1
|
Tschang M, Kumar S, Young W, Schachner M, Theis T. Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth. Int J Mol Sci 2023; 24:14271. [PMID: 37762575 PMCID: PMC10532424 DOI: 10.3390/ijms241814271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.
Collapse
Affiliation(s)
- Monica Tschang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA;
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| |
Collapse
|
2
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
3
|
Stoyanova II, Lutz D. Functional Diversity of Neuronal Cell Adhesion and Recognition Molecule L1CAM through Proteolytic Cleavage. Cells 2022; 11:cells11193085. [PMID: 36231047 PMCID: PMC9562852 DOI: 10.3390/cells11193085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The neuronal cell adhesion and recognition molecule L1 does not only 'keep cells together' by way of homophilic and heterophilic interactions, but can also promote cell motility when cleaved into fragments by several proteases. It has largely been thought that such fragments are signs of degradation. Now, it is clear that proteolysis contributes to the pronounced functional diversity of L1, which we have reviewed in this work. L1 fragments generated at the plasma membrane are released into the extracellular space, whereas other membrane-bound fragments are internalised and enter the nucleus, thus conveying extracellular signals to the cell interior. Post-translational modifications on L1 determine the sequence of cleavage by proteases and the subcellular localisation of the generated fragments. Inside the neuronal cells, L1 fragments interact with various binding partners to facilitate morphogenic events, as well as regenerative processes. The stimulation of L1 proteolysis via injection of L1 peptides or proteases active on L1 or L1 mimetics is a promising tool for therapy of injured nervous systems. The collective findings gathered over the years not only shed light on the great functional diversity of L1 and its fragments, but also provide novel mechanistic insights into the adhesion molecule proteolysis that is active in the developing and diseased nervous system.
Collapse
Affiliation(s)
- Irina I. Stoyanova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9002 Varna, Bulgaria
- Department of Brain Ischemia Mechanisms, Research Institute, Medical University, 9002 Varna, Bulgaria
- Correspondence: (I.I.S.); (D.L.)
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum,
44801 Bochum, Germany
- Correspondence: (I.I.S.); (D.L.)
| |
Collapse
|
4
|
Interactions between the Polysialylated Neural Cell Adhesion Molecule and the Transient Receptor Potential Canonical Channels 1, 4, and 5 Induce Entry of Ca 2+ into Neurons. Int J Mol Sci 2022; 23:ijms231710027. [PMID: 36077460 PMCID: PMC9456277 DOI: 10.3390/ijms231710027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, -4, and -5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, -4, and -5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and -4 or TRPC1 and -5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, -4, and -5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.
Collapse
|
5
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
6
|
Sytnyk V, Leshchyns'ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci 2021; 78:93-116. [PMID: 32613283 PMCID: PMC11071817 DOI: 10.1007/s00018-020-03578-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Wang M, Theis T, Kabat M, Loers G, Agre LA, Schachner M. Functions of Small Organic Compounds that Mimic the HNK-1 Glycan. Int J Mol Sci 2020; 21:ijms21197018. [PMID: 32987628 PMCID: PMC7582369 DOI: 10.3390/ijms21197018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.
Collapse
Affiliation(s)
- Minjuan Wang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Maciej Kabat
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Lynn A. Agre
- Rutgers School of Arts and Sciences, Department of Statistics and Rutgers Business School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
9
|
Polysialylation and disease. Mol Aspects Med 2020; 79:100892. [PMID: 32863045 DOI: 10.1016/j.mam.2020.100892] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique constituent of the glycocalyx on the surface of bacterial and vertebrate cells. In vertebrates, its biosynthesis is highly regulated, not only in quantity and quality, but also in time and location, which allows polySia to be involved in various important biological phenomena. Therefore, impairments in the expression and structure of polySia sometimes relate to diseases, such as schizophrenia, bipolar disorder, and cancer. Some bacteria express polySia as a tool for protecting themselves from the host immune system during invasion. PolySia is proven to be a biosafe material; polySia, as well as polySia-recognizing molecules, are key therapeutic agents. This review first comprehensive outlines the occurrence, features, biosynthesis, and functions of polySia and subsequently focuses on the related diseases.
