1
|
Mitrovic M, Selakovic D, Jovicic N, Ljujic B, Rosic G. BDNF/proBDNF Interplay in the Mediation of Neuronal Apoptotic Mechanisms in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:4926. [PMID: 40430064 PMCID: PMC12112594 DOI: 10.3390/ijms26104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
The neurotrophic system includes neurotrophins, such as brain-derived neurotrophic factor (BDNF) and its precursor proBDNF, which play conflicting roles in neuronal survival and apoptosis, with their balance having a significant impact on neurodegenerative outcomes. While BDNF is widely acknowledged as a potent neurotrophin that promotes neuronal survival and differentiation, its precursor, proBDNF, has the opposite effect, promoting apoptosis and neuronal death. This review highlights the new and unique aspects of BDNF/proBDNF interaction in the modulation of neuronal apoptotic pathways in neurodegenerative disorders. It systematically discusses the cross-talk in apoptotic signaling at the molecular level, whereby BDNF activates survival pathways such as PI3K/Akt and MAPK/ERK, whereas proBDNF activates p75NTR and sortilin to induce neuronal apoptosis via JNK, RhoA, NFkB, and Rac-GTPase pathways such as caspase activation and mitochondrial injury. Moreover, this review emphasizes the factors that affect the balance between proBDNF and BDNF levels within the context of neurodegeneration, including proteolytic processing, the expression of TrkB and p75NTR receptors, and extrinsic gene transcription regulators. Cellular injury, stress, or signaling pathway alterations can disrupt the balance of BDNF/proBDNF, which may be involved in apoptotic-related neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. This review provides a comprehensive framework for targeting neurotrophin signaling in the development of innovative therapies for neuronal survival and managing apoptotic-related neurodegenerative disorders, addressing the mechanistic complexity and clinical feasibility of BDNF/proBDNF interaction.
Collapse
Affiliation(s)
- Marina Mitrovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
2
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Ekrani ST, Mahmoudi M, Haghmorad D, Kheder RK, Hatami A, Esmaeili SA. Manipulated mesenchymal stem cell therapy in the treatment of Parkinson's disease. Stem Cell Res Ther 2024; 15:476. [PMID: 39696636 DOI: 10.1186/s13287-024-04073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been considered a promising approach for the treatment of Parkinson's disease (PD) for several years. PD is a globally prevalent neurodegenerative disease characterized by the accumulation of Lewy bodies and the loss of dopaminergic neurons, leading to severe motor and non-motor complications in patients. As current treatments are unable to halt the progression of neuronal loss and dopamine degradation, MSC therapy has emerged as a highly promising strategy for PD treatment. This promise is due to MSCs' unique properties compared to other types of stem cells, including self-renewal, differentiation potential, immune privilege, secretion of neurotrophic factors, ability to improve damaged tissue, modulation of the immune system, and lack of ethical concerns. MSCs have been employed in numerous pre-clinical and clinical studies for PD treatment with promising results. However, certain aspects of their efficacy in treating PD may benefit from various genetic and epigenetic modifications. In this review article, we assess these approaches to improving MSCs for specialized treatment of PD.
Collapse
Affiliation(s)
- Seyedeh Toktam Ekrani
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Alireza Hatami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Liu J, Ji Z, He Q, Chen H, Xu X, Mei Q, Hu Y, Zhang H. Direct conversion of human umbilical cord mesenchymal stem cells into dopaminergic neurons for Parkinson's disease treatment. Neurobiol Dis 2024; 201:106683. [PMID: 39343249 DOI: 10.1016/j.nbd.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits due to the depletion of nigrostriatal dopamine. Stem cell differentiation therapy emerges as a promising treatment option for sustained symptom relief. In this study, we successfully developed a one-step differentiation system using the YFBP cocktail (Y27632, Forskolin, SB431542, and SP600125) to effectively convert human umbilical cord mesenchymal stem cells (hUCMSCs) into dopaminergic neurons without genetic modification. This approach addresses the challenge of rapidly and safely generating functional neurons on a large scale. After a 7-day induction period, over 80 % of the cells were double-positive for TUBB3 and NEUN. Transcriptome analysis revealed the dual roles of the cocktail in inducing fate erasure in mesenchymal stem cells and activating the neuronal program. Notably, these chemically induced cells (CiNs) did not express HLA class II genes, preserving their immune-privileged status. Further study indicated that YFBP significantly downregulated p53 signaling and accelerated the differentiation process when Pifithrin-α, a p53 signaling inhibitor, was applied. Additionally, Wnt/β-catenin signaling was transiently activated within one day, but the prolonged activation hindered the neuronal differentiation of hUCMSCs. Upon transplantation into the striatum of mice, CiNs survived well and tested positive for dopaminergic neuron markers. They exhibited typical action potentials and sodium and potassium ion channel activity, demonstrating neuronal electrophysiological activity. Furthermore, CiNs treatment significantly increased the number of tyrosine hydroxylase-positive cells and the concentration of dopamine in the striatum, effectively ameliorating movement disorders in PD mice. Overall, our study provides a secure and reliable framework for cell replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhongqing Ji
