1
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
2
|
Randhawa G, Mobarakabadi M, D'Mello C, Morch MT, Zhang P, Ling CC, Yong VW, Ghorbani S. Targeting extracellular matrix components to attenuate microglia neuroinflammation: A study of fibulin-2 and CSPGs in a model of multiple sclerosis. J Neuroimmunol 2025; 400:578533. [PMID: 39864280 DOI: 10.1016/j.jneuroim.2025.578533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The extracellular matrix (ECM) plays an important role in the central nervous system (CNS), shaping tissue structure and functions as well as contributing to the pathology of chronic diseases such as multiple sclerosis (MS). ECM components, including fibulin-2 (FBLN2) and chondroitin sulfate proteoglycans (CSPGs), may impact neuroinflammation and remyelination. We investigated the capacity of FBLN2 to modulate immune responses and evaluated its interaction with CSPGs in experimental autoimmune encephalomyelitis (EAE), a common model for MS. We show that FBLN2 deficiency in EAE mice reduced microglial pro-inflammatory activity, while effects on monocyte-derived macrophages and border-associated macrophages were less pronounced. Targeting FBLN2 and CSPGs individually, using FBLN2-/- mice and the CSPG-synthesis inhibitor difluorosamine (DIF), respectively, enhanced recovery of disability and reduced neuroinflammation in EAE mice. However, their combined targeting did not result in additive therapeutic effects beyond either alone. This study underscores the complex regulatory roles of ECM components on neuroinflammation and provides insights into potential therapeutic strategies for neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Mice
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/deficiency
- Extracellular Matrix/metabolism
- Extracellular Matrix/drug effects
- Chondroitin Sulfate Proteoglycans/metabolism
- Chondroitin Sulfate Proteoglycans/antagonists & inhibitors
- Microglia/metabolism
- Microglia/drug effects
- Microglia/pathology
- Microglia/immunology
- Mice, Inbred C57BL
- Female
- Mice, Knockout
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Extracellular Matrix Proteins
- Neuroinflammatory Diseases/metabolism
Collapse
Affiliation(s)
- Gurleen Randhawa
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Maryam Mobarakabadi
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Charlotte D'Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Marlene T Morch
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Yang Y, Li L, Fei J, Li Z. C2C12 myoblasts differentiate into myofibroblasts via the TGF-β1 signaling pathway mediated by Fibulin2. Gene 2025; 936:149048. [PMID: 39490650 DOI: 10.1016/j.gene.2024.149048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Myoblasts play a critical role in the regeneration of skeletal muscle following injury. It has been reported that local elevation of transforming growth factor-β1 (TGF-β1) after skeletal muscle injury induces differentiation of myoblasts into myofibroblasts. However, the mechanisms underlying this differentiation process remain incompletely understood. In this study, we found that Fibulin2 expression significantly increases in myoblasts in response to TGF-β1 stimulation. Elevated Fibulin2 levels enhance the expression of fibrotic markers. Conversely, downregulation of Fibulin2 in myoblasts inhibits the upregulation of fibrotic markers induced by TGF-β1 stimulation. Extracellular secretion of Fibulin2 activates the TGF-β1-Smad2 pathway, thereby promoting the upregulation of fibrotic markers. Hence, Fibulin2 and TGF-β1 form a positive feedback loop that facilitates differentiation of myoblasts into myofibroblasts.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing , PR China.
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
4
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
5
|
Antón-Fernández A, Roldán-Lázaro M, Vallés-Saiz L, Ávila J, Hernández F. In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and enhances memory performance. Commun Biol 2024; 7:631. [PMID: 38789561 PMCID: PMC11126596 DOI: 10.1038/s42003-024-06328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been success in partially reprogramming peripheral organ cells using cyclic Yamanaka transcription factor (YF) expression, resulting in the reversal of age-related pathologies. In the case of the brain, the effects of partial reprogramming are scarcely known, and only some of its effects have been observed through the widespread expression of YF. This study is the first to exclusively partially reprogram a specific subpopulation of neurons in the cerebral cortex of aged mice. The in vivo model demonstrate that YF expression in postmitotic neurons does not dedifferentiate them, and it avoids deleterious effects observed with YF expression in other cell types. Additionally, our study demonstrates that only cyclic, not continuous, expression of YF result in a noteworthy enhancement of cognitive function in adult mice. This enhancement is closely tied to increased neuronal activation in regions related to memory processes, reversed aging-related epigenetic markers and to increased plasticity, induced by the reorganization of the extracellular matrix. These findings support the therapeutic potential of targeted partial reprogramming of neurons in addressing age-associated phenotypes and neurodegenerative diseases correlated with aging.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain.