Collapse
|
10
|
Theis T, Kumar S, Wei E, Nguyen J, Glynos V, Paranjape N, Askarifirouzjaei H, Khajouienejad L, Berthiaume F, Young W, Schachner M. Myristoylated alanine-rich C-kinase substrate effector domain peptide improves sex-specific recovery and axonal regrowth after spinal cord injury. FASEB J 2020; 34:12677-12690. [PMID: 32729988 DOI: 10.1096/fj.202000026rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/11/2022]
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is an intracellular receptor for polysialic acid. MARCKS supports development, synaptic plasticity, and regeneration after injury. MARCKS binds with its functionally essential effector domain (ED) to polysialic acid. A 25-mer peptide comprising the ED of MARCKS stimulates neuritogenesis of primary hippocampal neurons after addition to the culture. This motivated us to investigate whether ED peptide has similar effects in spinal cord injury. ED peptide supported recovery and regrowth of monoaminergic axons in female, but not in male mice. Sex-specific differences in response to ED peptide application also occurred in cultured neurons. In female but not male neurons, the ED peptide enhanced neurite outgrowth that could be suppressed by inhibitors of the estrogen receptors α and β, fibroblast growth factor receptor-1, protein kinase C, and matrix metalloproteinase 2. In addition, we observed female-specific elevation of phosphorylated MARCKS levels after ED peptide treatment. In male neurons, the ED peptide enhanced neuritogenesis in the presence of an androgen receptor inhibitor to the extent seen in ED peptide-treated female neurons. However, inhibition of androgen receptor did not lead to increased phosphorylation of MARCKS. These results provide insights into the functions of a novel compound contributing to gender-dependent regeneration.
Collapse
Affiliation(s)
- Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Elena Wei
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Jennifer Nguyen
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Vicci Glynos
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Nikita Paranjape
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Hadi Askarifirouzjaei
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Leila Khajouienejad
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
11
|
Guo X, Elkashef SM, Loadman PM, Patterson LH, Falconer RA. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr Polym 2019; 224:115145. [PMID: 31472857 DOI: 10.1016/j.carbpol.2019.115145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Polysialic acid (polySia) is a unique, well-characterised carbohydrate polymer highly-expressed on the cell surface of neurons in the early stages of mammalian brain development. Post-embryogenesis, it is also re-expressed in a number of tumours of neuroendocrine origin. It plays important roles in modulating cell-cell, and cell-matrix adhesion and migration, tumour invasion and metastasis. Techniques for structural and quantitative characterisation of polySia from tumours and cancer cells are thus essential in exploring the relationship between polySia expression levels and structural and functional changes associated with cancer progression and metastasis. A variety of techniques have been developed to structurally and quantitatively analyse polySia in clinical tissues and other biological samples. In this review, analytical approaches used for the determination of polySia in biological matrices in the past 20 years are discussed, with a particular focus on chemical approaches, and quantitative analysis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Sara M Elkashef
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
12
|
Sapoń K, Janas T, Sikorski AF, Janas T. Polysialic acid chains exhibit enhanced affinity for ordered regions of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:245-255. [DOI: 10.1016/j.bbamem.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
|
13
|
Abstract
Sialic acid (Sia) is involved in many biological activities and commonly occurs as a monosialyl residue at the nonreducing terminal end of glycoconjugates. The loss of activity of UDP-GlcNAc2-epimerase/ManNAc kinase, which is a key enzyme in Sia biosynthesis, is lethal to the embryo, which clearly indicates the importance of Sia in embryogenesis. Occasionally, oligo/polymeric Sia structures such as disialic acid (diSia), oligosialic acid (oligoSia), and polysialic acid (polySia) occur in glycoconjugates. In particular, polySia, a well-known epitope that commonly occurs in neuroinvasive bacteria and vertebrate brains, is one of the most well-known and biologically/neurologically important glycotopes in vertebrates. The biological effects of polySia, especially on neural cell-adhesion molecules, have been well studied, and in-depth knowledge regarding polySia has been accumulated. In addition, the importance of diSia and oligoSia epitopes has been reported. In this chapter, the recent advances in the study of diSia, oligoSia, and polySia residues in glycoproteins in neurology, and their history, definition, occurrence, analytical methods, biosynthesis, and biological functions evaluated by phenotypes of gene-targeted mice, biochemical features, and related diseases are described.
