1
|
Soleimani S, Haghighat Khajavi S, Safari R. Prolonging Shelf Life and Meat Quality of Rainbow Trout ( Oncorhynchus mykiss) by Immersing in Pine Nut ( Pinus gerardiana) Extract During Cold Storage. Food Sci Nutr 2025; 13:e4685. [PMID: 39803226 PMCID: PMC11717008 DOI: 10.1002/fsn3.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is a freshwater fish susceptible to chemical and microbial spoilage, limiting its shelf life. This study aimed to enhance and extend the rainbow trout fillets' shelf life stored at 4°C ± 1°C through an immersion treatment using ultrasound-assisted, defatted pine nut (Pinus gerardiana Wallich) extracts at concentrations of 1% and 2% (w/v), compared to the control group (0% pine nut). Evaluations were conducted at storage intervals of 0, 4, 8, 12, 16, and 20 days. The methodology assessed antioxidant activity through 2,2-diphenyl 1-picrylhydrazyl radical scavenging, which showed a linear increase with pine nut extract concentration, reaching 59.24% at 2%. Chemical indicators, such as peroxide values, thiobarbituric acid values, free fatty acids, and total volatile basic nitrogen, decreased significantly (p ≤ 0.05) with higher concentrations of pine nut extract, with the lowest values recorded at 2% across all storage days. Microbial analysis showed a significant reduction (p ≤ 0.05) in the total viable count, psychrotrophic bacteria count, lactic acid bacteria, Enterobacteriaceae, and H₂S-producing bacteria with increasing pine nut concentrations, with the 2% treatment yielding the lowest microbial loads throughout storage. Sensory evaluation indicated that higher pine nut concentrations improved the acceptability of color, odor, and taste (p ≤ 0.05). However, significant degradation (p ≤ 0.05) in chemical, microbial, and sensory parameters occurred with prolonged storage duration. In conclusion, the 2% pine nut extract was the most effective immersion treatment for extending the shelf life of rainbow trout fillets for up to 12 days.
Collapse
Affiliation(s)
- Shaghayegh Soleimani
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Shabnam Haghighat Khajavi
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Reza Safari
- Caspian Sea Ecology Research CenterIranian Fisheries Science Research Institute, Agricultural Research, Education and Extension OrganizationMazandaranIran
| |
Collapse
|
2
|
Rúa J, Sanz-Gómez J, Maestro S, Caro I, García-Armesto MR. Antimicrobial Effect of Lippia citriodora Extract in Combination with Gallic Acid or Octyl Gallate on Bacteria from Meat. Foods 2024; 13:1643. [PMID: 38890871 PMCID: PMC11172128 DOI: 10.3390/foods13111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Chicken meat and its derivatives are easily alterable. They are a nutritionally healthy food, and their consumption has seen a remarkable increase worldwide in recent years. At the same time, consumer demand for the use of natural products to control microbial growth is increasing. In this context, the antimicrobial capacity of a commercial extract of the lemon verbena (Lippia citriodora) plant, (LCE) was tested in binary combination with gallic acid or octyl gallate against two strains of lactic acid bacteria (LAB) of meat origin: Carnobacterium divergens ATCC 35677 and Leuconostoc carnosum ATCC 49367. First, the antimicrobial potential was evaluated by the checkerboard microdilution method at the optimal growth temperature of each and at 4 °C, pH 5.7 and 6.7, in culture medium. Octyl gallate was the most effective antimicrobial against the two bacteria under all study conditions. At 4 °C, the combination of LCE with octyl gallate had a similar antimicrobial effect on the two LAB, being bactericidal at pH 6.7. In chicken breast, this effective combination was tested in normal or modified atmosphere and refrigerated (4-8 °C) for 9 days. LCE + OG in modified atmosphere reduced the different microbial groups studied, including the lactic acid bacteria as the main microorganisms responsible for the spoilage of fresh meat. Further research could pave the way for the development of novel strategies contributing to the technological stability, security, and functional properties of chicken meat.
Collapse
Affiliation(s)
- Javier Rúa
- Department of Molecular Biology, University of León, 24007 León, Spain; (J.R.)
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
| | - Sheila Maestro
- Department of Molecular Biology, University of León, 24007 León, Spain; (J.R.)
| | - Irma Caro
- Area of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - María Rosario García-Armesto
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
- Department of Food Hygiene and Technology, University of León, 24007 León, Spain
| |
Collapse
|
3
|
Ji L, Wang S, Zhou Y, Nie Q, Zhou C, Ning J, Ren C, Tang C, Zhang J. Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage. Foods 2024; 13:396. [PMID: 38338531 PMCID: PMC10855116 DOI: 10.3390/foods13030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Saccharomyces cerevisiae (S. cerevisiae) and Kluyveromyces marxianus (K. marxianus) are often used as fermenters in yogurt and alcohol, and have been less studied within meat products. The yeasts were added to sauce meat, and the uninoculated group served as a control in this study to examine and compare the changing patterns of physicochemical and flavor characteristics of S. cerevisiae and K. marxianus on sauce meat during storage. The changes in moisture content, aw, pH, thiobarbituric acid reactive substances (TBARS), and other flavor characteristics were measured in sauce meat during the first, second, fourth, and sixth months after production. The following factors were examined: moisture content, aw, pH, TBARS, peroxide value (POV), acid value (AV), soluble protein (SP), free amino acid (FAA), and volatile flavoring compounds. With VIP > 1 and p < 0.05 as the screening conditions, the partial least squares model (PLS-DA) was used to assess the distinctive flavor components in the sausages. The findings demonstrated that the three groups' changes in sauce meat were comparable during the first two months of storage but differed significantly between the 4th and 6th months. The moisture content, water activity, and pH of the sauce meat decreased gradually with the storage time; TBARS, AV, and FAA increased significantly; SP decreased significantly from 2.61 to 1.72, while POV increased to 0.03 and then decreased to 0.02. The POV and TBARS values of the yeast-infected meat were substantially lower than those of the control group, and the POV and TBARS values of the meat inoculated with S. cerevisiae were particularly decreased (p < 0.05). The POV and TBARS values of SC (S. cerevisiae group) decreased by 49.09% and 40.15%, respectively, compared to CK (the control group) at the time of storage until June. The experimental group (KM: K. marxianus group) significantly increased the SP and FAA values of the sauce meat (p < 0.05) by 32.4% and 29.84% compared to the CK group, respectively. Esters and olefins as well as alcohols and esters were much greater in meat that had been supplemented with S. cerevisiae and K. marxianus than in meat from the control group. In conclusion, inoculating sauce meat with S. cerevisiae can significantly enhance the quality and flavor of sauce meat while it is being stored.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiamin Zhang
- Meat Processing Key Lab of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (S.W.); (Y.Z.); (Q.N.); (C.Z.); (J.N.); (C.R.); (C.T.)
