1
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Jiao L, Junfang Z, Yanna L, Caixia J, Chen Z, Song J, Jie X, Xiaoli Y, Xin G, Libo X, Feng W, lixia L, Chunli X, Lei X. miR-153 promotes neural differentiation by activating the cell adhesion/Ca 2+ signaling pathway and targeting ion channel activity in HT-22 cells by bioinformatic analysis. Heliyon 2024; 10:e30204. [PMID: 38694121 PMCID: PMC11061740 DOI: 10.1016/j.heliyon.2024.e30204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
MicroRNAs have been studied extensively in neurodegenerative diseases. In a previous study, miR-153 promoted neural differentiation and projection formation in mouse hippocampal HT-22 cells. However, the pathways and molecular mechanism underlying miR-153-induced neural differentiation remain unclear. To explore the molecular mechanism of miR-153 on neural differentiation, we performed RNA sequencing on miR-153-overexpressed HT-22 cells. Based on RNA sequencing, differentially expressed genes (DEGs) and pathways in miR-153-overexpressed cells were identified. The Database for Annotation, Visualization and Integrated Discovery and Gene Set Enrichment Analysis were used to perform functional annotation and enrichment analysis of DEGs. Targetscan predicted the targets of miR-153. The Search Tool for the Retrieval of Interacting Genes and Cytoscape, were used to construct protein-protein interaction networks and identify hub genes. Q-PCR was used to detect mRNA expression of the identified genes. The expression profiles of the identified genes were compared between embryonic days 9.5 (E9.5) and E11.5 in the embryotic mouse brain of the GDS3442 dataset. Cell Counting Kit-8 assay was used to determine cell proliferation and cellular susceptibility to amyloid β-protein (Aβ) toxicity in miR-153-overexpressed cells. The results indicated that miR-153 increased cell adhesion/Ca2+ (Cdh5, Nrcam, and P2rx4) and Bdnf/Ntrk2 neurotrophic signaling pathway, and decreased ion channel activity (Kcnc3, Kcna4, Clcn5, and Scn5a). The changes in the expression of the identified genes in miR-153-overexpressed cells were consistent with the expression profile of GDS3442 during neural differentiation. In addition, miR-153 overexpression decreased cellular susceptibility to Aβ toxicity in HT-22 cells. In conclusion, miR-153 overexpression may promote neural differentiation by inducing cell adhesion and the Bdnf/Ntrk2 pathway, and regulating electrophysiological maturity by targeting ion channels. MiR-153 may play an important role in neural differentiation; the findings provide a useful therapeutic direction for neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Jiao
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Zhang Junfang
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Li Yanna
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Jin Caixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zhang Chen
- Department of Laboratory Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jia Song
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Xu Jie
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Xiaoli
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Gui Xin
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xing Libo
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wang Feng
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu lixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Xu Chunli
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Lei
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Thomson LM, Mancuso CA, Wolfe KR, Khailova L, Niemiec S, Ali E, DiMaria M, Mitchell M, Twite M, Morgan G, Frank BS, Davidson JA. The proteomic fingerprint in infants with single ventricle heart disease in the interstage period: evidence of chronic inflammation and widespread activation of biological networks. Front Pediatr 2023; 11:1308700. [PMID: 38143535 PMCID: PMC10748388 DOI: 10.3389/fped.2023.1308700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Children with single ventricle heart disease (SVHD) experience significant morbidity across systems and time, with 70% of patients experiencing acute kidney injury, 33% neurodevelopmental impairment, 14% growth failure, and 5.5% of patients suffering necrotizing enterocolitis. Proteomics is a method to identify new biomarkers and mechanisms of injury in complex physiologic states. Methods Infants with SVHD in the interstage period were compared to similar-age healthy controls. Serum samples were collected, stored at -80°C, and run on a panel of 1,500 proteins in single batch analysis (Somalogic Inc., CO). Partial Least Squares-Discriminant Analysis (PLS-DA) was used to compare the proteomic profile of cases and controls and t-tests to detect differences in individual proteins (FDR <0.05). Protein network analysis with functional enrichment was performed in STRING and Cytoscape. Results PLS-DA readily discriminated between SVHD cases (n = 33) and controls (n = 24) based on their proteomic pattern alone (Accuracy = 0.96, R2 = 0.97, Q2 = 0.80). 568 proteins differed between groups (FDR <0.05). We identified 25 up-regulated functional clusters and 13 down-regulated. Active biological systems fell into six key groups: angiogenesis and cell proliferation/turnover, immune system activation and inflammation, altered metabolism, neural development, gastrointestinal system, and cardiac physiology and development. Conclusions We report a clear differentiation in the circulating proteome of patients with SVHD and healthy controls with >500 circulating proteins distinguishing the groups. These proteomic data identify widespread protein dysregulation across multiple biologic systems with promising biological plausibility as drivers of SVHD morbidity.