Collapse
|
14
|
Sapoń K, Janas T, Janas T. Biophysical Characterization of Polysialic Acid—Membrane Nanosystems. SERIES IN BIOENGINEERING 2019. [DOI: 10.1007/978-981-13-0989-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Coppieters N, Merry S, Patel R, Highet B, Curtis MA. Polysialic acid masks neural cell adhesion molecule antigenicity. Brain Res 2018; 1710:199-208. [PMID: 30584926 DOI: 10.1016/j.brainres.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
The neural cell adhesion molecule (NCAM) is a transmembrane protein involved in major cellular processes. The addition of polysialic acid (PSA), a post-translational modification (PTM) almost exclusively carried by NCAM, alters NCAM properties and functions and is therefore tightly regulated. Changes in NCAM and PSA-NCAM take place during development and ageing and occur in various diseases. The presence of PTMs can reduce the accessibility of antibodies to their epitopes and lead to false negative results. Thus, it is vital to identify antibodies that can specifically detect their target regardless of the presence of PTMs. In the present study, four commercially available NCAM antibodies were characterized by western blot and immunocytochemistry. Antibody specificity was determined by decreasing NCAM expression with small interfering RNA and subsequently determining whether the antibodies still produced a signal. In addition, PSA was digested with endoneuraminidase N to assess whether removing PSA improves NCAM detection with these antibodies. Our study revealed that the presence of PSA on NCAM reduced antibody accessibility to the epitope and consequently masked NCAM antigenicity for both techniques investigated. Moreover, three of the four antibodies tested were specific for the detection of NCAM by western blot and by immunocytochemistry. Altogether, this study demonstrates the importance of choosing the correct antibody to study NCAM depending on the technique of interest and underlines the importance of taking PTMs into account when using antibody-based techniques for the study of NCAM.
Collapse
Affiliation(s)
- Natacha Coppieters
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sonya Merry
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Rachna Patel
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Blake Highet
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
16
|
Homrich M, Es-Saddiki F, Gotthard I, Laurini C, Stein E, Wobst H, Zielinski A, Diestel S. NCAM140 is translocated into the nucleus by an importin-β1-dependent mechanism. Exp Cell Res 2018; 371:372-378. [PMID: 30153455 DOI: 10.1016/j.yexcr.2018.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
Abstract
The neural cell adhesion molecule (NCAM) is important for neural development and for plasticity in adult brain. Previous studies demonstrated a calmodulin-dependent import of a transmembrane fragment of NCAM into the nucleus that regulates gene expression. In a protein macroarray we identified importin-β1 as a potential interaction partner of NCAM's cytoplasmic tail. The interaction was verified and an importin-β1-dependent import of NCAM into the nucleus could be demonstrated using quantitative immunofluorescence analysis. Generation of NCAM deletion mutants revealed that the last amino acids of the cytoplasmic region of NCAM are dispensable whereas other parts of NCAM's cytoplasmic tail take part in its nuclear translocation. With this study we propose an alternative nuclear route for NCAM via the classical importin-mediated import.
Collapse
Affiliation(s)
- Mirka Homrich
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| | - Fatema Es-Saddiki
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| | - Ingo Gotthard
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| | - Christine Laurini
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| | - Edda Stein
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Hilke Wobst
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| | - Andy Zielinski
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Simone Diestel
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany.
| |
Collapse
|
17
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
18
|
Kraus K, Kleene R, Braren I, Loers G, Lutz D, Schachner M. A fragment of adhesion molecule L1 is imported into mitochondria, and regulates mitochondrial metabolism and trafficking. J Cell Sci 2018; 131:jcs.210500. [PMID: 29632241 DOI: 10.1242/jcs.210500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria. Genetic ablation of L1, inhibition of mitochondrial import of L1-70 or prevention of myelin basic protein-mediated generation of L1-70 all lead to reduced mitochondrial complex I activity, and impaired mitochondrial membrane potential, fusion, fission and motility, as well as increased retrograde transport. We identified NADH dehydrogenase ubiquinone flavoprotein 2 as a binding partner for L1, suggesting that L1-70 interacts with this complex I subunit to regulate complex I activity. The results of our study provide insights into novel functions of L1 in mitochondrial metabolism and cellular dynamics. These functions are likely to ameliorate the consequences of acute nervous system injuries and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Kraus
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - David Lutz
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
19
|
Westphal N, Theis T, Loers G, Schachner M, Kleene R. Nuclear fragments of the neural cell adhesion molecule NCAM with or without polysialic acid differentially regulate gene expression. Sci Rep 2017; 7:13631. [PMID: 29051583 PMCID: PMC5648764 DOI: 10.1038/s41598-017-14056-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) is the major carrier of polysialic acid (PSA) which modulates NCAM functions of neural cells at the cell surface. In previous studies, we have shown that stimulation of cultured neurons with surrogate NCAM ligands leads to the generation and nuclear import of PSA-lacking and -carrying NCAM fragments. Here, we show that the nuclear import of the PSA-carrying NCAM fragment is mediated by positive cofactor 4 and cofilin, which we identified as novel PSA-binding proteins. In the nucleus, the PSA-carrying NCAM fragment interacts via PSA with PC4 and cofilin, which are involved in RNA polymerase II-dependent transcription. Microarray analysis revealed that the nuclear PSA-carrying and -lacking NCAM fragments affect expression of different genes. By qPCR and immunoblot analysis we verified that the nuclear PSA-carrying NCAM fragment increases mRNA and protein expression of nuclear receptor subfamily 2 group F member 6, whereas the PSA-lacking NCAM fragment increases mRNA and protein expression of low density lipoprotein receptor-related protein 2 and α-synuclein. Differential gene expression evoked by nuclear NCAM fragments without and with PSA indicates that PSA-carrying and -lacking NCAM play different functional roles in the nervous system.