| | - Marta Roldán-Lázaro
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Cai L, Xu J, Liu J, Luo H, Yang R, Gui X, Wei L. miRNAs in treatment-resistant depression: a systematic review. Mol Biol Rep 2024; 51:638. [PMID: 38727891 DOI: 10.1007/s11033-024-09554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/15/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Rongrong Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Xiongbin Gui
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China.
| | - Liping Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
8
|
Zhang Y, Zhang W, Zhang R, Xia Y. Knockdown of FBLN2 suppresses TGF-β1-induced MRC-5 cell migration and fibrosis by downregulating VTN. Tissue Cell 2023; 81:102005. [PMID: 36608640 DOI: 10.1016/j.tice.2022.102005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common chronic and progressive lung disease. Fibulin-2 (FBLN2) is upregulated in patients with IPF; however, its exact role in IPF remains unclear. The present study aimed to investigate the role and the regulatory mechanism of FBLN2 in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell transfection was performed to regulate FBLN2 expression. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of FBLN2 and vitronectin (VTN). Cell viability and migration were determined via the Cell Counting Kit-8 and wound healing assays, respectively. Immunofluorescence was performed to detect α-smooth muscle actin (α-SMA)-positive cells. The STRING database was used to predict the interaction between FBLN2 and VTN, which was verified via the protein immunoprecipitation assay. The results demonstrated that inhibition of FBLN2 notably inhibited TGF-β1-induced proliferation and migration, as well as downregulating the protein expression levels of MMP2 and MMP9 in MRC-5 cells. In addition, inhibition of FBLN2 suppressed the expression levels of α-SMA, collagen type 1 α1 and fibronectin. FBLN2 was demonstrated to bind to VTN and negatively regulate its expression. Furthermore, overexpression of VTN partly abolished the inhibitory effects of FBLN2 knockdown on TGF-β1-induced proliferation, migration and fibrosis, as well as the activity of focal adhesion kinase (FAK) signaling. Taken together, the results of the present study suggest that FBLN2 knockdown can attenuate TGF-β1-induced fibrosis in MRC-5 cells by downregulating VTN expression via FAK signaling. Thus, FBLN2 may be a potential therapeutic target for IPF treatment.
Collapse
Affiliation(s)
- Yanju Zhang
- Infection Management Office, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weishuai Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunfei Xia
- Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Patel MR, Weaver AM. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep 2021; 34:108829. [PMID: 33691102 PMCID: PMC8002899 DOI: 10.1016/j.celrep.2021.108829] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neuronal synapse formation is critical for brain development and depends on secreted factors from astrocytes. Here, we report that small extracellular vesicles (EVs) secreted from primary astrocytes, but not from neurons or C6 glioma cells, greatly enhance spine and synapse formation by primary cortical neurons. A comparative proteomics analysis of small EVs from astrocytes, neurons, and C6 glioma cells identified fibulin-2 as a promising EV cargo to regulate synaptogenesis. Treatment of cortical neurons with recombinant fibulin-2 increased the formation of spines and synapses, similar to the effect of small EVs. In addition, treatment of neurons with fibulin-2 or astrocyte-derived small EVs led to increased phosphorylation of Smad2, an indicator of TGF-β signaling. Finally, the effects of fibulin-2 and astrocyte-derived small EVs on synapse formation were reversed by inhibiting transforming growth factor β (TGF-β) signaling. These data suggest a model in which astrocyte EVs promote synapse formation via fibulin-2-mediated activation of TGF-β signaling.
Collapse
Affiliation(s)
- Mikin R Patel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Papon MA, Le Feuvre Y, Barreda-Gómez G, Favereaux A, Farrugia F, Bouali-Benazzouz R, Nagy F, Rodríguez-Puertas R, Landry M. Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats. Front Cell Neurosci 2020; 14:214. [PMID: 32765223 PMCID: PMC7378325 DOI: 10.3389/fncel.2020.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.