| |
Collapse
|
4
|
Gökmen GG, Sarıyıldız S, Cholakov R, Nalbantsoy A, Baler B, Aslan E, Düzel A, Sargın S, Göksungur Y, Kışla D. A novel Lactiplantibacillus plantarum strain: probiotic properties and optimization of the growth conditions by response surface methodology. World J Microbiol Biotechnol 2024; 40:66. [PMID: 38194015 PMCID: PMC10776492 DOI: 10.1007/s11274-023-03862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The objective of this study is to explore the probiotic properties and optimal growth conditions of Lactiplantibacillus plantarum BG24. L. plantarum BG24 exhibited a remarkable ability to utilize lactose, and to grow under acidic conditions and in the presence of high levels of bile salts. The strain showed the highest antibacterial activity against L. monocytogenes Scott A (zone of inhibition: 26 mm). L. plantarum BG24 was found to be resistant to 8 of the tested 19 antibiotics using the disc diffusion method.and its multiple antibiotic resistance (MAR) index was calculated as 0.421. The adhesion rate to human intestinal epithelial Caco-2 cells was determined as 37.51%. The enzyme profile of L. plantarum BG24 was investigated using API ZYM test kit and the highest enzymatic activities were found for Leucine arylamidase, β-glucosidase, Valine arylamidase, β-galactosidase and N-acetyl-β-glucosaminidase. L. plantarum BG24 strain showed higher microbial growth under static conditions (6.60 OD600) compared to 100 rpm (5.73 OD600) and 200 rpm (5.02 OD600) shaking speed due to its facultative anaerobic characteristic. However, different inoculation rates and glucose addition did not make a statistically significant difference on biomass formation (p > 0.05). The specific growth rate of L. plantarum BG24 was 0.416 h-1, the doubling time was 1.67 h, and the biomass productivity value was 0.14 gL-1 h-1 in the original MRS broth (pH 5.7) while higher values were found as 0.483 h-1, 1.43 h and 0.17 gL-1 h-1, respectively, in MRS broth (pH 6.5) medium enriched with 5 g/L yeast extract. The stirred tank bioreactor was used to optimise the growth of BG24 strain. The process variables was optimized at 0.05 vvm of aeration rate, 479 rpm of agitation speed, 3% of inoculation rate and 18 h of incubation time. The maximum biomass (g/L) production was obtained as 3.84 g/L at the optimized conditions.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Engineering Faculty, Food Engineering Department, Ege University, Bornova, Izmir, Türkiye
| | - Seda Sarıyıldız
- Engineering Faculty, Food Engineering Department, Ege University, Bornova, Izmir, Türkiye
| | - Remzi Cholakov
- Kaasmakerij Özgazi, Nijverheidsweg 39, 4879, AP, Etten-Leur, The Netherlands
| | - Ayşe Nalbantsoy
- Engineering Faculty, Bioengineering Department, Ege University, Bornova, Izmir, Türkiye
| | - Biray Baler
- Engineering Faculty, Bioengineering Department, Ege University, Bornova, Izmir, Türkiye
| | - Emek Aslan
- Agricultural Faculty, Agricultural Biotechnology Department, Ondokuz Mayıs University, Atakum, Samsun, Türkiye
| | - Ahmet Düzel
- Faculty of Engineering and Architecture, Bioengineering Department, Sinop University, Nasuhbasoglu, Sinop, Türkiye
| | - Sait Sargın
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa Technical University, Yildirim, Bursa, Türkiye
| | - Yekta Göksungur
- Engineering Faculty, Food Engineering Department, Ege University, Bornova, Izmir, Türkiye
| | - Duygu Kışla
- Engineering Faculty, Food Engineering Department, Ege University, Bornova, Izmir, Türkiye.