Collapse
Affiliation(s)
- Nina Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Thomas Theis
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| |
Collapse
|
20
|
Westphal N, Loers G, Lutz D, Theis T, Kleene R, Schachner M. Generation and intracellular trafficking of a polysialic acid-carrying fragment of the neural cell adhesion molecule NCAM to the cell nucleus. Sci Rep 2017; 7:8622. [PMID: 28819302 PMCID: PMC5561184 DOI: 10.1038/s41598-017-09468-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023] Open
Abstract
Polysialic acid (PSA) and its major protein carrier, the neural cell adhesion molecule NCAM, play important roles in many nervous system functions during development and in adulthood. Here, we show that a PSA-carrying NCAM fragment is generated at the plasma membrane by matrix metalloproteases and transferred to the cell nucleus via endosomes and the cytoplasm. Generation and nuclear import of this fragment in cultured cerebellar neurons is induced by a function-triggering NCAM antibody and a peptide comprising the effector domain (ED) of myristoylated alanine-rich C kinase substrate (MARCKS) which interacts with PSA within the plane of the plasma membrane. These treatments lead to activation of the fibroblast growth factor (FGF) receptor, phospholipase C (PLC), protein kinase C (PKC) and phosphoinositide-3-kinase (PI3K), and subsequently to phosphorylation of MARCKS. Moreover, the NCAM antibody triggers calmodulin-dependent activation of nitric oxide synthase, nitric oxide (NO) production, NO-dependent S-nitrosylation of matrix metalloprotease 9 (MMP9) as well as activation of matrix metalloprotease 2 (MMP2) and MMP9, whereas the ED peptide activates phospholipase D (PLD) and MMP2, but not MMP9. These results indicate that the nuclear PSA-carrying NCAM fragment is generated by distinct and functionally defined signal transducing mechanisms.
Collapse
Affiliation(s)
- Nina Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Thomas Theis
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
21
|
Loers G, Astafiev S, Hapiak Y, Saini V, Mishra B, Gul S, Kaur G, Schachner M, Theis T. The polysialic acid mimetics idarubicin and irinotecan stimulate neuronal survival and neurite outgrowth and signal via protein kinase C. J Neurochem 2017; 142:392-406. [PMID: 28542923 PMCID: PMC5539918 DOI: 10.1111/jnc.14076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023]
Abstract
Polysialic acid (PSA) is a large, negatively charged, linear homopolymer of alpha2-8-linked sialic acid residues. It is generated by two polysialyltransferases and attached to N- and/or O-linked glycans, and its main carrier is the neural cell adhesion molecule (NCAM). PSA controls the development and regeneration of the nervous system by enhancing cell migration, axon pathfinding, synaptic targeting, synaptic plasticity, by regulating the differentiation of progenitor cells and by modulating cell-cell and cell-matrix adhesions. In the adult, PSA plays a role in the immune system, and PSA mimetics promote functional recovery after nervous system injury. In search for novel small molecule mimetics of PSA that are applicable for therapy, we identified idarubicin, an antineoplastic anthracycline, and irinotecan, an antineoplastic agent of the topoisomerase I inhibitor class, as PSA mimetics using a competition enzyme-linked immunosorbent assay. Idarubicin and irinotecan compete with the PSA-mimicking peptide and colominic acid, the bacterial analog of PSA, for binding to the PSA-specific monoclonal antibody 735. Idarubicin and irinotecan stimulate neurite outgrowth and survival of cultured cerebellar neurons after oxidative stress via protein kinase C and Erk1/2 in a similar manner as colominic acid, whereas Fyn, casein kinase II and the phosphatase and tensin homolog are only involved in idarubicin and irinotecan-stimulated neurite outgrowth. These novel results show that the structure and function of PSA can be mimicked by the small organic compounds irinotecan and idarubicin which trigger the same signaling cascades as PSA, thus introducing the possibility of retargeting these drugs to treat nervous system injuries.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Steven Astafiev
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Yuliya Hapiak
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Vedangana Saini
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
| | - Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port (Fraunhofer-IME SP), Schnackenburgalle114, D-22525 Hamburg, Germany
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
- To whom correspondence should be addressed: Melitta Schachner, Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA; phone: +1-732-445-1780; fax: +1-732-445-2063; ; or Melitta Schachner, Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China; phone: + 86 754 8890 0276; fax: + 86 754 8890 0236;
