1
|
Thomsson KA, Benktander J, Toxqui-Rodríguez S, Piazzon MC, Linden SK. Gilthead seabream mucus glycosylation is complex, differs between epithelial sites and carries unusual poly N-acetylhexosamine motifs. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109864. [PMID: 39216712 DOI: 10.1016/j.fsi.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gilthead seabream (Sparus aurata) is a marine finfish of economic importance in aquaculture. Despite its adaptability to varying culture conditions, gilthead seabream culture can be affected by viral, bacterial or parasitic diseases. The main route of entry of pathogens is through mucosal surfaces. Teleost external and internal surfaces are covered by mucus, mainly comprised of highly glycosylated proteins called mucins. The mucin glycans regulate pathogen growth, adhesion, virulence and inter and intra species communication. Here, we characterized the gilthead seabream mucus glycosylation, compared it to previously described species and investigated associations with microbiota. 214 glycans were identified. The majority of the glycans were found at more than one epithelial surface, but 27, 22 and 89 O-glycan structures were unique to skin, gill and intestinal sample groups, respectively. Six O-glycan core types were observed. The majority of the seabream skin and gill O-glycans were neutral with unusual poly HexNAc motifs. In contrast, seabream intestinal O-glycans were highly acidic and not of the 'poly HexNAc' type observed in skin and gill. Furthermore, gilthead seabream gill mucosa had less oligomannose and more complex N-glycans compared to skin and intestine. The concentration and diversity of bacteria was similar in skin, gill and intestine, but the bacterial species differed between epithelia and co-varied with glycan epitopes. The presence of a complex mucus glycosylation with plenty of glycan epitopes for bacterial foraging, suggest that the skin mucosal defense in seabream includes an abundant resident microbiota. This large library of structures provides a platform for further studies, for example aiming to identifying glycans to use for diagnostic purposes, to study host-microbe interactions or disease intervention therapies.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30, Gothenburg, Sweden
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30, Gothenburg, Sweden
| | - Socorro Toxqui-Rodríguez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Ribera de Cabanes s/n, 12595, Cabanes, Castellón, Spain; Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Ribera de Cabanes s/n, 12595, Cabanes, Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Ribera de Cabanes s/n, 12595, Cabanes, Castellón, Spain
| | - Sara K Linden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30, Gothenburg, Sweden.
| |
Collapse
|
2
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
3
|
Liu Z, Li H, Huang X, Liu Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024; 29:e13119. [PMID: 39108210 DOI: 10.1111/hel.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 01/02/2025]
Abstract
Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.
Collapse
Affiliation(s)
- Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - He Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Fonseca D, Alves PM, Neto E, Custódio B, Guimarães S, Moura D, Annis F, Martins M, Gomes A, Teixeira C, Gomes P, Pereira RF, Freitas P, Parreira P, Martins MCL. One-Pot Microfluidics to Engineer Chitosan Nanoparticles Conjugated with Antimicrobial Peptides Using "Photoclick" Chemistry: Validation Using the Gastric Bacterium Helicobacter pylori. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14533-14547. [PMID: 38482690 PMCID: PMC10982938 DOI: 10.1021/acsami.3c18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Surface bioconjugation of antimicrobial peptides (AMP) onto nanoparticles (AMP-NP) is a complex, multistep, and time-consuming task. Herein, a microfluidic system for the one-pot production of AMP-NP was developed. Norbornene-modified chitosan was used for NP production (NorChit-NP), and thiolated-AMP was grafted on their surface via thiol-norbornene "photoclick" chemistry over exposure of two parallel UV LEDs. The MSI-78A was the AMP selected due to its high activity against a high priority (level 2) antibiotic-resistant gastric pathogen: Helicobacter pylori (H. pylori). AMP-NP (113 ± 43 nm; zeta potential 14.3 ± 7 mV) were stable in gastric settings without a cross-linker (up to 5 days in pH 1.2) and bactericidal against two highly pathogenic H. pylori strains (1011 NP/mL with 96 μg/mL MSI-78A). Eradication was faster for H. pylori 26695 (30 min) than for H. pylori J99 (24 h), which was explained by the lower minimum bactericidal concentration of soluble MSI-78A for H. pylori 26695 (32 μg/mL) than for H. pylori J99 (128 μg/mL). AMP-NP was bactericidal by inducing H. pylori cell membrane alterations, intracellular reorganization, generation of extracellular vesicles, and leakage of cytoplasmic contents (transmission electron microscopy). Moreover, NP were not cytotoxic against two gastric cell lines (AGS and MKN74, ATCC) at bactericidal concentrations. Overall, the designed microfluidic setup is a greener, simpler, and faster approach than the conventional methods to obtain AMP-NP. This technology can be further explored for the bioconjugation of other thiolated-compounds.
