1
|
Groh J, Knöpper K, Arampatzi P, Yuan X, Lößlein L, Saliba AE, Kastenmüller W, Martini R. Accumulation of cytotoxic T cells in the aged CNS leads to axon degeneration and contributes to cognitive and motor decline. NATURE AGING 2021; 1:357-367. [PMID: 37117598 DOI: 10.1038/s43587-021-00049-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/23/2021] [Indexed: 04/30/2023]
Abstract
Aging is a major risk factor for the development of nervous system functional decline, even in the absence of diseases or trauma. The axon-myelin units and synaptic terminals are some of the neural structures most vulnerable to aging-related deterioration1-6, but the underlying mechanisms are poorly understood. In the peripheral nervous system, macrophages-important representatives of the innate immune system-are prominent drivers of structural and functional decline of myelinated fibers and motor endplates during aging7. Similarly, in the aging central nervous system (CNS), microglial cells promote damage of myelinated axons and synapses8-20. Here we examine the role of cytotoxic CD8+ T lymphocytes, a type of adaptive immune cells previously identified as amplifiers of axonal perturbation in various models of genetically mediated CNS diseases21 but understudied in the aging CNS22-25. We show that accumulation of CD8+ T cells drives axon degeneration in the normal aging mouse CNS and contributes to age-related cognitive and motor decline. We characterize CD8+ T-cell population heterogeneity in the adult and aged mouse brain by single-cell transcriptomics and identify aging-related changes. Mechanistically, we provide evidence that CD8+ T cells drive axon degeneration in a T-cell receptor- and granzyme B-dependent manner. Cytotoxic neural damage is further aggravated by systemic inflammation in aged but not adult mice. We also find increased densities of T cells in white matter autopsy material from older humans. Our results suggest that targeting CD8+ CNS-associated T cells in older adults might mitigate aging-related decline of brain structure and function.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| | - Konrad Knöpper
- Institute for Systems Immunology, University of Würzburg, Würzburg, Germany
| | | | - Xidi Yuan
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Lößlein
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
3
|
Abstract
Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD) patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third, and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether or not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support.
Collapse
|
4
|
Jaini R, Popescu DC, Flask CA, Macklin WB, Tuohy VK. Myelin antigen load influences antigen presentation and severity of central nervous system autoimmunity. J Neuroimmunol 2013; 259:37-46. [PMID: 23601904 DOI: 10.1016/j.jneuroim.2013.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022]
Abstract
This study was designed to understand the impact of self-antigen load on manifestation of organ specific autoimmunity. Using a transgenic mouse model characterized by CNS hypermyelination, we show that larger myelin content results in greater severity of experimental autoimmune encephalomyelitis attributable to an increased number of microglia within the hypermyelinated brain. We conclude that a larger self-antigen load affects an increase in number of tissue resident antigen presenting cells (APCs) most likely due to compensatory antigen clearance mechanisms thereby enhancing the probability of productive T cell-APC interactions in an antigen abundant environment and results in enhanced severity of autoimmune disease.
Collapse
Affiliation(s)
- Ritika Jaini
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
5
|
Groh J, Kühl TG, Ip CW, Nelvagal HR, Sri S, Duckett S, Mirza M, Langmann T, Cooper JD, Martini R. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 2013; 136:1083-101. [DOI: 10.1093/brain/awt020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
6
|
Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta Mol Basis Dis 2010; 1812:275-82. [PMID: 20637864 DOI: 10.1016/j.bbadis.2010.07.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system which responds to anti-inflammatory treatments in the early disease phase. However, the pathogenesis of the progressive disease phase is less well understood, and inflammatory as well as neurodegenerative mechanisms of tissue damage are currently being discussed. This review summarizes current knowledge on the interrelation between inflammation, demyelination, and neurodegeneration derived from the study of human autopsy and biopsy brain tissue and experimental models of MS.
