1
|
Xu H, Li K, Liang X, Wang Z, Yang B. Multi-omics analysis to explore the molecular mechanisms related to keloid. Burns 2025; 51:107396. [PMID: 39874886 DOI: 10.1016/j.burns.2025.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/14/2024] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Keloid is a benign skin tumor that result from abnormal wound healing and excessive collagen deposition. The pathogenesis is believed to be linked to genetic predisposition and immune imbalance, although the precise mechanisms remain poorly understood. Current therapeutic approaches may not consistently yield satisfactory outcomes and are often accompanied by potential side effects and risks. The high recurrence rate and refractory nature of keloid nodules present significant challenges and uncertainties in their management. Given the lack of effective treatment strategies, it is essential to identify key molecular pathways and potential therapeutic targets for keloid. OBJECTIVE This study aimed to identify the potential pathogenic mechanisms, hub genes, and immune cell involvement in keloid formation, with the goal of providing novel insights for targeted therapies. METHODS We utilized a combination of bulk RNA sequencing to analyze gene expression profiles in keloid tissues. Differentially expressed genes (DEGs) were identified and subjected to pathway enrichment analysis to reveal key biological processes involved in keloid pathogenesis. Mendelian randomization was performed to investigate the causal relationship between genetic factors and keloid formation, identifying potential hub genes. Immune infiltration analysis was conducted to determine the role of specific immune cells in keloid development. Subsequently, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed to investigate the functional pathways associated with the hub genes. Network analysis was employed to identify transcription factors, miRNAs, and potential drugs in the Connectivity Map associated with the hub genes. Single-cell RNA sequencing was also used to identify cell-specific expression patterns of these genes. RESULTS Pathway enrichment analysis highlighted the association of keloid pathogenesis with cell proliferation and division, providing insights into the molecular processes involved. Mendelian randomization revealed that DUSP1 acts as an inhibitor of keloid formation, while HOXA5 promotes keloid pathogenesis. Immune infiltration analysis suggested that mast cells and macrophages play critical roles in the disease's progression. Based on hub gene analysis, the IL17 signaling pathway emerged as a key pathway implicated in keloid development. Further drug prediction models identified 9-methyl-5H-6-thia-4, 5-diaza-chrysene-6, 6-dioxide, zebularine, temozolomide and valproic acid targeting these hub genes. CONCLUSION DUSP1 and HOXA5 are hub genes in keloid pathogenesis, with DUSP1 acting as an inhibitor and HOXA5 as a promoter of disease progression. Targeting the regulatory networks associated with these genes could provide novel therapeutic strategies. Mast cells and macrophages are identified as critical immune cell types involved in the disease process. Additionally, the IL17 signaling pathway plays a crucial role in keloid development, highlighting its potential as a therapeutic target. These findings suggest that a multi-target approach focusing on these pathways could offer effective treatment options for keloid patients.
Collapse
Affiliation(s)
- Hailin Xu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Keai Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyong Wang
- Department of Joint Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Duobao Road No.63, Liwan District, Guangzhou, Guangdong 510150, China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
3
|
Wang S, Yu H, Liu S, Liu Y, Gu X. Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- β signaling and MicroRNAs. Front Med (Lausanne) 2024; 11:1415278. [PMID: 39386739 PMCID: PMC11461268 DOI: 10.3389/fmed.2024.1415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the respiratory system. Patients with PF usually have an abbreviated survival period and a consequential high mortality rate after the diagnosis is confirmed, posing serious threats to human health. In clinical practice, PF is typically treated by antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents have been reported to correlate with substantial adverse effects, escalating costs, and insufficient efficacy. Moreover, it remains unclarified about the multifactorial pathology of PF. Therefore, there is an urgent demand for elucidating these underlying mechanisms and identifying safe, efficient, and targeted therapeutic strategies for PF treatment. The crucial role of the transforming growth factor-β (TGF-β) signaling pathway in PF development has been explored in many studies. MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene expression, can significantly affect the development of PF by modulating TGF-β signaling. In turn, TGF-β signaling can regulate the expression and biogenesis of miRNAs, thereby substantially affecting the progression of PF. Hence, the therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may hinder the pathways related to TGF-β signaling. These strategies