Collapse
Affiliation(s)
- Diana
R. Fonseca
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro M. Alves
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Estrela Neto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Beatriz Custódio
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Sofia Guimarães
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Duarte Moura
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade
de Engenharia, Departamento de Engenharia Metalúrgica e de
Materiais, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francesca Annis
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marco Martins
- INL, International
Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 685, 4169-007 Porto, Portugal
| | - Rúben F. Pereira
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Paulo Freitas
- INL, International
Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
- INESC-MN,
INESC Microsystems and Nanotechnologies, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
| | - Paula Parreira
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - M. Cristina L. Martins
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto
Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS−Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
6
|
Berberolli S, Wu M, Goycoolea FM. The Rosetta Stone of interactions of mucosa and associated bacteria in the gastrointestinal tract. Curr Opin Gastroenterol 2024; 40:1-6. [PMID: 37983559 PMCID: PMC10715687 DOI: 10.1097/mog.0000000000000992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
PURPOSE OF REVIEW Gut microbiota-mucosa-epithelial cells co-exist in an intricate three-way relationship that underpins gut homeostasis, and ultimately influences health and disease conditions. The O-glycans of mucin glycoproteins have been uncovered as a centrepiece of this system, although understanding the phenomena at play at the molecular level has been challenging and subject to significant traction over the last years. The purpose of this review is to discuss the recent advances in the phenomena that mediate microbiota and mucus multidirectional interactions in the human gut. RECENT FINDINGS The mucus biosynthesis and degradation by both commensal and pathogenic bacteria is under tight regulation and involves hundreds of carbohydrate-active enzymes (CAZy) and transporters. The fucosylation of O-glycans from mucin-2 seems to dictate binding by pathogenic species and to influence their virulence. Less clear is the influence of O-glycans in quorum sensing and biofilm formation. We have reviewed the advances in the in vitro models available to recreate the phenomena that capture the physiological context of the intestinal environment, emphasising models that include mucus and other aspects relevant to the physiological context. SUMMARY The recent findings highlight the importance of merging advances in analytical (glycans analysis) and omics techniques along with original robust in vitro models that enable to deconstruct part of the high complexity of the living gut and expand our understanding of the microbes-mucosa relationships and their significance in health and disease.
Collapse
Affiliation(s)
- Serena Berberolli
- School of Food Science and Nutrition, University of Leeds. Leeds, LS6 4RG, United Kingdom
| | | | | |
Collapse
|
7
|
Joeres R, Bojar D, Kalinina OV. GlyLES: Grammar-based Parsing of Glycans from IUPAC-condensed to SMILES. J Cheminform 2023; 15:37. [PMID: 36959676 PMCID: PMC10035253 DOI: 10.1186/s13321-023-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/18/2023] [Indexed: 03/25/2023] Open
Abstract
Glycans are important polysaccharides on cellular surfaces that are bound to glycoproteins and glycolipids. These are one of the most common post-translational modifications of proteins in eukaryotic cells. They play important roles in protein folding, cell-cell interactions, and other extracellular processes. Changes in glycan structures may influence the course of different diseases, such as infections or cancer. Glycans are commonly represented using the IUPAC-condensed notation. IUPAC-condensed is a textual representation of glycans operating on the same topological level as the Symbol Nomenclature for Glycans (SNFG) that assigns colored, geometrical shapes to the main monomers. These symbols are then connected in tree-like structures, visualizing the glycan structure on a topological level. Yet for a representation on the atomic level, notations such as SMILES should be used. To our knowledge, there is no easy-to-use, general, open-source, and offline tool to convert the IUPAC-condensed notation to SMILES. Here, we present the open-access Python package GlyLES for the generalizable generation of SMILES representations out of IUPAC-condensed representations. GlyLES uses a grammar to read in the monomer tree from the IUPAC-condensed notation. From this tree, the tool can compute the atomic structures of each monomer based on their IUPAC-condensed descriptions. In the last step, it merges all monomers into the atomic structure of a glycan in the SMILES notation. GlyLES is the first package that allows conversion from the IUPAC-condensed notation of glycans to SMILES strings. This may have multiple applications, including straightforward visualization, substructure search, molecular modeling and docking, and a new featurization strategy for machine-learning algorithms. GlyLES is available at https://github.com/kalininalab/GlyLES .
Collapse
Affiliation(s)
- Roman Joeres
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbruecken, Germany
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Olga V. Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbruecken, Germany
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
- Faculty of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|