Collapse
|
7
|
Johnson TA, Jirik FR, Fournier S. Exploring the roles of CD8+ T lymphocytes in the pathogenesis of autoimmune demyelination. Semin Immunopathol 2010; 32:197-209. [DOI: 10.1007/s00281-010-0199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023]
|
8
|
Lack of evidence for a pathogenic role of T-lymphocytes in an animal model for Charcot-Marie-Tooth disease 1A. Neurobiol Dis 2010; 38:78-84. [PMID: 20064611 DOI: 10.1016/j.nbd.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/23/2009] [Accepted: 01/03/2010] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that in two distinct models for inherited neuropathies of the Charcot-Marie-Tooth (CMT) type, T-lymphocytes are critically involved in demyelination. In the present study, we tested whether T-lymphocytes have a similar pathogenetic impact in another CMT model, i.e., in mice overexpressing the peripheral myelin protein (PMP)-22, representing the most prevalent form CMT1A. By cross breeding the myelin mutant mice with mutants lacking mature T- and B-lymphocytes (RAG-1-deficient mice), the pathological alterations were not changed in comparison to PMP22 mutants with a normal immune system. Reciprocal enhancement of lymphocyte activation, by inactivation of the lymphocytic co-inhibitor programmed death-1, also did not alter pathological changes, as opposed to models with approved lymphocytic involvement. These findings strongly suggest that lymphocytes are not pathogenetically relevant in this model for CMT1A. We suggest that - in contrast to myelin phagocytosing macrophages - T-lymphocytes are not a promising target for treatment of CMT1A.
Collapse
|
9
|
Kroner A, Ip CW, Thalhammer J, Nave KA, Martini R. Ectopic T-cell specificity and absence of perforin and granzyme B alleviate neural damage in oligodendrocyte mutant mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:549-55. [PMID: 20042681 DOI: 10.2353/ajpath.2010.090722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In transgenic mice overexpressing the major myelin protein of the central nervous system, proteolipid protein, CD8+ T-lymphocytes mediate the primarily genetically caused myelin and axon damage. In the present study, we investigated the cellular and molecular mechanisms underlying this immune-related neural injury. At first, we investigated whether T-cell receptors (TCRs) are involved in these processes. For this purpose, we transferred bone marrow from mutants carrying TCRs with an ectopic specificity to ovalbumin into myelin mutant mice that also lacked normal intrinsic T-cells. T-lymphocytes with ovalbumin-specific TCRs entered the mutant central nervous system to a similar extent as T-lymphocytes from wild-type mice. However, as revealed by histology, electron microscopy and axon- and myelin-related immunocytochemistry, these T-cells did not cause neural damage in the myelin mutants, reflecting the need for specific antigen recognition by cytotoxic CD8+ T-cells. By chimerization with bone marrow from perforin- or granzyme B (Gzmb)-deficient mice, we demonstrated that absence of these cytotoxic molecules resulted in reduced neural damage in myelin mutant mice. Our study strongly suggests that pathogenetically relevant immune reactions in proteolipid protein-overexpressing mice are TCR-dependent and mediated by the classical components of CD8+ T-cell cytotoxicity, perforin, and Gzmb. These findings have high relevance with regard to our understanding of the pathogenesis of disorders primarily caused by genetically mediated oligodendropathy.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurology, Section of Developmental Neurobiology, University of Wuerzburg, Josef-Schneider Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Kroner A, Schwab N, Ip CW, Ortler S, Göbel K, Nave KA, Mäurer M, Martini R, Wiendl H. Accelerated course of experimental autoimmune encephalomyelitis in PD-1-deficient central nervous system myelin mutants. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2290-9. [PMID: 19443704 DOI: 10.2353/ajpath.2009.081012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is assumed that the onset and course of autoimmune inflammatory central nervous system (CNS) disorders (eg, multiple sclerosis) are influenced by factors that afflict immune regulation as well as CNS vulnerability. We challenged this concept experimentally by investigating how genetic alterations that affect myelin (primary oligodendrocyte damage in PLPtg mice) and/or T-cell regulation (deficiency of PD-1) influence both the onset and course of an experimental autoimmune CNS inflammatory disease [MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE)]. We observed that double pathology was associated with a significantly earlier onset of disease, a slight increase in the neurological score, an increase in the number of infiltrating cells, and enhanced axonal degeneration compared with wild-type mice and the respective, single mutant controls. Double-mutant PLPtg/PD-1(-/-) mice showed an increased production of interferon-gamma by CNS immune cells at the peak of disease. Neither PD-1 deficiency nor oligodendropathy led to detectable spread of antigenic MHC class I- or class II-restricted epitopes during EAE. However, absence of PD-1 clearly increased the propensity of T lymphocytes to expand, and the number of clonal expansions reliably reflected the severity of the EAE disease course. Our data show that the interplay between immune dysregulation and myelinopathy results in a stable exacerbation of actively induced autoimmune CNS inflammation, suggesting that the combination of several pathological issues contributes significantly to disease susceptibility or relapses in human disease.