may contribute to the prevention and suppression of PF progression and may provide novel insights into the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Yang N, Hou YB, Cui TH, Yu JM, He SF, Zhu HJ. Ischemic-Preconditioning Induced Serum Exosomal miR-133a-3p Improved Post-Myocardial Infarction Repair via Targeting LTBP1 and PPP2CA. Int J Nanomedicine 2024; 19:9035-9053. [PMID: 39253060 PMCID: PMC11381219 DOI: 10.2147/ijn.s463477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Background Ischemic preconditioning-induced serum exosomes (IPC-exo) protected rat heart against myocardial ischemia/reperfusion injury. However, whether IPC-exo regulate replacement fibrosis after myocardial infarction (MI) and the underlying mechanisms remain unclear. MicroRNAs (miRs) are important cargos of exosomes and play an essential role in cardioprotection. We aim to investigate whether IPC-exo regulate post-MI replacement fibrosis by transferring cardioprotective miRs and its action mechanism. Methods Exosomes obtained from serum of adult rats in control (Con-exo) and IPC groups were identified and analyzed, subsequently intracardially injected into MI rats following ligation. Their miRs profiles were identified using high-throughput miR sequencing to identify target miRs for bioinformatics analysis. Luciferase reporter assays confirmed target genes of selected miRs. IPC-exo transfected with selected miRs antagomir or NC were intracardially administered to MI rats post-ligation. Cardiac function and degree of replacement fibrosis were detected 4 weeks post-MI. Results IPC-exo exerted cardioprotective effects against excessive replacement fibrosis. MiR sequencing and RT-qPCR identified miR-133a-3p as most significantly different between IPC-exo and Con-exo. MiR-133a-3p directly targeted latent transforming growth factor beta binding protein 1 (LTBP1) and protein phosphatase 2, catalytic subunit, alpha isozyme (PPP2CA). KEGG analysis showed that transforming growth factor-β (TGF-β) was one of the most enriched signaling pathways with miR-133a-3p. Comparing to injection of IPC-exo transfected with miR-133a-3p antagomir NC, injecting IPC-exo transfected with miR-133a-3p antagomir abolished protective effects of IPC-exo on declining excessive replacement fibrosis and cardiac function enhancement, while increasing the messenger RNA and protein expression of LTBP1, PPP2CA, and TGF-β1in MI rats. Conclusion IPC-exo inhibit excessive replacement fibrosis and improve cardiac function post-MI by transferring miR-133a-3p, the mechanism is associated with directly targeting LTBP1 and PPP2CA, and indirectly regulating TGF-β pathway in rats. Our finding provides potential therapeutic effect of IPC-induced exosomal miR-133a-3p for cardiac repair.
Collapse
Affiliation(s)
- Na Yang
- Department of Anesthesiology, Maternal and Child Medical Center of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, People’s Republic of China
| | - Yong-Bo Hou
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, People’s Republic of China
- Department of Anesthesiology, Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Tian-Hao Cui
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, People’s Republic of China
| | - Jun-Ma Yu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, People’s Republic of China
| | - Shu-Fang He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Hai-Juan Zhu
- Department of Anesthesiology, Maternal and Child Medical Center of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
5
|
Jerala M, Remic T, Hauptman N, Zidar N. Fibrosis-Related microRNAs in Crohn's Disease with Fibrostenosis and Inflammatory Stenosis. Int J Mol Sci 2024; 25:8826. [PMID: 39201512 PMCID: PMC11354456 DOI: 10.3390/ijms25168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is frequently complicated by strictures that can be either inflammatory or fibrostenotic. This distinction is important for deciding the best treatment course, but it can be difficult to determine clinically, sometimes even by advanced imaging techniques. We performed miRNA PCR panel screening on pooled samples of ileum with CD fibrostenosis or inflammatory stenosis. Eight miRNAs with profibrotic (miR-93-5p, miR-376c-3p and miR-424-5p), or fibroprotective (miR-133a-3p, miR-133b, miR-193a-5p, miR-335-5p and miR-378a-3p) functions described in the literature were selected for validation on 20 samples each of CD with fibrostenosis or inflammatory stenosis, with a separate sampling of the submucosa and subserosa. The results showed significant differences between the groups in subserosal samples, with upregulation of profibrotic miRNAs and downregulation of fibroprotective miRNAs in fibrostenosis compared to inflammatory stenosis. Only miR-424-5p showed a significant difference in the submucosa. There were significant differences in miRNA expression between subserosa and submucosa. Our results provide further evidence that the major differences between fibrostenosis and inflammatory stenosis are located in the subserosa, which is inaccessible to endoscopic sampling, highlighting the need for cross-sectional imaging or serological markers. We identify several miRNAs previously not connected to fibrosis in CD, which could potentially serve as biomarkers of fibrostenosis.