Collapse
Affiliation(s)
- Lindsay M. Thomson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher A. Mancuso
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly R. Wolfe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eiman Ali
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael DiMaria
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Max Mitchell
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark Twite
- Department of Anesthesia, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gareth Morgan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin S. Frank
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jesse A. Davidson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Meng N, Pan P, Hu S, Miao C, Hu Y, Wang F, Zhang J, An L. The molecular mechanism of γ-aminobutyric acid against AD: the role of CEBPα/circAPLP2/miR-671-5p in regulating CNTN1/2 expression. Food Funct 2023; 14:2082-2095. [PMID: 36734072 DOI: 10.1039/d2fo03049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression levels of the synaptic-related proteins contactin 1/2 (CNTN1/2) are down-regulated in the brain of Alzheimer's disease (AD), but the mechanism has not been clarified. γ-Aminobutyric acid (GABA) is considered a biologically active ingredient in food. Our previous research revealed that GABA can regulate CEBPα expression in Aβ-treated U251 cells. However, it is uncertain whether GABA can antagonize the pathogenesis of AD. Whether GABA can inhibit the reduction in CNTN1/2 expression by regulating CEBPα/circAPLP2/miR-671-5p in the AD brain remains unclear yet. Here, we demonstrate that GABA could attenuate the deposition of Aβ in the brain and ameliorate cognitive impairments in AD model mice. The expressions of CEBPα, circAPLP2, and CNTN1/2 were decreased and that of miR-671-5p was increased in AD model mouse brains and Aβ-induced SH-SY5Y cells. These alterations were partly reversed by GABA. The CNTN1/2 expression was down-regulated and up-regulated in SH-SY5Y cells treated with miR-671-5p mimics and miR-671-5p inhibitors, respectively. The results from the luciferase reporter assay revealed that miR-671-5p could bind to the 3'-untranslated region of circAPLP2. The silencing of circAPLP2 with the siRNA duplex caused an up-regulation of miR-671-5p and a down-regulation of CNTN1/2 in SH-SY5Y cells. The silencing of CEBPα with the siRNA duplex caused a down-regulation of circAPLP2 or CNTN1/2 and an up-regulation of miR-671-5p. In conclusion, GABA may decrease the deposition of Aβ in the brain, inhibit the down-regulation of CNTN1/2 expression, and ameliorate the cognitive deficits of AD model mice. The CEBPα/circAPLP2/miR-671-5p pathway plays a role in regulating CNTN1/2 expression by GABA in AD.