| |
Collapse
|
5
|
Drevin M, Plötz M, Krischek C. Investigation of the Suitability of a Combination of Ethyl-Να-dodecanyl-L-arginat_HCl (LAE) and Starter Culture Bacteria for the Reduction of Bacteria from Fresh Meat of Different Animal Species. Foods 2023; 12:4138. [PMID: 38002195 PMCID: PMC10670078 DOI: 10.3390/foods12224138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Meat can be contaminated with (pathogenic) microorganisms during slaughter, dissection and packaging. Therefore, preservation technologies are frequently used to reduce the risk of (fatal) human infections due to the consumption of meat. In this study, we first investigated, if the application of ethyl-Nα-dodecanyl-L-arginate hydrochloride (LAE) and the starter culture bacteria Staphylococcus carnosus and Lactobacillus sakei, either single or in combination, influences the bacteria number on pork, chicken meat and beef, inoculated with Brochothrix (Br.) thermosphacta (all meat species) or Salmonella (S.) Typhimurium (pork), Campylobacter (C.) jejuni (chicken) and Listeria (L.) monocytogenes (beef), before packaging under modified atmosphere and on days 7 and 14 of storage. To evaluate effects of the treatment on the appearance during storage, additionally, the physicochemical parameters color and myoglobin redox form percentages were analyzed. LAE regularly resulted in a significant reduction of the number of all bacteria species on day 1 of storage, whereas up to day 14 of storage, the preservation effect did not persist in nearly all samples, except in the beef with Br. thermosphacta. However, with the starter culture bacteria on day 1, only L. monocytogenes on beef was significantly reduced. Interestingly, on day 7 of storage, this reducing effect was also found with S. Typhimurium on pork. Br. thermosphacta, which was principally not influenced by the starter culture bacteria. The combinatory treatment mainly resulted in no additional effects, except for the S. Typhimurium and Br. thermosphacta results on pork on day 7 and the Br. thermosphacta results on beef on day 14. The physicochemical parameters were not influenced by the single and combinatory treatment. The results indicate that LAE was mainly responsible for the antimicrobial effects and that a combination with starter culture bacteria should be individually evaluated for the meat species.
Collapse
Affiliation(s)
| | | | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany (M.P.)
| |
Collapse
|
6
|
Fischer SW, Titgemeyer F. Protective Cultures in Food Products: From Science to Market. Foods 2023; 12:foods12071541. [PMID: 37048362 PMCID: PMC10094266 DOI: 10.3390/foods12071541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
An ultimate goal in food production is to guarantee food safety and security. Fermented food products benefit from the intrinsic capabilities of the applied starter cultures as they produce organic acids and bactericidal compounds such as hydrogen peroxide that hamper most food pathogens. In addition, highly potent small peptides, bacteriocins, are being expelled to exert antibiotic effects. Based on ongoing scientific efforts, there is a growing market of food products to which protective cultures are added exclusively for food safety and for prolonged shelf life. In this regard, most genera from the order Lactobacillales play a prominent role. Here, we give an overview on protective cultures in food products. We summarize the mode of actions of antibacterial mechanisms. We display the strategies for the isolation and characterization of protective cultures in order to have them market-ready. A survey of the growing market reveals promising perspectives. Finally, a comprehensive chapter discusses the current legislation issues concerning protective cultures, leading to the conclusion that the application of protective cultures is superior to the usage of defined bacteriocins regarding simplicity, economic costs, and thus usage in less-developed countries. We believe that further discovery of bacteria to be implemented in food preservation will significantly contribute to customer's food safety and food security, badly needed to feed world's growing population but also for food waste reduction in order to save substantial amounts of greenhouse gas emissions.
Collapse
Affiliation(s)
- Sebastian W Fischer
- Department of Food, Nutrition and Facilities, FH Muenster, Correnstr. 25, 48149 Münster, Germany
| | - Fritz Titgemeyer
- Department of Food, Nutrition and Facilities, FH Muenster, Correnstr. 25, 48149 Münster, Germany
| |
Collapse
|
7
|
Karbowiak M, Szymański P, Zielińska D. Synergistic Effect of Combination of Various Microbial Hurdles in the Biopreservation of Meat and Meat Products—Systematic Review. Foods 2023; 12:foods12071430. [PMID: 37048251 PMCID: PMC10093799 DOI: 10.3390/foods12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The control of spoilage microorganisms and foodborne pathogens in meat and meat products is a challenge for food producers, which potentially can be overcome through the combined use of biopreservatives, in the form of a mix of various microbial hurdles. The objective of this work is to systematically review the available knowledge to reveal whether various microbial hurdles applied in combination can pose an effective decontamination strategy for meat and meat products. PubMed, Web of Science, and Scopus were utilized to identify and evaluate studies through February 2023. Search results yielded 45 articles that met the inclusion criteria. The most common meat biopreservatives were combinations of various starter cultures (24 studies), and the use of mixtures of non-starter protective cultures (13 studies). In addition, studies evaluating antimicrobial combinations of bacteriocins with other bacteriocins, BLIS (bacteriocin-like inhibitory substance), non-starter protective cultures, reuterin, and S-layer protein were included in the review (7 studies). In one study, a biopreservative mixture comprised antifungal protein PgAFP and protective cultures. The literature search revealed a positive effect, in most of the included studies, of the combination of various bacterial antimicrobials in inhibiting the growth of pathogenic and spoilage bacteria in meat products. The main advantages of the synergistic effect achieved were: (1) the induction of a stronger antimicrobial effect, (2) the extension of the spectrum of antibacterial action, and (3) the prevention of the regrowth of undesirable microorganisms. Although further research is required in this area, the combination of various microbial hurdles can pose a green and valuable biopreservation approach for maintaining the safety and quality of meat products.
Collapse
Affiliation(s)
- Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
| | - Piotr Szymański
- Department of Meat and Fat Technology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
8
|
Baillo AA, Cisneros L, Villena J, Vignolo G, Fadda S. Bioprotective Lactic Acid Bacteria and Lactic Acid as a Sustainable Strategy to Combat Escherichia coli O157:H7 in Meat. Foods 2023; 12:foods12020231. [PMID: 36673323 PMCID: PMC9858170 DOI: 10.3390/foods12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human infection by Enterohemorrhagic Escherichia coli (EHEC) constitutes a serious threat to public health and a major concern for the meat industry. Presently, consumers require safer/healthier foods with minimal chemical additives, highlighting the need for sustainable solutions to limit and prevent risks. This work evaluated the ability of two antagonistic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum CRL681 and Enterococcus mundtii CRL35, and their combination in order to inhibit EHEC in beef (ground and vacuum sealed meat discs) at 8 °C during 72 h. The effect of lower lactic acid (LA) concentrations was evaluated. Meat color was studied along with how LAB strains interfere with the adhesion of Escherichia coli to meat. The results indicated a bacteriostatic effect on EHEC cells when mixed LAB strains were inoculated. However, a bactericidal action due to a synergism between 0.6% LA and LAB occurred, producing undetectable pathogenic cells at 72 h. Color parameters (a*, b* and L*) did not vary in bioprotected meat discs, but they were significantly modified in ground meat after 24 h. In addition, LAB strains hindered EHEC adhesion to meat. The use of both LAB strains plus 0.6% LA, represents a novel, effective and ecofriendly strategy to inactivate EHEC in meat.