Collapse
Affiliation(s)
- Marie-Amélie Papon
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Yves Le Feuvre
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Alexandre Favereaux
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Fanny Farrugia
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Frédéric Nagy
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Marc Landry
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| |
Collapse
|
11
|
Zhang H, Hui D, Fu X. Roles of Fibulin-2 in Carcinogenesis. Med Sci Monit 2020; 26:e918099. [PMID: 31915327 PMCID: PMC6977632 DOI: 10.12659/msm.918099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Fibulin-2, an extracellular matrix (ECM) protein expressed in normal epithelia, is a kind of fibulin which is associated with basement membranes (BM) and elastic ECM fibers. The role of fibulin-2 has been recognized as an oncogene. The upregulation of fibulin-2 correlates with cancer development and progression. Furthermore, the upregulation of fibulin has been detected in ovarian cancer and stomach adenocarcinoma. However, the downregulation of fibulin has been detected in different intestinal and respiratory tumor cells. Additional studies have revealed that the role of fibulin-2 in carcinogenesis is context dependent and is caused by the interaction of fibulin proteins such as cell surface receptors and other ECM proteins, including integrins and syndecans. The present study summarizes the role of fibulin in carcinogenesis and its underlying molecular mechanism.
Collapse
Affiliation(s)
- Huayue Zhang
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Dengcheng Hui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoling Fu
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
12
|
Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019; 9:13939. [PMID: 31558805 PMCID: PMC6763627 DOI: 10.1038/s41598-019-50404-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.
Collapse
|
13
|
Feigin CY, Newton AH, Pask AJ. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Res 2019; 29:1648-1658. [PMID: 31533979 PMCID: PMC6771401 DOI: 10.1101/gr.244251.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
The extinct marsupial Tasmanian tiger, or thylacine, and the eutherian gray wolf are among the most widely recognized examples of convergent evolution in mammals. Despite being distantly related, these large predators independently evolved extremely similar craniofacial morphologies, and evidence suggests that they filled similar ecological niches. Previous analyses revealed little evidence of adaptive convergence between their protein-coding genes. Thus, the genetic basis of their convergence is still unclear. Here, we identified candidate craniofacial cis-regulatory elements across vertebrates and compared their evolutionary rates in the thylacine and wolf, revealing abundant signatures of convergent positive selection. Craniofacial thylacine-wolf accelerated regions were enriched near genes involved in TGF beta (TGFB) and BMP signaling, both of which are key morphological signaling pathways with critical roles in establishing the identities and boundaries between craniofacial tissues. Similarly, enhancers of genes involved in craniofacial nerve development showed convergent selection and involvement in these pathways. Taken together, these results suggest that adaptation in cis-regulators of TGF beta and BMP signaling may provide a mechanism to explain the coevolution of developmentally and functionally integrated craniofacial structures in these species. We also found that despite major structural differences in marsupial and eutherian brains, accelerated regions in both species were common near genes with roles in brain development. Our findings support the hypothesis that, relative to protein-coding genes, positive selection on cis-regulatory elements is likely to be an essential driver of adaptive convergent evolution and may underpin thylacine-wolf phenotypic similarities.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| |
Collapse
|
14
|
Morante-Redolat JM, Porlan E. Neural Stem Cell Regulation by Adhesion Molecules Within the Subependymal Niche. Front Cell Dev Biol 2019; 7:102. [PMID: 31245371 PMCID: PMC6581678 DOI: 10.3389/fcell.2019.00102] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche. Conservation of the cytoarchitecture of the niche is of crucial importance for the maintenance of stem cells and for their neurogenic potential. In this minireview we will focus on extracellular matrix and adhesion molecules in the adult subependymal zone, showing their involvement not only as structural elements sustaining the niche architecture and topology, but also in the maintenance of stemness and regulation of the quiescence-proliferation balance.
