptic functions. These results indicate that afadin regulates both PAJ formation and presynaptic differentiation in most mossy fiber-CA3 pyramidal cell synapses, while in a considerable population of these neurons, afadin regulates only PAJ formation but not presynaptic differentiation.
Collapse
Affiliation(s)
- Daisaku Toyoshima
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Kenji Mandai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail: (YT), (KM)
| | - Tomohiko Maruo
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Irwan Supriyanto
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Hideru Togashi
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Takahito Inoue
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Masahiro Mori
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail: (YT), (KM)
| |
Collapse
|
38
|
Mori M, Rikitake Y, Mandai K, Takai Y. Roles of Nectins and Nectin-Like Molecules in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 8:91-116. [DOI: 10.1007/978-1-4614-8090-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Gil-Sanz C, Franco SJ, Martinez-Garay I, Espinosa A, Harkins-Perry S, Müller U. Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron 2013; 79:461-77. [PMID: 23931996 DOI: 10.1016/j.neuron.2013.06.040] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
Cajal-Retzius (CR) cells are a transient cell population of the CNS that is critical for brain development. In the neocortex, CR cells secrete reelin to instruct the radial migration of projection neurons. It has remained unexplored, however, whether CR cells provide additional molecular cues important for brain development. Here, we show that CR cells express the immunoglobulin-like adhesion molecule nectin1, whereas neocortical projection neurons express its preferred binding partner, nectin3. We demonstrate that nectin1- and nectin3-mediated interactions between CR cells and migrating neurons are critical for radial migration. Furthermore, reelin signaling to Rap1 promotes neuronal Cdh2 function via nectin3 and afadin, thus directing the broadly expressed homophilic cell adhesion molecule Cdh2 toward mediating heterotypic cell-cell interactions between neurons and CR cells. Our findings identify nectins and afadin as components of the reelin signaling pathway and demonstrate that coincidence signaling between CR cell-derived secreted and short-range guidance cues direct neuronal migration.
Collapse
Affiliation(s)
- Cristina Gil-Sanz
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yamada T, Kuramitsu K, Rikitsu E, Kurita S, Ikeda W, Takai Y. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells. Genes Cells 2013; 18:985-98. [PMID: 24112238 DOI: 10.1111/gtc.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/30/2013] [Indexed: 02/02/2023]
Abstract
Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.
Collapse
Affiliation(s)
- Tomohiro Yamada
- KAN Research Institute, Inc., 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Togashi H. [The role of cell adhesion molecules in neurite recognition and synaptogenesis of the mammalian nervous system]. Nihon Yakurigaku Zasshi 2013; 142:100-5. [PMID: 24025489 DOI: 10.1254/fpj.142.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Majima T, Takeuchi K, Sano K, Hirashima M, Zankov DP, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Ogita H. An Adaptor Molecule Afadin Regulates Lymphangiogenesis by Modulating RhoA Activity in the Developing Mouse Embryo. PLoS One 2013; 8:e68134. [PMID: 23840823 PMCID: PMC3694064 DOI: 10.1371/journal.pone.0068134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/26/2013] [Indexed: 12/22/2022] Open
Abstract
Afadin is an intracellular binding partner of nectins, cell-cell adhesion molecules, and plays important roles in the formation of cell-cell junctions. Afadin-knockout mice show early embryonic lethality, therefore little is known about the function of afadin during organ development. In this study, we generated mice lacking afadin expression in endothelial cells, and found that the majority of these mice were embryonically lethal as a result of severe subcutaneous edema. Defects in the lymphatic vessels of the skin were observed, although the morphology in the blood vessels was almost normal. Severe disruption of VE-cadherin-mediated cell-cell junctions occurred only in lymphatic endothelial cells, but not in blood endothelial cells. Knockout of afadin did not affect the differentiation and proliferation of lymphatic endothelial cells. Using in vitro assays with blood and lymphatic microvascular endothelial cells (BMVECs and LMVECs, respectively), knockdown of afadin caused elongated cell shapes and disruption of cell-cell junctions among LMVECs, but not BMVECs. In afadin-knockdown LMVECs, enhanced F-actin bundles at the cell periphery and reduced VE-cadherin immunostaining were found, and activation of RhoA was strongly increased compared with that in afadin-knockdown BMVECs. Conversely, inhibition of RhoA activation in afadin-knockdown LMVECs restored the cell morphology. These results indicate that afadin has different effects on blood and lymphatic endothelial cells by controlling the levels of RhoA activation, which may critically regulate the lymphangiogenesis of mouse embryos.