Collapse
Affiliation(s)
- Na Meng
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Pengyu Pan
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Shuang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Chen Miao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Yixin Hu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Fangfang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Bizzoca A, Jirillo E, Flace P, Gennarini G. Overall Role of Contactins Expression in Neurodevelopmental Events and Contribution to Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1176-1193. [PMID: 36515028 DOI: 10.2174/1871527322666221212160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodegenerative disorders may depend upon a misregulation of the pathways which sustain neurodevelopmental control. In this context, this review article focuses on Friedreich ataxia (FA), a neurodegenerative disorder resulting from mutations within the gene encoding the Frataxin protein, which is involved in the control of mitochondrial function and oxidative metabolism. OBJECTIVE The specific aim of the present study concerns the FA molecular and cellular substrates, for which available transgenic mice models are proposed, including mutants undergoing misexpression of adhesive/morphoregulatory proteins, in particular belonging to the Contactin subset of the immunoglobulin supergene family. METHODS In both mutant and control mice, neurogenesis was explored by morphological/morphometric analysis through the expression of cell type-specific markers, including b-tubulin, the Contactin-1 axonal adhesive glycoprotein, as well as the Glial Fibrillary Acidic Protein (GFAP). RESULTS Specific consequences were found to arise from the chosen misexpression approach, consisting of a neuronal developmental delay associated with glial upregulation. Protective effects against the arising phenotype resulted from antioxidants (essentially epigallocatechin gallate (EGCG)) administration, which was demonstrated through the profiles of neuronal (b-tubulin and Contactin 1) as well as glial (GFAP) markers, in turn indicating the concomitant activation of neurodegeneration and neuro repair processes. The latter also implied activation of the Notch-1 signaling. CONCLUSION Overall, this study supports the significance of changes in morphoregulatory proteins expression in the FA pathogenesis and of antioxidant administration in counteracting it, which, in turn, allows to devise potential therapeutic approaches.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| |
Collapse
|
6
|
Hippocampal F3/Contactin plays a role in chronic stress-induced depressive-like effects and the antidepressant actions of vortioxetine in mice. Biochem Pharmacol 2022; 202:115097. [DOI: 10.1016/j.bcp.2022.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
|
7
|
Huang Y, Driedonks TA, Cheng L, Rajapaksha H, Routenberg DA, Nagaraj R, Redding J, Arab T, Powell BH, Pletniková O, Troncoso JC, Zheng L, Hill AF, Mahairaki V, Witwer KW. Brain Tissue-Derived Extracellular Vesicles in Alzheimer's Disease Display Altered Key Protein Levels Including Cell Type-Specific Markers. J Alzheimers Dis 2022; 90:1057-1072. [PMID: 36213994 PMCID: PMC9741741 DOI: 10.3233/jad-220322] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Brain tissue-derived extracellular vesicles (bdEVs) play neurodegenerative and protective roles, including in Alzheimer's disease (AD). Extracellular vesicles (EVs) may also leave the brain to betray the state of the CNS in the periphery. Only a few studies have profiled the proteome of bdEVs and source brain tissue. Additionally, studies focusing on bdEV cell type-specific surface markers are rare. OBJECTIVE We aimed to reveal the pathological mechanisms inside the brain by profiling the tissue and bdEV proteomes in AD patients. In addition, to indicate targets for capturing and molecular profiling of bdEVs in the periphery, CNS cell-specific markers were profiled on the intact bdEV surface. METHODS bdEVs were separated and followed by EV counting and sizing. Brain tissue and bdEVs from age-matched AD patients and controls were then proteomically profiled. Total tau (t-tau), phosphorylated tau (p-tau), and antioxidant peroxiredoxins (PRDX) 1 and 6 were measured by immunoassay in an independent bdEV separation. Neuron, microglia, astrocyte, and endothelia markers were detected on intact EVs by multiplexed ELISA. RESULTS Overall, concentration of recovered bdEVs was not affected by AD. Proteome differences between AD and control were more pronounced for bdEVs than for brain tissue. Levels of t-tau, p-tau, PRDX1, and PRDX6 were significantly elevated in AD bdEVs compared with controls. Release of certain cell-specific bdEV markers was increased in AD. CONCLUSION Several bdEV proteins are involved in AD mechanisms and may be used for disease monitoring. The identified CNS cell markers may be useful tools for peripheral bdEV capture.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom A.P. Driedonks
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | | | | | - Javier Redding
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bonita H. Powell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletniková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew F. Hill
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Institute of Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Gilhooley MJ, Hickey DG, Lindner M, Palumaa T, Hughes S, Peirson SN, MacLaren RE, Hankins MW. ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration. Exp Eye Res 2021; 207:108553. [PMID: 33811915 PMCID: PMC8214074 DOI: 10.1016/j.exer.2021.108553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Purpose Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. Methods Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. Results A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. Conclusion Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies. Bipolar cells are attractive targets for therapeutic optogenetics in IRDs. This is the first cell specific transcriptomic analysis of bipolar cells in an IRD model. Bipolar cells maintain expression of genes essential to act as targets for optogenetics. Protein staining relating to four candidate genes (Anxa7, Cntn1, Srm2, Sulf2) is confirmed using immunohistochemistry.