Collapse
Affiliation(s)
- Antje Kroner
- Clinical Research Group for MS and Neuroimmunology, Department of Neurology, University of Wuerzburg, Josef Schneider Strasse 11, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kroner A, Schwab N, Ip CW, Leder C, Nave KA, Mäurer M, Wiendl H, Martini R. PD-1 regulates neural damage in oligodendroglia-induced inflammation. PLoS One 2009; 4:e4405. [PMID: 19197390 PMCID: PMC2635015 DOI: 10.1371/journal.pone.0004405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/17/2008] [Indexed: 12/14/2022] Open
Abstract
We investigated the impact of immune regulatory mechanisms involved in the modulation of the recently presented, CD8+ lymphocyte mediated immune response in a mouse model of oligodendropathy-induced inflammation (PLPtg-mutants). The focus was on the role of the co-inhibitory molecule PD-1, a CD28-related receptor expressed on activated T- and B-lymphocytes associated with immune homeostasis and autoimmunity. PLPtg/PD-1-deficient double mutants and the corresponding bone marrow chimeras were generated and analysed using immunohistochemistry, light- and electron microscopy, with particular emphasis on immune-cell number and neural damage. In addition, the immune cells in both the CNS and the peripheral immune system were investigated by IFN-gamma elispot assays and spectratype analysis. We found that mice with combined pathology exhibited significantly increased numbers of CD4+ and CD8+ T-lymphocytes in the CNS. Lack of PD-1 substantially aggravated the pathological phenotype of the PLPtg mutants compared to genuine PLPtg mutants, whereas the PD-1 deletion alone did not cause alterations in the CNS. CNS T-lymphocytes in PLPtg/PD-1-/- double mutants exhibited massive clonal expansions. Furthermore, PD-1 deficiency was associated with a significantly higher propensity of CNS but not peripheral CD8+ T-cells to secrete proinflammatory cytokines. PD-1 could be identified as a crucial player of tissue homeostasis and immune-mediated damage in a model of oligodendropathy-induced inflammation. Alterations of this regulatory pathway lead to overt neuroinflammation of high pathogenetic impact. Our finding may have implications for understanding the mechanisms leading to the high clinical variability of polygenic or even monogenic disorders of the nervous system.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Section of Developmental Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Nicholas Schwab
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Section of Developmental Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Christoph Leder
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Mathias Mäurer
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Section of Developmental Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (HW); (RM)
| | - Rudolf Martini
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Section of Developmental Neurobiology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (HW); (RM)
| |
Collapse
|
12
|
Ip CW, Kroner A, Kohl B, Wessig C, Martini R. Tacrolimus (FK506) causes disease aggravation in models for inherited peripheral myelinopathies. Neurobiol Dis 2008; 33:207-12. [PMID: 19028581 DOI: 10.1016/j.nbd.2008.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 01/10/2023] Open
Abstract
Mice hetero- or homozygously deficient for myelin protein zero (P0+/-, P0-/- mice) are models for distinct forms of inherited de- or dysmyelinating neuropathies, respectively. P0+/- mice show a demyelinating neuropathy with a pathogenetic implication of CD8+ T-lymphocytes and macrophages, while P0-/- mice show dysmyelination with axonal loss. It was, therefore, of interest to treat both mutants with FK506 (Tacrolimus), an agent with immunosuppressive and neuroprotective properties. Treatment of P0+/- mice led to an aggravation of demyelination, without affecting nervous CD8+ T-lymphocytes, but reducing splenic CD4+ cells. Treatment of P0-/- mice resulted in a substantial increase of the dysmyelination-related axon loss. Treatment of wildtype mice did not cause pathological changes in peripheral nerves. Our study shows that FK506 may not be suitable for the treatment of the human nerve disorders. Furthermore, when used as an immunosuppressant, the drug may generate detrimental neurological side effects in patients with an additional hereditary neuropathy.