Collapse
Affiliation(s)
- Takashi Majima
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Keisuke Takeuchi
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
| | - Keigo Sano
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masanori Hirashima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Dimitar P. Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hiroyoshi Ishizaki
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
- * E-mail:
| |
Collapse
|
43
|
Maurin H, Seymour CM, Lechat B, Borghgraef P, Devijver H, Jaworski T, Schmidt MV, Kuegler S, Van Leuven F. Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS One 2013; 8:e63589. [PMID: 23704923 PMCID: PMC3660566 DOI: 10.1371/journal.pone.0063589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion molecules are important structural substrates, required for synaptic plasticity and synaptogenesis. CAMs differ widely in their expression throughout different brain regions and their specific structural and functional roles in the brain remain to be elucidated. Here, we investigated selected cell adhesion molecules for alterations in expression levels and neuronal localization in validated mouse models for Alzheimer's disease that mimic the age-related progression of amyloid accumulation and tauopathy. Among the cell adhesion molecules analyzed, Nectin-3 expression was affected most and specifically in all mouse models with tauopathy. In particular was Nectin-3 depleted from the specific region of the hippocampus, known as the stratum lacunosum and moleculare, in mice that express wild-type or mutant human protein Tau, either chronically or sub-acutely. Tauopathy progresses from the entorhinal cortex to the hippocampus by unknown mechanisms that could involve transport by the myelinated axons of the temporoammonic and perforant pathways. The decreased expression of Nectin-3 in the stratum lacunosum moleculare is an early marker of impaired transport, and eventual synaptic problems, caused by beginning tauopathy.
Collapse
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Claire Marie Seymour
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Tomasz Jaworski
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | | | | | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2013; 125:3713-22. [PMID: 23027581 DOI: 10.1242/jcs.099572] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian tissues and organs are composed of different types of cells that adhere to each other homotypically (i.e. interactions between cells of the same cell type) or heterotypically (i.e. interactions between different cell types), forming a variety of cellular patterns, including mosaic patterns. At least three types of cell-cell adhesion have been observed: symmetric homotypic, asymmetric homotypic and heterotypic cell adhesions. Cadherins and nectins, which are known cell-cell adhesion molecules, mediate these cell adhesions. Cadherins comprise a family of more than 100 members, but they are primarily involved in homophilic trans-interactions (i.e. interactions between the same cadherin members) between opposing cells. By contrast, the nectin family comprises only four members, and these proteins form both homophilic and heterophilic trans-interactions (i.e. interactions between the same and different nectin members on opposing cells). In addition, heterophilic trans-interactions between nectins are much stronger than homophilic trans-interactions. Because of these unique properties, nectins have crucial roles in asymmetric homotypic cell-cell adhesion at neuronal synapses and in various types of heterotypic cell-cell adhesions. We summarize recent progress in our understanding of the biology of nectins and discuss their roles in heterotypic cell-cell adhesions, whose formation cannot be solely explained by the action of cadherins.