Collapse
Affiliation(s)
- Ayelen A. Baillo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Lucia Cisneros
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| | - Graciela Vignolo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Silvina Fadda
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| |
Collapse
|
9
|
Zhang P, Ruan E, Holman DB, Yang X. Effects of a Carnobacterium maltaromaticum strain at natural contamination levels on the microbiota of vacuum-packaged beef steaks during chilled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Kasałka-Czarna N, Bilska A, Biegańska-Marecik R, Montowska M. The effect of storage method on selected physicochemical and microbiological qualities of wild boar meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5250-5260. [PMID: 35301722 DOI: 10.1002/jsfa.11878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study investigated the influence of the storage method on the physicochemical characteristics and microbial growth of m. longissimus thoracis et lumborum (LTL), m. biceps femoris (BF) and m. vastus lateralis (VL) of wild boar. Muscles were stored in a vacuum (VAC), in a modified high-oxygen atmosphere (MAP) or meat seasoning cabinet (DRY-AGED) for 21 days. RESULTS Wild boar meat was characterised by a high protein and low fat content and a good amount of potassium, sodium, calcium, magnesium, zinc and iron. Significantly higher (P < 0.05) pH values were noted for DRY-AGED muscles stored for 21 days (up to 5.89 for VL). On day 21, a significant decrease in pH was noted for all MAP muscles (down to 5.23 for BF). Storage losses due to desiccation and water loss were significantly higher for DRY-AGED samples and ranged from 25.63% to 32.89% on day 21. MAP affected protein and lipid oxidation, which was also reflected in Warner-Bratzler shear force VAC and DRY-AGED had positive results regarding tenderness, whereas on day 21 the MAP-stored meat had toughened significantly (from 35.3 N to 50.7 N in LTL). Lipids were oxidised much faster than proteins during prolonged storage in MAP. Compared to the other methods, DRY-AGED had the best effect on microbial growth. CONCLUSION These results indicate that the recommended methods for the storage of wild boar meat are either vacuum packing or dry ageing. The high oxygen content of MAP negatively affected the quality of wild boar meat and carried a risk of increased protein carbonylation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Agnieszka Bilska
- Department of Meat Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Róża Biegańska-Marecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
11
|
Sbardelotto PRR, Balbinot-Alfaro E, da Rocha M, Alfaro AT. Natural alternatives for processed meat: Legislation, markets, consumers, opportunities and challenges. Crit Rev Food Sci Nutr 2022; 63:10303-10318. [PMID: 35647788 DOI: 10.1080/10408398.2022.2081664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Consumers' interest in food with less and/or free from synthetic additives has increased considerably in recent years. In this context, researchers and industries have concentrated efforts on developing alternatives to these compounds. Replacing synthetic additives in meat products is a challenge, given their importance for sensory characteristics and food safety. Complementary technologies combined with the replacement and/or reduction of synthetic additives (hurdle technologies) has been studied focusing on the protection and extension of the shelf life of meat products. This review reports alternatives for replacing and/or reducing the use of synthetic additives in meat derivatives, aiming at the development of more natural and simpler meat products, familiar to consumers and considered clean labels.
Collapse
Affiliation(s)
- Paula R R Sbardelotto
- Meat Technology Laboratory, Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, Paraná, Brazil
| | - Evellin Balbinot-Alfaro
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Meritaine da Rocha
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Alexandre T Alfaro
- Meat Technology Laboratory, Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
12
|
Widenmann A, Schiffer C, Ehrmann M, Vogel R. Impact of different sugars and glycosyltransferases on the assertiveness of Latilactobacillus sakei in raw sausage fermentations. Int J Food Microbiol 2022; 366:109575. [DOI: 10.1016/j.ijfoodmicro.2022.109575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
|
13
|
Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters. Meat Sci 2021; 180:108584. [PMID: 34087663 DOI: 10.1016/j.meatsci.2021.108584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
In this work, Italian salami were produced using microbial starters (Pediococcus pentosaceus, Lactobacillus sakei, and Staphylococcus xylosus) and compared to a control sample (without starter). Metabolomics in combination with microbiological and sensory analyses were used to investigate the overall quality. Samples were analyzed immediately after stuffing, following 7, 30, and 45 days of ripening. Each microbial starter imposed distinctive metabolomic signatures at the end of ripening. The accumulated discriminant compounds were mainly related to lipid oxidation (including hydroxy- and epoxy derivatives of fatty acids) following the inoculation with L. sakei. However, the inoculation with P. pentosaceus resulted in the accumulation of γ-glutamyl peptides, compounds driving a kokumi-related taste. Noteworthy, our findings supported the involvement of the chemical compounds profiled in the definition of final taste and aroma. This information paves the way towards the definition of more objective and tailored starters-related flavours enhancement approaches in the sector of cured meat.