Collapse
Affiliation(s)
- Michael J Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Royal Victorian Eye and Ear Hospital, Melbourne, 002, Australia
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg, 35037, Germany
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
9
|
Long-term Changes in the Central Amygdala Proteome in Rats with a History of Chronic Cocaine Self-administration. Neuroscience 2020; 443:93-109. [PMID: 32540363 DOI: 10.1016/j.neuroscience.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
The central nucleus of the amygdala (CeA) is a striatum-like structure that contains mainly inhibitory circuits controlling a repertoire of (mal)adaptive behaviors related to pain, anxiety, motivation, and addiction. Neural activity in the CeA is also necessary for the expression of persistent and robust drug seeking, also termed 'incubation of drug craving.' However, neuroadaptations within this brain region supporting incubated drug craving have not been characterized. Here, we conducted a comprehensive analysis of protein expression in the CeA of male rats after prolonged (45-day) abstinence from extended-access cocaine self-administration using a quantitative proteomic approach. The proteomic analysis identified 228 unique proteins altered in cocaine rats relative to animals that received saline. Out of the identified proteins, 160 were downregulated, while 68 upregulated. Upregulation of tyrosine hydroxylase and downregulation of neural cell-adhesion protein contactin-1 were validated by immunoblotting. Follow-up analysis by the Ingenuity Pathway Analysis tool revealed alterations in protein networks associated with several neurobehavioral disorders, cellular function and morphology, as well as axogenesis, long-term potentiation, and receptor signaling pathways. This study suggests that chronic cocaine self-administration, followed by a prolonged abstinence results in reorganization of specific protein signaling networks within the CeA that may underlie incubated cocaine craving and identifies potential novel 'druggable' targets for the treatment of cocaine use disorder (CUD).
Collapse
|
10
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
11
|
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of Nerve Cell Differentiation: Role of Polyphenols and of Contactin Family Components. Front Cell Dev Biol 2019; 7:119. [PMID: 31380366 PMCID: PMC6656924 DOI: 10.3389/fcell.2019.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
In this study the mechanisms are explored, which modulate expression and function of cell surface adhesive glycoproteins of the Immunoglobulin Supergene Family (IgSF), and in particular of its Contactin subset, during neuronal precursor developmental events. In this context, a specific topic concerns the significance of the expression profile of such molecules and their ability to modulate signaling pathways activated through nutraceuticals, in particular polyphenols, administration. Both in vitro and in vivo approaches are chosen. As for the former, by using as a model the human SH-SY5Y neuroblastoma line, the effects of grape seed polyphenols are evaluated on proliferation and commitment/differentiation events along the neuronal lineage. In SH-SY5Y cell cultures, polyphenols were found to counteract precursor proliferation while promoting their differentiation, as deduced by studying their developmental parameters through the expression of cell cycle and neuronal commitment/differentiation markers as well as by measuring neurite growth. In such cultures, Cyclin E expression and BrdU incorporation were downregulated, indicating reduced precursor proliferation while increased neuronal differentiation was inferred from upregulation of cell cycle exit (p27–Kip) and neuronal commitment (NeuN) markers as well as by measuring neurite length through morphometric analysis. The polyphenol effects on developmental parameters were also explored in vivo, in cerebellar cortex, by using as a model the TAG/F3 transgenic line, which undergoes delayed neural development as a consequence of Contactin1 adhesive glycoprotein upregulation and premature expression under control of the Contactin2 gene (Cntn-2) promoter. In this transgenic line, a Notch pathway activation is known to occur and polyphenol treatment was found to counteract such an effect, demonstrated through downregulation of the Hes-1 transcription factor. Polyphenols also downregulated the expression of adhesive glycoproteins of the Contactin family themselves, demonstrated for both Contactin1 and Contactin2, indicating the involvement of changes in the expression of the underlying genes in the observed phenotype. These data support the hypothesis that the complex control exerted by polyphenols on neural development involves modulation of expression and function of the genes encoding cell adhesion molecules of the Contactin family and of the associated signaling pathways, indicating potential mechanisms whereby such compounds may control neurogenesis.