Collapse
Affiliation(s)
- Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | |
Collapse
|
45
|
Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci 2013; 16:706-13. [DOI: 10.1038/nn.3395] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
|
46
|
Fantin M, van der Kooij MA, Grosse J, Krummenacher C, Sandi C. A key role for nectin-1 in the ventral hippocampus in contextual fear memory. PLoS One 2013; 8:e56897. [PMID: 23418609 PMCID: PMC3572046 DOI: 10.1371/journal.pone.0056897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/15/2013] [Indexed: 01/25/2023] Open
Abstract
Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions.
Collapse
Affiliation(s)
- Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Michael A. van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Mandai K, Rikitake Y, Shimono Y, Takai Y. Afadin/AF-6 and Canoe. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:433-54. [DOI: 10.1016/b978-0-12-394311-8.00019-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Bojesen KB, Clausen O, Rohde K, Christensen C, Zhang L, Li S, Køhler L, Nielbo S, Nielsen J, Gjørlund MD, Poulsen FM, Bock E, Berezin V. Nectin-1 binds and signals through the fibroblast growth factor receptor. J Biol Chem 2012; 287:37420-33. [PMID: 22955284 DOI: 10.1074/jbc.m112.345215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nectins belong to a family of immunoglobulin (Ig)-like cell-adhesion molecules comprising four members, nectin-1 through nectin-4. Nectins are involved in formation of the mechanical adhesive puncta adherentia junctions of synapses. Nectins share the same overall structural topology with an extracellular region containing three Ig modules, a transmembrane region, and a cytoplasmic region. In nectin-1, the first and second Ig module in the extracellular region are necessary for the trans-interaction with nectin-3 and formation of cis-dimers, respectively. The function of the third Ig module of nectin-1 remains unknown. We here report the structure in solution of the third, membrane-proximal Ig module of mouse nectin-1 (nectin-1 Ig3) solved by means of nuclear magnetic resonance (NMR) spectroscopy. It belongs to the C1 set of the Ig superfamily. Nectin-1 Ig3 was produced as a recombinant protein and induced neurite outgrowth in primary cultures of hippocampal and cerebellar granule neurons, an effect abolished by treatment with the fibroblast growth factor receptor (FGFR) inhibitor SU5402, or by transfection with a dominant-negative FGFR1 construct. We showed by surface plasmon resonance (SPR) analysis that nectin-1 Ig3 directly interacted with various isoforms of FGFR. Nectin-1 Ig3 induced phosphorylation of FGFR1c in the same manner as the whole nectin-1 ectodomain, and promoted survival of cerebellar granule neurons induced to undergo apoptosis. Finally, we constructed a peptide, nectide, by employing in silico modeling of various FGFR ligand-binding sites. Nectide mimicked all the effects of nectin-1 Ig3. We suggest that FGFR is a downstream signaling partner of nectin-1.
Collapse
Affiliation(s)
- Kirsten B Bojesen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Blegdamsvej 3C, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Furuno T, Hagiyama M, Sekimura M, Okamoto K, Suzuki R, Ito A, Hirashima N, Nakanishi M. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J Neuroimmunol 2012; 250:50-8. [DOI: 10.1016/j.jneuroim.2012.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
|
50
|
Boggetti B, Niessen CM. Adherens junctions in mammalian development, homeostasis and disease: lessons from mice. Subcell Biochem 2012; 60:321-55. [PMID: 22674078 DOI: 10.1007/978-94-007-4186-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice have proven to be a particularly powerful model to study molecular mechanisms of development and disease. The reason for this is the close evolutionary relationship between rodents and humans, similarities in physiological mechanisms in mice and human, and the large number of techniques available to study gene functions in mice. A large number of mice mutations, either germ line, conditional or inducible, have been generated in the past years for adherens junctions components, and the number is still increasing. In this review we will discuss mice models that have contributed to understanding the developmental and physiological role of adherens junctions and their components in mammals and have revealed novel mechanistic aspects of how adherens junctions regulate morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Barbara Boggetti
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Room 4A.05, Robert Kochstrasse 21, 50931, Cologne, Germany
| | | |
Collapse
|