Collapse
Affiliation(s)
| | | | | | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (M.J.); (T.R.); (N.H.)
| |
Collapse
|
6
|
Kim HJ, Kim YH. Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies. Int J Mol Sci 2024; 25:8776. [PMID: 39201463 PMCID: PMC11354446 DOI: 10.3390/ijms25168776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Chiba Y, Adachi Y, Ando Y, Fujii S, Suto W, Sakai H. A lncRNA MALAT1 is a positive regulator of RhoA protein expression in bronchial smooth muscle cells. Life Sci 2023; 313:121289. [PMID: 36529281 DOI: 10.1016/j.lfs.2022.121289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS Augmented smooth muscle contractility of the airways associated with an increased expression of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of contraction, is one of the causes of airway hyperresponsiveness. However, the mechanism of the altered properties of airway smooth muscle cells, including the RhoA upregulation, is not fully understood. This study aims to define functional role of a long non-coding RNA MALAT1 in the RhoA expression and development of bronchial smooth muscle (BSM) hyper-contractility. MAIN METHODS Cultured human BSM cells were transfected with MALAT1 antisense oligonucleotide (AS), miR-133a-3p mimic, and/or inhibitor, and then stimulated with interleukin-13 (IL-13). In animal experiments, the ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. KEY FINDINGS Treatment of the cells with IL-13 induced an increase in RhoA protein. Either MALAT1 AS or miR-133a-3p mimic transfection inhibited the IL-13-induced upregulation of RhoA. The inhibitory effect of MALAT1 AS was abolished by co-transfection with miR-133a-3p inhibitor. In BSMs of the murine asthma model, upregulations of Malat1 and RhoA protein were observed concomitantly with downregulation of miR-133a-3p. SIGNIFICANCE These findings suggest that MALAT1 positively regulates RhoA protein expression by inhibiting miR-133a-3p in BSM cells, and that its upregulation causes the RhoA upregulation, resulting in an augmented BSM contractility.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Yukika Adachi
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Shigeki Fujii
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Lee CC, Tsai CH, Chen CH, Yeh YC, Chung WH, Chen CB. An updated review of the immunological mechanisms of keloid scars. Front Immunol 2023; 14:1117630. [PMID: 37033989 PMCID: PMC10075205 DOI: 10.3389/fimmu.2023.1117630] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Keloid is a type of disfiguring pathological scarring unique to human skin. The disorder is characterized by excessive collagen deposition. Immune cell infiltration is a hallmark of both normal and pathological tissue repair. However, the immunopathological mechanisms of keloid remain unclear. Recent studies have uncovered the pivotal role of both innate and adaptive immunity in modulating the aberrant behavior of keloid fibroblasts. Several novel therapeutics attempting to restore regulation of the immune microenvironment have shown variable efficacy. We review the current understanding of keloid immunopathogenesis and highlight the potential roles of immune pathway-specific therapeutics.