Collapse
|
14
|
Segli F, Melian C, Vignolo G, Castellano P. Inhibition of a spoilage exopolysaccharide producer by bioprotective extracts from Lactobacillus acidophilus CRL641 and Latilactobacillus curvatus CRL705 in vacuum-packaged refrigerated meat discs. Meat Sci 2021; 178:108509. [PMID: 33857706 DOI: 10.1016/j.meatsci.2021.108509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The effect of bioprotective extracts (BEs) from Lactobacillus acidophilus CRL641 (BE-1) and Latilactobacillus curvatus CRL705 (BE-2) against the exopolysaccharide producer Latilactobacillus sakei CRL1407 in vacuum-packaged meat discs at 4 °C was evaluated. Lat. sakei CRL1407 was able to grow in control samples from 2.80 to 7.77 log CFU/g after 38 days. BE-1 and BE-2 reduced bacterial growth by 2.11 and 1.35 log CFU/g, respectively, but their combination led to a greater growth reduction (3.31 log CFU/g). The antimicrobial activity was detected in treated samples with BE-1 and BE-1 + BE-2 until day 16, while with BE-2 only at the initial time. The pH values remained constant in the discs treated with the BEs combination, whereas the greatest drop in pH was observed in control samples. The minor lipid oxidation without perceptible color changes was detected in the presence of BE-1 and BE-1 + BE-2. The combination of BEs as biocontrol agent plus conventional preservation barriers could extend the fresh meat shelf-life without quality loss.
Collapse
Affiliation(s)
- Franco Segli
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina.
| |
Collapse
|
15
|
Xu MM, Kaur M, Pillidge CJ, Torley PJ. Microbial biopreservatives for controlling the spoilage of beef and lamb meat: their application and effects on meat quality. Crit Rev Food Sci Nutr 2021; 62:4571-4592. [PMID: 33533634 DOI: 10.1080/10408398.2021.1877108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Biopreservation is a recognized natural method for controlling the growth of undesirable bacteria on fresh meat. It offers the potential to inhibit spoilage bacteria and extend meat shelf-life, but this aspect has been much less studied compared to using the approach to target pathogenic bacteria. This review provides comprehensive information on the application of biopreservatives of microbial origin, mainly bacteriocins and protective cultures, in relation to bacterial spoilage of beef and lamb meat. The sensory effect of these biopreservatives, an aspect that often receives less attention in microbiological studies, is also reviewed. Microbial biopreservatives were found to be able to retard the growth of the major meat spoilage bacteria, Brochothrix thermosphacta, Pseudomonas spp., and Enterobacteriaceae. Their addition did not have any discernible negative impact on the sensory properties of meat, whether assessed by human sensory panels or instrumental and chemical analyses. Although results are promising, the concept of biopreservation for controlling spoilage bacteria on fresh meat is still in its infancy. Studies in this area are still lacking, especially for lamb. Biopreservatives need more testing under conditions representative of commercial meat production, along with studies of any possible sensory effects, in order to validate their potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Michelle M Xu
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Mandeep Kaur
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Christopher J Pillidge
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Peter J Torley
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
16
|
Pedonese F, Torracca B, Mancini S, Pisano S, Turchi B, Cerri D, Nuvoloni R. Effect of a Lactobacillus sakei and Staphylococcus xylosus protective culture on Listeria monocytogenes growth and quality traits of Italian fresh sausage (salsiccia) stored at abusive temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1844084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Francesca Pedonese
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Beatrice Torracca
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Simone Mancini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Sonia Pisano
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Barbara Turchi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Domenico Cerri
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - Roberta Nuvoloni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| |
Collapse
|
17
|
Janßen D, Dworschak L, Ludwig C, Ehrmann MA, Vogel RF. Interspecies assertiveness of Lactobacillus curvatus and Lactobacillus sakei in sausage fermentations. Int J Food Microbiol 2020; 331:108689. [PMID: 32623291 DOI: 10.1016/j.ijfoodmicro.2020.108689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/25/2022]
Abstract
Lactobacillus (L.) curvatus and L. sakei contain strains, which are assertive in sausage fermentation. Previous work has demonstrated differences in assertiveness at strain level within one species, and revealed either exclusion of competitors by complementary partner strains or their inhibition by single strains. This work addresses interspecies differences in the assertiveness of L. curvatus and L. sakei. Strain sets of L. curvatus and L. sakei were employed as starters in a fermented sausage model and their abundancy upon fermentation was determined by strain-specific MALDI-TOF MS identification. Generally, single or groups of L. sakei strains outcompeted L. curvatus strains. In multiple growth tests employing mMRS and mMSM it could be shown that assertive L. sakei strains can be predicted along their μ max in mMSM. Still, L. curvatus TMW 1.624 could suppress all L. curvatus and most L. sakei strains in competitive settings. This could be referred to its expression of several bacteriocins, which are active against all of the L. curvatus strains. Strain specific differences could be demonstrated in the susceptibility of L. sakei to bacteriocins, and in oxidative stress tolerance, which is higher in co-existing L. sakei strains than in the bacteriocin producer. This suggests that tolerance to bacteriocins and oxidative stress represent additional determinants for assertiveness, above previously reported bacteriocin production versus metabolic complementarism of partner strains.