- Department of Orthopedics, Suzhou Yongding Hospital, Suzhou 215200, China
| | - Qisheng He
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Huanhuan Chen
- The Suqian Clinical College of Xuzhou Medical University, Suqian 223800, China
| | - Xiaojing Xu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qiuhao Mei
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Ya'nan Hu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Araghi MME, Abdolmaleki A, Ghaleh HEG, Kondori BJ, Alvanegh AG, Moghaddam MM, Anbaran SJHN. Transplantation of human umbilical cord mesenchymal stem cells optimized with IFN-γ is a potential procedure for modification of motor impairment in multiple sclerosis cases: a preclinical systematic review and meta-analysis study. Anat Cell Biol 2024; 57:333-345. [PMID: 38978508 PMCID: PMC11424570 DOI: 10.5115/acb.24.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024] Open
Abstract
Stem cells transplantation (SCT) is known as a newfound strategy for multiple sclerosis (MS) treatment. Human umbilical cord mesenchymal stem cells (hUCMSCs) contain various regenerative features. Experimental autoimmune encephalomyelitis (EAE) is a laboratory model of MS. This meta-analysis study was conducted to assess the overall therapeutic effects of hUCMSCs on reduction of clinical score (CS) and restoration of active movement in EAE-induced animals. For comprehensive searching (in various English and Persian databases until May 1, 2024), the main keywords of "Experimental Autoimmune Encephalomyelitis", "Multiple Sclerosis", "Human", "Umbilical Cord", "Mesenchymal", and "Stem Cell" were hired. Collected data were transferred to the citation manager software (EndNote x8) and duplicate papers were merged. Primary and secondary screenings were applied (according to the inclusion and exclusion criteria) and eligible studies were prepared for data collection. CS of two phases of peak and recovery of EAE were extracted as the difference in means and various analyses including heterogeneity, publication bias, funnel plot, and sensitivity index were reported. Meta-analysis was applied by CMA software (v.2), P<0.05 was considered a significant level, and the confidence interval (CI) was determined 95% (95% CI). Six eligible high-quality (approved by ARRIVE checklist) papers were gathered. The difference in means of peak and recovery phases were -0.775 (-1.325 to -0.225; P=0.006; I2=90.417%) and -1.230 (-1.759 to -0.700; P<0.001; I2=93.402%), respectively. The overall therapeutic effects of SCT of hUCMSCs on the EAE cases was -1.011 (95% CI=-1.392 to -0.629; P=0.001). hUCMSCs transplantation through the intravenous route to the animal MS model (EAE) seems a considerably effective procedure for the alleviation of motor defects in both phases of peak and recovery.
Collapse
Affiliation(s)
| | - Amir Abdolmaleki
- Department of Operating Room, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
7
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
9
|
Sun J, Zhang W, Wei ZZ, Song X, Jian L, Jiang F, Wang S, Li H, Zhang Y, Tuo H. Mesenchymal stromal cell biotherapy for Parkinson's disease premotor symptoms. Chin Neurosurg J 2023; 9:28. [PMID: 37833807 PMCID: PMC10571301 DOI: 10.1186/s41016-023-00338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/30/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with motor deficits due to nigrostriatal dopamine depletion and with the non-motor/premotor symptoms (NMS) such as anxiety, cognitive dysfunction, depression, hyposmia, and sleep disorders. NMS is presented in at least one-fifth of the patients with PD. With the histological information being investigated, stem cells are shown to provide neurotrophic supports and cellular replacement in the damaging brain areas under PD conditions. Pathological change of progressive PD includes degeneration and loss of dopaminergic neurons in the substantia nigra of the midbrain. The current stem cell beneficial effect addresses dopamine boost for the striatal neurons and gliovascular mechanisms as competing for validated PD drug targets. In addition, there are clinical interventions for improving the patient's NMS and targeting their autonomic dysfunction, dementia, mood disorders, or sleep problems. In our and many others' research using brain injury models, multipotent mesenchymal stromal cells demonstrate an additional and unique ability to alleviate depressive-like behaviors, independent of an accelerated motor recovery. Intranasal delivery of the stem cells is discussed for it is extensively tested in rodent animal models of neurological and psychiatric disorders. In this review, we attempt to discuss the repairing potentials of transplanted cells into parkinsonism pathological regions of motor deficits and focus on preventive and treatment effects. From new approaches in the PD biological therapy, it is believed that it can as well benefit patients against PD-NMS.