Collapse
Affiliation(s)
- Chih-Chun Lee
- 1 Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Chun-Bing Chen, ;
| |
Collapse
|
10
|
Liu S, Yang H, Song J, Zhang Y, Abualhssain ATH, Yang B. Keloid: Genetic susceptibility and contributions of genetics and epigenetics to its pathogenesis. Exp Dermatol 2022; 31:1665-1675. [PMID: 36052657 DOI: 10.1111/exd.14671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Keloid, characterized by fibroproliferative disorders of the skin, can be developed in people of different genders, ages, and ethnicities. Keloid can appear in any part of the body but are especially common on the earlobe, upper torso, and triangular muscle. The genetic heterogeneity and susceptibility of KD (keloid) vary among different races and ethnicities. Studies have found that multiple loci on multiple chromosomes are associated with the pathogenesis of KD, and specific gene variants may also be involved. Despite multiple investigations attempting to uncover the etiology of keloid formation, the genetic mechanism of keloid formation remains unknown. To establish a foundation for a better understanding of the genetics and epigenetics of keloids, we have evaluated and summarized current studies which are mostly related to heredity, genetic polymorphisms, predisposing gene, DNA methylation, and non-coding RNA. We also discussed the problems and potential of genetic and epigenetic investigations of keloids, with the goal of developing new therapeutic approaches to enhance the prognosis of keloid patients.
Collapse
Affiliation(s)
- Shuangfei Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huan Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | | | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
LncRNA GNAS-AS1 knockdown inhibits keloid cells growth by mediating the miR-188-5p/RUNX2 axis. Mol Cell Biochem 2022; 478:707-719. [PMID: 36036334 DOI: 10.1007/s11010-022-04538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Keloid is a common dermis tumor, occurring repeatedly, affecting the quality of patients' life. Long non-coding RNAs (lncRNAs) have crucial regulatory capacities in skin scarring formation and subsequent scar carcinogenesis. The intention of this study was to investigate the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. Clinical samples were collected to evaluate the expression of GNAS-AS1, RUNX2, and miR-188-5p by qRT-PCR. The proliferation, migration, and invasion of HKF cells were detected by CCK-8, wound healing, and Transwell assays. The expression levels of mRNA and protein were examined through qRT-PCR and Western blot assay. Luciferase reporter assay was used to identify the binding relationship among GNAS-AS1, miR-188-5p, and Runt-related transcription factor 2 (RUNX2). GNAS-AS1 and RUNX2 expressions were remarkably enhanced, and miR-188-5p expression was decreased in keloid clinical tissues and HKF cells. GNAS-AS1 overexpression promoted cells proliferation, migration, and invasion, while GNAS-AS1 knockdown had the opposite trend. Furthermore, overexpression of GNAS-AS1 reversed the inhibitory effect of 5-FU on cell proliferation, migration, and invasion. MiR-188-5p inhibition or RUNX2 overexpression could enhance the proliferation, migration, and invasion of HKF cells. GNAS-AS1 targeted miR-188-5p to regulate RUNX2 expression. In addition, the inhibition effects of GNAS-AS1 knockdown on HKF cells could be reversed by inhibition of miR-188-5p or overexpression of RUNX2, while RUNX2 overexpression eliminated the suppressive efficaciousness of miR-188-5p mimics on HKF cells growth. GNAS-AS1 knockdown could regulate the miR-188-5p/RUNX2 signaling axis to inhibit the growth and migration in keloid cells. It is suggested that GNAS-AS1 may become a new target for the prevention and treatment of keloid.
Collapse
|
12
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Nien MS, Cheng WP, Feng J, Cui YY. The molecular mechanism of GADD153 in apoptosis of keloid fibroblasts exposed to botulinum toxin type A. J Cell Mol Med 2021; 25:9402-9410. [PMID: 34472704 PMCID: PMC8500951 DOI: 10.1111/jcmm.16881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Apoptosis plays a key role in keloids. Growth arrest and DNA damage‐inducible gene 153 (GADD153) is regulated by apoptosis. Botulinum toxin type A (BTXA) can induce apoptosis in keloid fibroblasts. This research aimed to explore the hypothesis that GADD153 mediates apoptosis in keloid fibroblasts exposed to BTXA. BTXA significantly induced GADD153 protein and mRNA expression in keloid fibroblasts. Treatment with c‐Jun N‐terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA) and tumour necrosis factor‐alpha (TNF‐α) antibodies reversed the BTXA‐induced GADD153 expression. BTXA enhanced the transcriptional activity of GADD153, whereas the GADD153 mutant plasmid, JNK siRNA and anti‐TNF‐α antibody treatment abolished the BTXA‐induced transcriptional activity of GADD153. The addition of TNF‐α to keloid fibroblasts markedly increased GADD153 protein expression. The addition of GADD153 siRNA, SP600125 and anti‐TNF‐α antibodies reversed cell death and caspase 3 and 9 activity induced by BTXA.