Collapse
Affiliation(s)
- Dorothee Janßen
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| | - Lena Dworschak
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| | - Christina Ludwig
- Bayerisches Zentrum für biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| | - Rudi F Vogel
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany.
| |
Collapse
|
18
|
Verplaetse E, André-Leroux G, Duhutrel P, Coeuret G, Chaillou S, Nielsen-Leroux C, Champomier-Vergès MC. Heme Uptake in Lactobacillus sakei Evidenced by a New Energy Coupling Factor (ECF)-Like Transport System. Appl Environ Microbiol 2020; 86:e02847-19. [PMID: 32680867 PMCID: PMC7480364 DOI: 10.1128/aem.02847-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/05/2020] [Indexed: 12/27/2022] Open
Abstract
Lactobacillus sakei is a nonpathogenic lactic acid bacterium and a natural inhabitant of meat ecosystems. Although red meat is a heme-rich environment, L. sakei does not need iron or heme for growth, although it possesses a heme-dependent catalase. Iron incorporation into L. sakei from myoglobin and hemoglobin was previously shown by microscopy and the L. sakei genome reveals the complete equipment for iron and heme transport. Here, we report the characterization of a five-gene cluster (from lsa1836 to lsa1840 [lsa1836-1840]) encoding a putative metal iron ABC transporter. Interestingly, this cluster, together with a heme-dependent catalase gene, is also conserved in other species from the meat ecosystem. Our bioinformatic analyses revealed that the locus might correspond to a complete machinery of an energy coupling factor (ECF) transport system. We quantified in vitro the intracellular heme in the wild type (WT) and in our Δlsa1836-1840 deletion mutant using an intracellular heme sensor and inductively coupled plasma mass spectrometry for quantifying incorporated 57Fe heme. We showed that in the WT L. sakei, heme accumulation occurs rapidly and massively in the presence of hemin, while the deletion mutant was impaired in heme uptake; this ability was restored by in trans complementation. Our results establish the main role of the L. sakei Lsa1836-1840 ECF-like system in heme uptake. Therefore, this research outcome sheds new light on other possible functions of ECF-like systems.IMPORTANCELactobacillus sakei is a nonpathogenic bacterial species exhibiting high fitness in heme-rich environments such as meat products, although it does not need iron or heme for growth. Heme capture and utilization capacities are often associated with pathogenic species and are considered virulence-associated factors in the infected hosts. For these reasons, iron acquisition systems have been deeply studied in such species, while for nonpathogenic bacteria the information is scarce. Genomic data revealed that several putative iron transporters are present in the genome of the lactic acid bacterium L. sakei In this study, we demonstrate that one of them is an ECF-like ABC transporter with a functional role in heme transport. Such evidence has not yet been brought for an ECF; therefore, our study reveals a new class of heme transport system.
Collapse
Affiliation(s)
- Emilie Verplaetse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Philippe Duhutrel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Gwendoline Coeuret
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphane Chaillou
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | |
Collapse
|
19
|
Jomehzadeh N, Javaherizadeh H, Amin M, Saki M, Al-Ouqaili MTS, Hamidi H, Seyedmahmoudi M, Gorjian Z. Isolation and identification of potential probiotic Lactobacillus species from feces of infants in southwest Iran. Int J Infect Dis 2020; 96:524-530. [PMID: 32439543 DOI: 10.1016/j.ijid.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES To evaluate the potential probiotic properties of Lactobacillus strains isolated from feces of infants and also to determine their antimicrobial activity against some enteropathogenic bacteria. METHODS The Fecal samples were prepared from 120 infants aged less than 24 months. In total, 105 Lactobacillus strains were identified by phenotypic tests. Thirty isolates were randomly selected to study their potential probiotic properties. These isolates were examined for resistance to acid (pH: 2.5, 2 h) and bile (oxgall 0.3%, 8 h), adhesion to HT-29 cells, antibiotic susceptibility, and antimicrobial activities. RESULTS On basis of 16S rRNA sequencing, 30 isolates identified as Lactobacillus fermentum (n = 11; 36.7%), Lactobacillus plantarum (n = 9; 30%), Lactobacillus rhamnosus (n = 6; 20%), and Lactobacillus paracasei (n = 4; 13.3%). All tested strains survived at acid and bile conditions. Six Lactobacillus strains revealed high adherence to HT-29 cells. Three strains including the L. fermentum (N2, N7), and the L. plantarum (N20) showed good probiotic potential and inhibited the growth of Yersinia enterocolitica ATCC 23715, Shigella flexneri ATCC 12022, Salmonella enterica ATCC 9270, and enteropathogenic Escherichia coli (EPEC) ATCC 43887. The antibiotic resistance test showed that all the isolates were susceptible to tetracycline, and chloramphenicol. CONCLUSIONS Lactobacillus strains like L. fermentum (N2, N7), and the L. plantarum (N20), could be potential probiotic, but further in vitro and in vivo studies on these probiotic strains are still required.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Abadan Faculty of Medical Sciences, Abadan, Iran; Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hazhir Javaherizadeh
- Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | - Hajar Hamidi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Seyedmahmoudi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
20
|
Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. SUSTAINABILITY 2020. [DOI: 10.3390/su12031087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotics have been emerging as a safe and viable alternative to antibiotics for increasing performance in livestock. Literature was collated via retrieved information from online databases, viz, PubMed, MEDLINE, ScienceDirect, Scopus, Web of Science and Google Scholar. Besides improved immunomodulation and nutrient digestibility, in-feed probiotics have shown drastic reductions in gastrointestinal tract-invading pathogens. However, every novel probiotic strain cannot be assumed to share historical safety with conventional strains. Any strain not belonging to the wild-type distributions of relevant antimicrobials, or found to be harbouring virulence determinants, should not be developed further. Modes of identification and the transmigration potential of the strains across the gastrointestinal barrier must be scrutinized. Other potential risk factors include the possibility of promoting deleterious metabolic effects, excessive immune stimulation and genetic stability of the strains over time. Adverse effects of probiotics could be strain specific, depending on the prevailing immunological and physiological condition of the host. The most crucial concern is the stability of the strain. Probiotics stand a good chance of replacing antibiotics in animal husbandry. The possibility of the probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed. Thus, the established safety measures in probiotic development must be adhered to for a successful global campaign on food safety and security.