Collapse
Affiliation(s)
- Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Eva Porlan
- Departamento de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
16
|
Tang CZ, Yang JT, Liu QH, Wang YR, Wang WS. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway. FASEB J 2018; 33:606-618. [PMID: 30118321 DOI: 10.1096/fj.201800210rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Depression represents a condition characterized by cognitive deficits and neural dysfunction and has recently been correlated with microRNAs (miRs) and their respective target genes. The present study was conducted with the goal of investigating the expression of miR-192-5p and its target gene fibulin (Fbln)-2 in an attempt to evaluate their roles in the occurrence and progression of cognitive impairment and neural function in mice with chronic unpredictable mild stress (CUMS)-induced depression through regulation of the TGF-β1 signal transduction pathway. Verification of the targeting relationship between miR-192-5p and Fbln2 was provided in the form of initial bioinformatics prediction, followed by a further verification in the form of a dual-luciferase reporter gene assay. Normal mice and models induced by CUMS were assigned into various groups, whereas mimics, inhibitors, and small interfering RNA were introduced to validate the regulatory mechanism by which miR-192-5p regulates Fbln2 depression. Novel object recognition, tail suspension testing, and Morris water maze were all employed 28 d after transfection. Hippocampal electrophysiological recordings, Golgi staining, HPLC mass spectrometry, and fluorescence immunohistochemistry were performed to further evaluate cognitive function and neuron regeneration. CUMS-induced depression was determined to represent a predisposing factor for cognitive impairment and damage to neural function in mice, highlighted by novel object recognition, learning and memory abilities, population spike amplitude, synaptic transmission, cAMP levels, neuronal regeneration, and increased behavioral changes that resemble depression. Furthermore, increased Fbln2 expression, an activated TGF-β1 signaling pathway, and decreased expression of miR-192-5p, synaptophysin, brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, and calmodulin-dependent protein kinase II were noted. Up-regulated miR-192-5p targeting Fbln2 acts to alleviate CUMS-induced depression by inhibiting the TGF-β1 signaling pathway, resulting in the enhanced cognitive function in novel object recognition, learning and memory ability, population spike amplitude, synaptic transmission, neuron regeneration, and alleviation of behavioral symptoms. The central findings of the present study indicate that up-regulated levels of miR-192-5p expression act to suppress activation of the TGF-β1 signaling pathway by means of binding to Fbln2, thereby ameliorating cognitive impairment and strengthening neural function in a mouse model of depression.-Tang, C.-Z., Yang, J.-T., Liu, Q.-H., Wang, Y.-R., Wang, W.-S. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Chao-Zhi Tang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jun-Tang Yang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, Xinxiang, China
| | - Qing-Hui Liu
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ya-Ru Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wen-Sheng Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
17
|
Gómez Pinto LI, Rodríguez D, Adamo AM, Mathieu PA. TGF-β pro-oligodendrogenic effects on adult SVZ progenitor cultures and its interaction with the Notch signaling pathway. Glia 2017; 66:396-412. [PMID: 29076551 DOI: 10.1002/glia.23253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Adult neural progenitor cells (NPCs) are capable of differentiating into neurons, astrocytes, and oligodendrocytes throughout life. Notch and transforming growth factor β1 (TGF-β) signaling pathways play critical roles in controlling these cell fate decisions. TGF-β has been previously shown to exert pro-neurogenic effects on hippocampal and subventricular zone (SVZ) NPCs in vitro and to interact with Notch in different cellular types. Therefore, the aim of our work was to study the effect of TGF-β on adult rat brain SVZ NPC glial commitment and its interaction with Notch signaling. Initial cell characterization revealed a large proportion of Olig2+, Nestin+, and glial fibrillary acidic protein (GFAP+) cells, a low percentage of platelet-derived growth factor receptor α (PDGFRα+) or NG2+ cells, and <1% Tuj1+ cells. Immunocytochemical analyses showed a significant increase in the percentage of PDGFRα+, NG2+, and GFAP+ cells upon four-day TGF-β treatment, which demonstrates the pro-gliogenic effect of this growth factor on adult brain SVZ NPCs. Real-time polymerase chain reaction analyses showed that TGF-β induced the expression of Notch ligand Jagged1 and downstream gene Hes1. Notch signaling inhibition in cultures treated with TGF-β produced a decrease in the proportion of PDGFRα+ cells, while TGF-β receptor II (TβRII) inhibition also rendered a decrease in the proportion of PDGFRα+ cells, concomitantly with a decrease in Jagged1 levels. These findings demonstrate the participation of Notch signaling in TGF-β effects and illustrate the impact of TGF-β on glial cell fate decisions of adult brain SVZ NPCs, as well as on oligodendroglial progenitor cell proliferation and maturation.
Collapse
Affiliation(s)
- Laura I Gómez Pinto
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| | - Debora Rodríguez
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 and Av Constitución, 6700, Luján, Buenos Aires, Argentina
| | - Ana M Adamo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| | - Patricia A Mathieu
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CABA, C1113AAD, Argentina
| |
Collapse
|
18
|
Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal Modulators of TGF-β in Cancer. J Clin Med 2017; 6:jcm6010007. [PMID: 28067804 PMCID: PMC5294960 DOI: 10.3390/jcm6010007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-β in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-β function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-β function. Understanding the complex interplay between the TGF-β signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-β axis. The present review highlights our present understanding of how stroma modulates TGF-β activity in human cancers.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Ijeoma Adaku Umelo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France.
| |
Collapse
|
19
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Emerging regulators of BMP bioavailability. Bone 2016; 93:220-221. [PMID: 26825814 DOI: 10.1016/j.bone.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
20
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|