Collapse
Affiliation(s)
- Jinmei Sun
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Beijing Tropical Medicine Research Institute, Beijing, China
| | - Wei Zhang
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Zheng Zachory Wei
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Liu Jian
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
| | - Feng Jiang
- Neuroscience Research Institute, Peking University, Beijing, China
- Casstar, Zhongguancun No.1 Global Key & Core Technology (AI) Innovation Center, Beijing, China
| | - Shuanglin Wang
- Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haibo Li
- Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Yongbo Zhang
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China
| | - Houzhen Tuo
- Clinical Diagnosis and Treatment Center for Parkinson's Disease, Beijing Friendship Hospital, Beijing, China.
- Laboratories of Biological Therapeutic Medical Technology, Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Capital Medical University, Beijing, China.
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Neuroscience Institute, Beijing, China.
| |
Collapse
|
10
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Yan S, Campos de Souza S, Xie Z, Bao Y. Research progress in clinical trials of stem cell therapy for stroke and neurodegenerative diseases. IBRAIN 2023; 9:214-230. [PMID: 37786546 PMCID: PMC10529019 DOI: 10.1002/ibra.12095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 10/04/2023]
Abstract
The incidence of stroke and neurodegenerative diseases is gradually increasing in modern society, but there is still no treatment that is effective enough. Stem cells are cells that can reproduce (self-renew) and differentiate into the body, which have shown significance in basic research, while doctors have also taken them into clinical trials to determine their efficacy and safety. Existing clinical trials mainly include middle-aged and elderly patients with stroke or Parkinson's disease (mostly 40-80 years old), mainly involving injection of mesenchymal stem cells and bone marrow mesenchymal stem cells through the veins and the putamen, with a dosage of mostly 106-108 cells. The neural and motor functions of the patients were restored after stem cell therapy, and the safety was found to be good during the follow-up period of 3 months to 5 years. Here, we review all clinical trials and the latest advances in stroke, Alzheimer's disease, and Parkinson's disease, with the hope that stem cell therapy will be used in the clinic in the future to achieve effective treatment rates and benefit patients.
Collapse
Affiliation(s)
- Shan‐Shan Yan
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Zhen‐Dong Xie
- Institute for Bioengineering of CataloniaUniversity of BarcelonaCarrer de Baldiri ReixacBarcelonaSpain
| | - Yong‐Xin Bao
- Qingdao Women and Children's HospitalQingdao UniversityQingdaoChina
| |
Collapse
|
13
|
Castelnovo LF, Thomas P. Progesterone exerts a neuroprotective action in a Parkinson's disease human cell model through membrane progesterone receptor α (mPRα/PAQR7). Front Endocrinol (Lausanne) 2023; 14:1125962. [PMID: 36967764 PMCID: PMC10036350 DOI: 10.3389/fendo.2023.1125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and current treatment options are unsatisfactory on the long term. Several studies suggest a potential neuroprotective action by female hormones, especially estrogens. The potential role of progestogens, however, is less defined, and no studies have investigated the potential involvement of membrane progesterone receptors (mPRs). In the present study, the putative neuroprotective role for mPRs was investigated in SH-SY5Y cells, using two established pharmacological treatments for cellular PD models, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Our results show that both the physiologic agonist progesterone and the specific mPR agonist Org OD 02-0 were effective in reducing SH-SY5Y cell death induced by 6-OHDA and MPP+, whereas the nuclear PR agonist promegestone (R5020) and the GABAA receptor agonist muscimol were ineffective. Experiments performed with gene silencing technology and selective pharmacological agonists showed that mPRα is the isoform responsible for the neuroprotective effects we observed. Further experiments showed that the PI3K-AKT and MAP kinase signaling pathways are involved in the mPRα-mediated progestogen neuroprotective action in SH-SY5Y cells. These findings suggest that mPRα could play a neuroprotective role in PD pathology and may be a promising target for the development of therapeutic strategies for PD prevention or management.
Collapse
Affiliation(s)
| | - Peter Thomas
- *Correspondence: Luca F. Castelnovo, ; Peter Thomas,
| |
Collapse
|