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Katic J, Loers G, Tosic J, Schachner M, Kleene R. The cell adhesion molecule CHL1 interacts with patched-1 to regulate apoptosis during postnatal cerebellar development. J Cell Sci 2017. [PMID: 28630165 DOI: 10.1242/jcs.194563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The immunoglobulin superfamily adhesion molecule close homolog of L1 (CHL1) plays important roles during nervous system development. Here, we identified the hedgehog receptor patched-1 (PTCH1) as a novel CHL1-binding protein and showed that CHL1 interacts with the first extracellular loop of PTCH1 via its extracellular domain. Colocalization and co-immunoprecipitation of CHL1 with PTCH1 suggest an association of CHL1 with this major component of the hedgehog signaling pathway. The trans-interaction of CHL1 with PTCH1 promotes neuronal survival in cultures of dissociated cerebellar granule cells and of organotypic cerebellar slices. An inhibitor of the PTCH1-regulated hedgehog signal transducer, smoothened (SMO), and inhibitors of RhoA and Rho-associated kinase (ROCK) 1 and 2 prevent CHL1-dependent survival of cultured cerebellar granule cells and survival of cerebellar granule and Purkinje cells in organotypic cultures. In histological sections from 10- and 14-day-old CHL1-deficient mice, enhanced apoptosis of granule, but not Purkinje, cells was observed. The results of the present study indicate that CHL1 triggers PTCH1-, SMO-, RhoA- and ROCK-dependent signal transduction pathways to promote neuronal survival after cessation of the major morphogenetic events during mouse cerebellar development.
Collapse
Affiliation(s)
- Jelena Katic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jelena Tosic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA .,Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.,Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
23
|
Kiessling S, O'Callaghan EK, Freyburger M, Cermakian N, Mongrain V. The cell adhesion molecule EphA4 is involved in circadian clock functions. GENES BRAIN AND BEHAVIOR 2017; 17:82-92. [PMID: 28425198 DOI: 10.1111/gbb.12387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
Abstract
Circadian (∼24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel-running behavior of EphA4 knockout (EphA4-/- ) mice under different light conditions and upon photic resetting, as well as their light-induced protein response in the SCN. EphA4-/- mice exhibited reduced wheel-running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4-/- mice exhibited suppressed phase delays of their wheel-running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light-induced c-FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.
Collapse
Affiliation(s)
- S Kiessling
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Present address: Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - E K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - M Freyburger
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - N Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - V Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
24
|
Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci 2017; 40:295-308. [PMID: 28359630 DOI: 10.1016/j.tins.2017.03.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/05/2023]
Abstract
Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders.
Collapse
|
25
|
Mehrabian M, Hildebrandt H, Schmitt-Ulms G. NCAM1 Polysialylation: The Prion Protein's Elusive Reason for Being? ASN Neuro 2016; 8:8/6/1759091416679074. [PMID: 27879349 PMCID: PMC5122176 DOI: 10.1177/1759091416679074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/06/2023] Open
Abstract
Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that uncovered the evolutionary descent of the prion founder gene from an ancestral ZIP zinc transporter, we recently investigated a possible role of PrPC in a morphogenetic program referred to as epithelial-to-mesenchymal transition (EMT). By capitalizing on PrPC knockout cell clones in a mammalian cell model of EMT and using a comparative proteomics discovery strategy, neural cell adhesion molecule-1 emerged as a protein whose upregulation during EMT was perturbed in PrPC knockout cells. Follow-up work led us to observe that PrPC regulates the polysialylation of the neural cell adhesion molecule NCAM1 in cells undergoing morphogenetic reprogramming. In addition to governing cellular migration, polysialylation modulates several other cellular plasticity programs PrPC has been phenotypically linked to. These include neurogenesis in the subventricular zone, controlled mossy fiber sprouting and trimming in the hippocampal formation, hematopoietic stem cell renewal, myelin repair and maintenance, integrity of the circadian rhythm, and glutamatergic signaling. This review revisits this body of literature and attempts to present it in light of this novel contextual framework. When approached in this manner, a coherent model of PrPC acting as a regulator of polysialylation during specific cell and tissue morphogenesis events comes into focus.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|