Collapse
Affiliation(s)
- Sabrina Picocci
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Bizzoca
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Corsi
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Thea Magrone
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Gennarini
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Pedrero-Prieto CM, Flores-Cuadrado A, Saiz-Sánchez D, Úbeda-Bañón I, Frontiñán-Rubio J, Alcaín FJ, Mateos-Hernández L, de la Fuente J, Durán-Prado M, Villar M, Martínez-Marcos A, Peinado JR. Human amyloid-β enriched extracts: evaluation of in vitro and in vivo internalization and molecular characterization. Alzheimers Res Ther 2019; 11:56. [PMID: 31253170 PMCID: PMC6599264 DOI: 10.1186/s13195-019-0513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intracerebral inoculation of extracts from post-mortem human Alzheimer's disease brains into mice produces a prion-like spreading effect of amyloid-β. The differences observed between these extracts and the synthetic peptide, in terms of amyloid-β internalization and seed and cell-to-cell transmission of cytosolic protein aggregates, suggest that brain extracts contain key contributors that enhance the prion-like effect of amyloid-β. Nevertheless, these potential partners are still unknown due to the complexity of whole brain extracts. METHODS Herein, we established a method based on sequential detergent solubilization of post-mortem samples of human brains affected by Alzheimer's disease that strongly enrich amyloid-β aggregates by eliminating 92% of the remaining proteins. Internalization of Aβ1-42 from the enriched AD extracts was evaluated in vitro, and internalization of fluorescent-labeled AD extracts was also investigated in vivo. Furthermore, we carried out a molecular characterization of the Aβ-enriched fraction using label-free proteomics, studying the distribution of representative components in the amygdala and the olfactory cortex of additional human AD brain samples by immunohistochemistry. RESULTS Aβ1-42 from the enriched AD extracts are internalized into endothelial cells in vitro after 48 h. Furthermore, accumulation of fluorescent-labeled Aβ-enriched extracts into mouse microglia was observed in vivo after 4 months of intracerebral inoculation. Label-free proteomics (FDR < 0.01) characterization of the amyloid-β-enriched fraction from different post-mortem samples allowed for the identification of more than 130 proteins, several of which were significantly overrepresented (i.e., ANXA5 and HIST1H2BK; p < 0.05) and underrepresented (i.e., COL6A or FN1; p < 0.05) in the samples with Alzheimer's disease. We were also able to identify proteins exclusively observed in Alzheimer's disease (i.e., RNF213) or only detected in samples not affected by the disease (i.e., CNTN1) after the enrichment process. Immunohistochemistry against these proteins in additional tissues revealed their particular distribution in the amygdala and the olfactory cortex in relation to the amyloid-β plaque. CONCLUSIONS Identification and characterization of the unique features of these extracts, in terms of amyloid-β enrichment, identification of the components, in vitro and in vivo cell internalization, and tissue distribution, constitute the best initial tool to further investigate the seeding and transmissibility proposed in the prion-like hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sánchez
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isabel Úbeda-Bañón
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alino Martínez-Marcos
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
13
|
Park M. AMPA Receptor Trafficking for Postsynaptic Potentiation. Front Cell Neurosci 2018; 12:361. [PMID: 30364291 PMCID: PMC6193507 DOI: 10.3389/fncel.2018.00361] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic strength, which has long been considered a synaptic correlate for learning and memory, requires a fast recruitment of additional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) to the postsynaptic sites. As cell biological concepts have been applied to the field and genetic manipulation and microscopic imaging technologies have been advanced, visualization of the trafficking of AMPARs to synapses for LTP has been investigated intensively over the last decade. Recycling endosomes have been reported as intracellular storage organelles to supply AMPARs for LTP through the endocytic recycling pathway. In addition, exocytic domains in the spine plasma membrane, where AMPARs are inserted from the intracellular compartment, and nanodomains, where diffusing AMPARs are trapped and immobilized inside synapses for LTP, have been described. Furthermore, cell surface lateral diffusion of AMPARs from extrasynaptic to synaptic sites has been reported as a key step for AMPAR location to the synaptic sites for LTP. This review article will discuss recent findings and views on the reservoir(s) of AMPARs and their trafficking for LTP expression by focusing on the exocytosis and lateral diffusion of AMPARs, and provide some future directions that need to be addressed in the field of LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
14
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|