Collapse
|
21
|
İncili GK, Karatepe P, İlhak Oİ. Effect of chitosan and Pediococcus acidilactici on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in meatballs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Costa JCCP, Bolívar A, Valero A, Carrasco E, Zurera G, Pérez-Rodríguez F. Evaluation of the effect of Lactobacillus sakei strain L115 on Listeria monocytogenes at different conditions of temperature by using predictive interaction models. Food Res Int 2019; 131:108928. [PMID: 32247472 DOI: 10.1016/j.foodres.2019.108928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
In this study, the inhibitory capacity of Lactobacillus sakei strain L115 against Listeria monocytogenes has been assayed at 4, 8, 11, 15 and 20 °C in broth culture. Besides, the use of predictive microbiology models for describing growth of both microorganisms in monoculture and coculture has been proposed. A preliminary inhibitory test confirmed the ability of Lb. sakei strain L115 to prevent the growth of a five-strain cocktail of L. monocytogenes. Next, the growth of microorganisms in isolation, i.e. in monoculture, was monitored and kinetic parameters maximum specific growth rate (μsp;max) and maximum population density (Nmax) were estimated by fitting the Baranyi model to recorded data. Inhibition coefficients (α) were calculated for the two kinetic parameters tested (μsp:max and Nmax) to quantify the percentage of reduction of growth when the microorganisms were in coculture in comparison with monoculture. The kinetic parameters were input into three interaction models, developed based on modifications of the Baranyi growth model, namely Jameson effect, new modified version of the Jameson effect and Lotka-Volterra models. Two approaches were utilized for simulation, one using the monoculture μsp;max, under the hypothesis that the growth potential is similar under monoculture and coculture conditions provided the environmental conditions are not modified, and the other one, based on adjusting the monoculture kinetic parameter by applying the corresponding α to reproduce the observed μsp;max under coculture conditions, assuming, in this approach, that the existence of a heterogeneous population can change the growth potential of each microbial population. It was observed that in coculture, μsp;max of L. monocytogenes decreased (e.g., α = 31% at 4 °C) and the Nmax was much lower than that of monoculture (e.g., α = 36% at 4 °C). The best simulation performance was achieved applying α to adjust the estimated monoculture growth rate, with the modified Jameson and Lotka-Volterra models showing better fit to the observed microbial interaction data as demonstrated by the fact that 100% data points fell within the acceptable simulation zone (±0.5 log CFU/mL from the simulated data). More research is needed to clarify the mechanisms of interaction between the microorganisms as well as the role of temperature.
Collapse
Affiliation(s)
- Jean Carlos Correia Peres Costa
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain
| | - Araceli Bolívar
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain
| | - Antonio Valero
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain
| | - Elena Carrasco
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain
| | - Gonzalo Zurera
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain.
| |
Collapse
|
23
|
Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 2019; 60:2837-2855. [PMID: 31547681 DOI: 10.1080/10408398.2019.1664979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Florence Charles
- QualiSud, Université d'Avignon, CIRAD, Université Montpellier, Montpellier SupAgro, Université de La Réunion, Avignon, France
| | - Francisco J Barba
- Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, València, Spain
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| |
Collapse
|
24
|
Zhao Y, Teixeira JS, Saldaña MDA, Gänzle MG. Antimicrobial activity of bioactive starch packaging films against Listeria monocytogenes and reconstituted meat microbiota on ham. Int J Food Microbiol 2019; 305:108253. [PMID: 31233962 DOI: 10.1016/j.ijfoodmicro.2019.108253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Contamination with spoilage organisms and Listeria monocytogenes are major concerns for quality and safety of cooked ready-to-eat (RTE) meat products. Thus, the objective of this study was to investigate the use of antimicrobial starch packaging films to control competitive microbiota and L. monocytogenes growth on a RTE ham product. Starch packaging films were prepared with different bioactives, gallic acid, chitosan, and carvacrol, using subcritical water technology. The viability of the incorporated strains on ham in contact with different antimicrobial starch packaging films was examined during 28-day storage period at 4 °C. Starch films with gallic acid had the least effect on ham antimicrobial activity; starch films with chitosan and carvacrol fully inhibited L. monocytogenes growth throughout 4 weeks of storage. RTE meat microbiota was more resistant to the antimicrobials than L. monocytogenes. Starch films loaded with chitosan or chitosan and carvacrol did not fully inhibit growth of RTE meat microbiota but delayed growth of RTE meat microbiota by one to two weeks. Moreover, competitive meat microbiota fully inhibited growth of L. monocytogenes. Therefore, antimicrobial starch packaging films prepared by subcritical water technology used in this study showed a promising effect on inhibiting L. monocytogenes in RTE ham.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Januana S Teixeira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.
| |
Collapse
|
25
|
Ben Said L, Gaudreau H, Dallaire L, Tessier M, Fliss I. Bioprotective Culture: A New Generation of Food Additives for the Preservation of Food Quality and Safety. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.29175.lbs] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Laila Ben Said
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
| | - Hélène Gaudreau
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
| | | | | | - Ismail Fliss
- Nutrition and Functional Foods Institute, Department of Food Science, Université Laval, Québec, Canada
- Ismail Fliss, PhD, is Full Professor, Nutrition and Functional Foods Institute, Department of Food science, Université Laval, G1V 0A6, Québec, Canada. Phone: (418) 656–2131.
| |
Collapse
|
26
|
Schumann B, Schmid M. Packaging concepts for fresh and processed meat – Recent progresses. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Abstract
A detailed revision of several aspects related to the application of skin packaging to raw beef was considered. Skin packaging, a relatively new technique derived from vacuum packaging, was developed with the aim of retailing small portions of fresh meat, minced meat, or meat preparations. Above all, the influence of this typology of packaging on the microbial population of raw meat was studied, with particular attention to total viable count, aerobic spoilage bacteria, anaerobic bacteria,Enterobacteriaceae, Brochothrix thermosphacta,and lactic acid bacteria. Moreover, the effect on acidification by LAB was also deepened. As colour is the main characteristic influencing purchase decisions at the point of sale, the effect of skin packaging on this parameter was evaluated for raw meat but also for cooked meat. Tenderness, juiciness, and the ability to hold liquid of raw meat when packed in skin conditions were also considered. Furthermore, odour and flavour were considered as sensorial parameters possibly affected by skin packaging. Finally, acceptability by consumer was also investigated. In the studies considered, results showed that skin packaging is advantageous in terms of maintenance of meat quality and for prolonging shelf-life, improving the stability of the products.