Collapse
Affiliation(s)
- Ming-Shiuan Nien
- Department of plastic surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wen-Pin Cheng
- Translational Medicine Center, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Jun Feng
- Department of plastic surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Yan Cui
- Department of plastic surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Su H, Su H, Liu CH, Hu HJ, Zhao JB, Zou T, Tang YX. H 2S inhibits atrial fibrillation-induced atrial fibrosis through miR-133a/CTGF axis. Cytokine 2021; 146:155557. [PMID: 34303273 DOI: 10.1016/j.cyto.2021.155557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
AIM Atrial fibrillation (AF) is a common clinical arrhythmia and can cause a variety of complications. To study the therapeutic effect of H2S in atrial fibrosis and explore the important role of miR-133a, in vitro experiments in human atrial fibroblasts (HAFs) were conducted. METHODS The fibrosis in HAFs was induced by Ang II. The expression levels of miR-133a and CTGF in HAFs were examined by qRT-PCR. The proliferation and migration of HAFs were detected by CCK-8 and cell scratch assays. The protein expressions of CTGF, collagen I, collagen III and α-SMA were detected by western blotting. The dual-luciferase reporter gene was used to detect the interaction between miR-133a and CTGF. RESULTS The proliferation and migration of HAFs stimulated by Ang II were enhanced, the expression of miR-133a was reduced, and the levels of CTGF and fibrosis markers (collagen I, collagen III and α-SMA) were increased. Furthermore, H2S reduced fibrosis, proliferation and migration of HAFs induced by Ang II. Accordingly, overexpression of miR-133a inhibited the proliferation and migration ability on Ang II-induced HAFs, and decreased the protein expressions of related fibrosis markers and CTGF. Meanwhile, miR-133a inhibitor could reverse the inhibition effect of H2S on proliferation and migration in HAFs by Ang II-induced. By targeting CTGF, miR-133a inhibited the expression of CTGF. CONCLUSION H2S improved myocardial cell fibrosis by significantly increasing the expression of miR-133a, and CTGF might be a potential target for miR-133a to play an important role in myocardial fibrosis.
Collapse
Affiliation(s)
- Hua Su
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Hao Su
- Cardiac Medical Center, Beijing Aviation General Hospital, Beijing 100012, PR China
| | - Chang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Jun-Bi Zhao
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Tao Zou
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yi-Xin Tang
- Department of Cardiology, The First Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, PR China.
| |
Collapse
|
15
|
Downregulation of Tim-1 inhibits the proliferation, migration and invasion of glioblastoma cells via the miR-133a/TGFBR1 axis and the restriction of Wnt/β-catenin pathway. Cancer Cell Int 2021; 21:347. [PMID: 34225723 PMCID: PMC8256541 DOI: 10.1186/s12935-021-02036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma remains one of the most lethal brain cancers. T-cell immunoglobulin and mucin domain 1 (Tim-1) is associated with various immune diseases. The molecular mechanism of Tim-1 in regulating glioblastoma cell proliferation, invasion, and migration is still unknown. Moreover, it has shown that miR-133a plays an important role in glioblastoma. However, little is known about the interaction between Tim-1 and miR-133a in glioblastoma. Methods Tim-1 expression in glioblastoma and normal brain tissues was detected by qPCR, Western Blot and IHC. After Tim-1 knockdown in U251 and U87 cells, genes showing significantly differential expression, along with the significant differential miRNAs were analyzed using RNA-seq analysis. The binding sites were verified using dual-luciferase reporter gene assay. U251 and U87 cells were allocated into the small harpin-negative control (sh-NC), sh-Tim-1, sh-Tim-1 + inhibitor NC, and sh-Tim-1 + miR-133a inhibitor group. Cell proliferation, migration, and invasion were determined by CCK-8, flow cytometry, wound-healing and Transwell assays, respectively. Next, U251 and U87 cells were allocated into the mimic NC, miR-133a mimic, miR-133a mimic + pcDNA3.1, and miR-133a mimic + pcDNA3.1-TGFBR1 groups, followed by the detection of cell proliferation, migration, and invasion. Western blot was used to identify the expression of vital kinases in the Wnt/β-catenin pathway. Results Tim-1 was highly expressed in glioblastoma tissues compared with that in normal brain tissues. RNA-seq analysis showed that Tim-1 knockdown could lead to the downregulation of TGFBR1 and the upregulation of miR-133a. The binding sites between TGFBR1 and miR-133a were confirmed. Tim-1 knockdown impaired the invasion, migration, proliferation of U251 and U87 cells, which could be reversed by miR-133a downregulation. miR-133a upregulation inhibited the proliferation, invasion, and migration of U251 and U87 cells, which could be reversed by TGFBR1 upregulation. Tim-1 knockdown and miR-133a upregulation could inhibit the activation of the Wnt/β-catenin pathway, while the elevation of TGFBR1 showed opposite effects. Conclusion Tim-1 knockdown inhibited glioblastoma cell proliferation, invasion, and migration through the miR-133a/TGFBR1 axis and restrained the activation of the Wnt/β-catenin pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02036-1.