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Kroner A, Schwab N, Ip CW, Sommer C, Wessig C, Wiendl H, Martini R. The co-inhibitory molecule PD-1 modulates disease severity in a model for an inherited, demyelinating neuropathy. Neurobiol Dis 2008; 33:96-103. [PMID: 18996482 DOI: 10.1016/j.nbd.2008.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/27/2008] [Accepted: 09/20/2008] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that mice heterozygously deficient for P0 are characterized by a late onset myelin disorder implicating CD8+ T-lymphocytes and macrophages. We now investigated the impact of the co-inhibitory molecule "programmed death" (PD)-1 (CD279), a CD28-related receptor expressed on activated T- and B-lymphocytes on the pathogenic phenotype of CD8+ T-lymphocytes in the P0 myelin mutants. PD-1 deficiency in P0+/- mice leads to a stronger increase of CD8+ T-lymphocytes and a substantially aggravated histological phenotype in the PNS compared to P0+/- mice expressing PD-1. Correspondingly, functional down-stream features, such as electrophysiological parameters, walking coordination and mechano-sensation are more affected than in PD-1-expressing myelin mutants. Our study demonstrates that a monogenic nerve disorder can be substantially modified by immune-controlling mechanisms. Thus, understanding the implication of disease-modifiers in inherited demyelination could be of pivotal interest for limiting the detrimental impact of primarily genetically-mediated myelin disorders by fostering immuno-regulatory pathways.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurology, University of Wuerzburg, Wuerzburg
| | | | | | | | | | | | | |
Collapse
|
14
|
Ip CW, Kohl B, Kleinschnitz C, Reuss B, Nave KA, Kroner A, Martini R. Origin of CD11b+ macrophage-like cells in the CNS of PLP-overexpressing mice: Low influx of haematogenous macrophages and unchanged blood-brain-barrier in the optic nerve. Mol Cell Neurosci 2008; 38:489-94. [DOI: 10.1016/j.mcn.2008.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 01/07/2023] Open
|
15
|
Abstract
PURPOSE OF REVIEW Although multiple sclerosis is considered the prototype of a primary autoimmune disease in the central nervous system, there is emerging evidence that primary oligodendrocyte dysfunctions can suffice to trigger a secondary immune response in the nervous system. This short review focuses on the possible primary role of oligodendrocytes in axon loss and inflammatory demyelination. RECENT FINDINGS The analysis of natural and engineered mouse mutants has provided unexpected insight into oligodendrocyte function beyond that of axonal myelination for rapid impulse propagation. Specifically, mutations in some genes thought to be required for myelin assembly revealed an additional role of oligodendrocytes in supporting long-term axonal function and survival. Other mutations have been reported that cause both central nervous system demyelination and neuroinflammation, with pathological features known from human leukodystrophy patients. In human multiple sclerosis, demyelination leads invariably to axon loss, but the underling pathomechanisms may not be restricted to that of a primary immune-mediated disorder. SUMMARY Collectively, experimental and pathological findings point to a primary role of myelinating glia in long-term axonal support and suggest that defects of lipid metabolism in oligodendrocytes contribute to inflammatory myelin diseases.
Collapse
|