Collapse
|
28
|
Zhang Y, Zhu L, Dong P, Liang R, Mao Y, Qiu S, Luo X. Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:585-594. [PMID: 29059725 PMCID: PMC5838332 DOI: 10.5713/ajas.17.0540] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/04/2017] [Accepted: 09/26/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. METHODS L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at 4°C for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). RESULTS The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p< 0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). CONCLUSION Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.
Collapse
Affiliation(s)
- Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shubing Qiu
- The municipal authority affairs administration, Dezhou, Shandong 253076, China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.,Jiangsu Synergetic Innovation Center of Meat Production and Processing Quality and Safety Control, Nanjing Jiangsu 210000, China
| |
Collapse
|
29
|
Zagorec M, Champomier-Vergès MC. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017; 5:microorganisms5030056. [PMID: 28878171 PMCID: PMC5620647 DOI: 10.3390/microorganisms5030056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a wide genomic diversity that can be observed when studying different strains and on which probably rely its multiple facets in meat products: starter, spoiler, or protective culture. The emerging exploration of the microbial ecology of meat products also revealed the multiplicity of bacterial interactions L. sakei has to face and their various consequences on microbial quality and safety at the end of storage.
Collapse
|
30
|
Effectiveness of a Commercial Lactic Acid Bacteria Intervention Applied to Inhibit Shiga Toxin-Producing Escherichia coli on Refrigerated Vacuum-Aged Beef. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2017. [PMID: 28630857 PMCID: PMC5463119 DOI: 10.1155/2017/8070515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Because of their antagonistic activity towards pathogenic and spoilage bacteria, some members of the lactic acid bacteria (LAB) have been evaluated for use as food biopreservatives. The objectives of this study were to assess the antimicrobial utility of a commercial LAB intervention against O157 and non-O157 Shiga-toxigenic E. coli (STEC) on intact beef strip loins during refrigerated vacuum aging and determine intervention efficacy as a function of mode of intervention application. Prerigor strip loins were inoculated with a cocktail (8.9 ± 0.1 log10 CFU/ml) of rifampicin-resistant (100.0 μg/ml; RifR) O157 and non-O157 STEC. Inoculated loins were chilled to ≤4°C and treated with 8.7 ± 0.1 log10 CFU/ml LAB intervention using either a pressurized tank air sprayer (conventional application) or air-assisted electrostatic sprayer (ESS). Surviving STEC were enumerated on tryptic soy agar supplemented with 100.0 μg/ml rifampicin (TSAR) to determine STEC inhibition as a function of intervention application method (conventional, ESS) and refrigerated aging period (14, 28 days). Intervention application reduced STEC by 0.4 log10 CFU/cm2 (p < 0.05), although application method did not impact STEC reductions (p > 0.05). Data indicate that the LAB biopreservative may assist beef safety protection when utilized within a multi-intervention beef harvest, fabrication, and aging process.
Collapse
|
31
|
Rouger A, Remenant B, Prévost H, Zagorec M. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in as a reproducible chicken meat model. Int J Food Microbiol 2017; 247:38-47. [DOI: 10.1016/j.ijfoodmicro.2016.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023]
|
32
|
Fougy L, Desmonts MH, Coeuret G, Fassel C, Hamon E, Hézard B, Champomier-Vergès MC, Chaillou S. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity. Appl Environ Microbiol 2016; 82:3928-3939. [PMID: 27107120 PMCID: PMC4907177 DOI: 10.1128/aem.00323-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). IMPORTANCE Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in dietary salt intake. However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model.
Collapse
Affiliation(s)
- Lysiane Fougy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Aérial, Parc d'Innovation, Illkirch, France
| | | | - Gwendoline Coeuret
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | | - Stéphane Chaillou
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
33
|
Di Gioia D, Mazzola G, Nikodinoska I, Aloisio I, Langerholc T, Rossi M, Raimondi S, Melero B, Rovira J. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. Int J Food Microbiol 2016; 235:53-9. [PMID: 27400453 DOI: 10.1016/j.ijfoodmicro.2016.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/13/2016] [Accepted: 06/18/2016] [Indexed: 12/28/2022]
Abstract
In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products.
Collapse
Affiliation(s)
- Diana Di Gioia
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy.
| | - Giuseppe Mazzola
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy
| | - Ivana Nikodinoska
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy; Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Irene Aloisio
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy
| | - Tomaz Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Maddalena Rossi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Stefano Raimondi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
34
|
Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium. Theriogenology 2016; 85:625-37. [DOI: 10.1016/j.theriogenology.2015.09.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
|
35
|
|
36
|
Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci 2015; 109:66-74. [DOI: 10.1016/j.meatsci.2015.04.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/19/2022]
|
37
|
Pothakos V, Nyambi C, Zhang BY, Papastergiadis A, De Meulenaer B, Devlieghere F. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions. Int J Food Microbiol 2014; 178:120-9. [DOI: 10.1016/j.ijfoodmicro.2014.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
|