Collapse
|
16
|
Qin G, Sun Y, Guo Y, Song Y. PAX5 activates telomerase activity and proliferation in keloid fibroblasts by transcriptional regulation of SND1, thus promoting keloid growth in burn-injured skin. Inflamm Res 2021; 70:459-472. [PMID: 33616676 DOI: 10.1007/s00011-021-01444-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Staphylococcal nuclease domain-containing 1 (SND1) that functioned as an oncogene in a variety of tumors was upregulated in burn-injured skin tissues, and this study aims to investigate the effect of SND1 on keloid and elucidate the underlying mechanism. METHODS Keloid fibroblasts (KFs) and normal skin fibroblasts (NFs) were isolated from the keloid tissues and adjacent normal skin tissues of keloid patients. The SND1 expression was assessed in keloid tissues and KFs with Western blot assay. Gain- and loss-of-function experiments were performed to investigate the role of SND1 in proliferation, colony formation, telomerase activity, expression of fibrogenic genes and production of pro-inflammatory factors in KFs. Chromatin immunoprecipitation (CHIP) and Dual-luciferase reporter gene assays were used to verify the interaction of Paired-box gene 5 (PAX5) on SND1 promoter. Then, a series of rescue experiments were performed to verify the effects of SND1 overexpression on PAX5 knockdown-mediated KF functions. Finally, the role of SND1 in keloid formation in vivo was validated in mice with keloid implantation. RESULTS SND1 was upregulated in keloid tissues and KFs. SND1 positively regulated proliferation, colony formation, telomerase activity, production of pro-inflammatory factors and expression of fibrogenic genes. PAX5 directly bound to the SND1 promoter to transcriptionally regulate SND1 expression and positively regulated SND1-mediated KF functions via the ERK/JNK pathway. In vivo assay further demonstrated that SND1 displayed a positive effect on keloid formation. CONCLUSION SND1 transcriptionally regulated by PAX5 promotes keloid formation through activating telomerase activity via the ERK/JNK signaling pathways, which provides a promising therapeutic target for clinical treatment of burned skin keloid.
Collapse
Affiliation(s)
- Gaoping Qin
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaowen Sun
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yadong Guo
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710068, China.
| |
Collapse
|
17
|
Hirman AR, Du L, Cheng S, Zheng H, Duo L, Zhai Q, Xu J. MiR-133a-3p inhibits scar formation in scalded mice and suppresses the proliferation and migration of scar derived-fibroblasts by targeting connective tissue growth factor. Exp Anim 2021; 70:322-332. [PMID: 33658464 PMCID: PMC8390314 DOI: 10.1538/expanim.20-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Excessive scar formation post burn injury can cause great pain to the patients. MiR-133a-3p has been demonstrated to be anti-fibrotic in some fibrosis-related
diseases. However, its possible role in scar formation has not been elucidated yet. In present study, the effect of miR-133a-3p on scar formation was
investigated in a scalded model of mice. Moreover, the function of miR-133a-3p on proliferation and migration of scar-derived fibroblasts (SFs) was studied
in vitro. It was found that miR-133a-3p was dramatically downregulated in scar tissue of scalded mice. Upregulation of miR-133a-3p by
miR-133a-3p agomir obviously inhibited the scar formation in scalded mice. Histological staining showed that upregulation of miR-133a-3p attenuated the
excessive deposition of collagen in scar tissue of scalded mice. In vitro study showed that upregulation of miR-133a-3p effectively suppressed
the proliferation and migration of SFs. Besides, upregulation of miR-133a-3p attenuated the protein levels of α-smooth muscle actin (α-SMA) and collagen I,
indicating that miR-133a-3p could suppress the activation of SFs. The expression of connective tissue growth factor (CTGF), a critical mediator in cell
proliferation, migration and extracellular matrix (ECM) synthesis, was also downregulated by the upregulation of miR-133a-3p. Luciferase reporter assay
validated that CTGF was directly targeted by miR-133a-3p. In addition, overexpression of CTGF abolished the effect of miR-133a-3p on inhibiting the
proliferation, migration and activation of SFs, indicating that miR-133a-3p functioned by targeting CTGF. Therefore, miR-133a-3p might be a promising target for
treating pathological scars.
Collapse
Affiliation(s)
- Abdul Razaq Hirman
- Department of Dermatology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, P.R. China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang 110122, P.R. China
| | - Shaohang Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, P.R. China
| | - Heng Zheng
- Department of Dermatology, Central Hospital Affiliated to Shenyang Medical College, No. 7, Nanqi West Road, Tiexi District, Shenyang 110024, P.R. China
| | - Linna Duo
- Department of Dermatology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, P.R. China
| | - Qianyu Zhai
- Department of Dermatology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, P.R. China
| | - Jing Xu
- Department of Dermatology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, P.R. China
| |
Collapse
|
18
|
Lv H, Li J, Che Y. miR-31 from adipose stem cell-derived extracellular vesicles promotes recovery of neurological function after ischemic stroke by inhibiting TRAF6 and IRF5. Exp Neurol 2021; 342:113611. [PMID: 33460643 DOI: 10.1016/j.expneurol.2021.113611] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 01/06/2023]
Abstract
Ischemic stroke affects many people in the world, but the underlying mechanism is not completely understood. In this study, we investigated the effect of microRNA (miR)-31 on ischemic stroke. We also determined downstream signaling pathway of miR-31 in recovery of neurological function in ischemic stroke. Middle cerebral artery occlusion (MCAO) in mice was used to mimic human stroke. Foot fault test and mNSS were used to evaluate neurological deficits in mice after stroke. TTC staining in brain tissues was used for determining infarct volume. We extracted and identified extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSCs) to study the impact of miR-31 and TRAF6 by miR-31 overexpression or TRAF6 knockdown on stroke recovery. Primary mouse neuron exposed to oxygen-glucose deprivation (OGD) was used to mimic neuronal ischemic injury. RT-qPCR and Western blot analysis were used for determination of mRNA and protein expression, respectively. MTT assay was used for studying cell survival. TUNEL staining was sued for neuron apoptosis. Starbase website and dual luciferase reporter gene assay were utilized to predicted and verify binding relationship between miR-31 and TRAF6. Neurological functions were improved by miR-31 from ADSC-derived EVs, as suggested by improved foot fault and mNSS. miR-31 from ADSC-derived EVs also reduced infarct volume and neuronal cell apoptosis after stroke in mice. Similarly, in neuronal cell culture, miR-31 from ADSC-derived EVs reduced the expression of apoptosis-related factors cleaved caspase-3 and Bax, increased the survival, and reduced apoptosis of neuronal cells after OGD. miR-31 was found to downregulate the expression of TRAF6 by binding to the 3'-untranslated region (3'-UTR) of TRAF6, which in turn upregulated IRF5 expression. Increased expression of IRF5 led to increased neuron apoptosis after OGD. In conclusion, miR-31 from ADSC-derived EVs can downregulate expression of TRAF6 and IRF5, leading to reduced neuronal damage induced by ischemic stroke.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Jie Li
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Yuqin Che
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China.
| |
Collapse
|