1
|
Niemczyk-Soczynska B, Sajkiewicz PŁ. Hydrogel-Based Systems as Smart Food Packaging: A Review. Polymers (Basel) 2025; 17:1005. [PMID: 40284270 PMCID: PMC12030136 DOI: 10.3390/polym17081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, non-degradable petroleum-based polymer packaging has generated serious disposal, pollution, and ecological issues. The application of biodegradable food packaging for common purposes could overcome these problems. Bio-based hydrogel films are interesting materials as potential alternatives to non-biodegradable commercial food packaging due to biodegradability, biocompatibility, ease of processability, low cost of production, and the absorption ability of food exudates. The rising need to provide additional functionality for food packaging has led scientists to design approaches extending the shelf life of food products by incorporating antimicrobial and antioxidant agents and sensing the accurate moment of food spoilage. In this review, we thoroughly discuss recent hydrogel-based film applications such as active, intelligent packaging, as well as a combination of these approaches. We highlight their potential as food packaging but also indicate the drawbacks, especially poor barrier and mechanical properties, that need to be improved in the future. We emphasize discussions on the mechanical properties of currently studied hydrogels and compare them with current commercial food packaging. Finally, the future directions of these types of approaches are described.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
| | - Paweł Łukasz Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
| |
Collapse
|
2
|
He C, Bai Q, Huang J, Xue Z, Wu M, Lv Y. Construction of magnetic response nanocellulose particles to realize smart antibacterial of Pickering emulsion. Int J Biol Macromol 2025; 294:139408. [PMID: 39753168 DOI: 10.1016/j.ijbiomac.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, Fe3O4 was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl3 and FeCl2 was 1.5:1, the prepared particles CNC/Fe1.5 exhibited the maximum saturation magnetization intensity of 54.98 emu/g and good emulsion stability, which was used to emulsify oregano essential oil (OEO) to fabricate smart antibacterial Pickering emulsion with magnetically responsive ability. The emulsion with the oil-water ratio of 3:7 and the particle concentration of 0.3 wt% showed the excellent stability and sensitive responsiveness of magnetic. The OEO released rapidly within 0-8 h followed by the slow release when the emulsion was stimulated by 0.2 T, 0.4 T and 0.6 T magnetic field. The antibacterial rate of the emulsion was close to 100 % against both E. coli and L. monocytogenes at magnetic field with 0.4 T and 0.6 T in 12 h, achieving the smart antimicrobial. The prepared smart antibacterial Pickering emulsion would provide a novel material and have the potential in food packaging.
Collapse
Affiliation(s)
- Chongfeng He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qishu Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingshao Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Yanna Lv
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Akachat B, Himed L, Salah M, D’Elia M, Rastrelli L, Barkat M. Development of Pectin-Based Films with Encapsulated Lemon Essential Oil for Active Food Packaging: Improved Antioxidant Activity and Biodegradation. Foods 2025; 14:353. [PMID: 39941946 PMCID: PMC11817409 DOI: 10.3390/foods14030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 02/16/2025] Open
Abstract
This study evaluated the physicochemical, morphological, and functional properties of pectin-based films incorporated with lemon essential oil (EO) to assess their potential as biodegradable food packaging materials. The results showed that EO incorporation significantly influenced the film's characteristics. The control film exhibited a smooth surface, while the EO-containing film had a rougher texture with globular structures and interconnected channels, likely representing dispersed EO droplets and matrix alterations. The mechanical analysis revealed increased elongation at break (20.05 ± 0.784%) for EO-incorporated films, indicating improved flexibility, while tensile strength and Young's modulus decreased, suggesting reduced stiffness. Film thickness increased slightly with EO (0.097 ± 0.008 mm) compared to the control (0.089 ± 0.001 mm), though the difference was not statistically significant (p > 0.05). Moisture content decreased in EO-containing films (28.894%) compared to the control (35.236%), enhancing water resistance. Water solubility increased slightly (16.046 ± 0.003% vs. 15.315 ± 0.040%), while the swelling rate decreased significantly (0.189 ± 0.003 vs. 0.228 ± 0.040; p < 0.05), indicating greater structural stability in aqueous environments due to the hydrophobic nature of EO. Transparency tests showed that EO slightly increased film opacity (0.350 ± 0.02 vs. 0.290 ± 0.012), aligning with trends in UV-protective materials. The EO-incorporated films also exhibited moderate antibacterial activity against Staphylococcus aureus and Escherichia coli. Antifungal tests revealed strong inhibition of Botrytis cinerea (100%) and moderate inhibition of Alternaria alternata (50%) in EO-containing films. These results demonstrate that EO incorporation improves the functional properties of pectin films, enhancing their flexibility, antimicrobial activity, and environmental stability, making them promising candidates for sustainable food packaging applications. These novel active food packaging materials exhibit strong physical properties and significant potential in maintaining food quality and prolonging shelf life.
Collapse
Affiliation(s)
- Belkis Akachat
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agro-Food Technologies (INATAA), Freres Mentouri University 1, Constantine 25000, Algeria
| | - Louiza Himed
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agro-Food Technologies (INATAA), Freres Mentouri University 1, Constantine 25000, Algeria
| | - Merniz Salah
- Institute of Industrial Hygiene and Safety, University Batna 2, Batna 05078, Algeria
| | - Maria D’Elia
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (M.D.); (L.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90123 Palermo, Italy
| | - Luca Rastrelli
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (M.D.); (L.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Malika Barkat
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agro-Food Technologies (INATAA), Freres Mentouri University 1, Constantine 25000, Algeria
- Food Sciences Laboratory, Formulation Innovation Valorization and Artificial Intelligence (SAFIVIA), Constantine 25000, Algeria
| |
Collapse
|
4
|
Farouk MM, Zhang R, Jenkinson DI, Realini CE. Tailoring meat products for the elderly: A comprehensive review. Meat Sci 2025; 219:109669. [PMID: 39303346 DOI: 10.1016/j.meatsci.2024.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The population of the elderly is projected to grow significantly in most of the developed countries in the near future. This should earn this demographic the title of 'Consumer of the future'. Meat has high quality proteins and essential vitamins which are important for all demographics but more so for the elderly due to their susceptibility to sarcopenia. This review explored the landscape of meat research and product development that meets the distinctive requirements of the elderly, drawing from published refereed articles, industry reports, and unpublished grey literature. The review emphasised the importance of understanding the evolving dietary and sensory requirements associated with ageing and how they intersect with meat consumption. One notable aspect observed is the diversity within the elderly population, which underscores the necessity for tailored approaches in meat product development to cater to the varying preferences and nutritional needs of different individuals. This review also highlights the ongoing efforts in developing meat-based products that span a spectrum of consistencies, ranging from solid to liquid forms, to accommodate the diverse needs of elderly consumers. Despite these advancements, the review found a discrepancy between the pace of meat product development for the elderly and the rapid advancements in kitchen-level technologies and suggests that further research is needed to bridge this gap and align product innovation with emerging technological trends.
Collapse
Affiliation(s)
- Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| | - Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand
| | | | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
6
|
Mishra B, Panda J, Mishra AK, Nath PC, Nayak PK, Mahapatra U, Sharma M, Chopra H, Mohanta YK, Sridhar K. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int J Biol Macromol 2024; 279:135583. [PMID: 39270899 DOI: 10.1016/j.ijbiomac.2024.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India
| | | | - Pinku Chandra Nath
- Department of Food Technology, Uttaranchal University, School of Applied and Life Sciences, Dehradun, Uttarakhand 248007, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Hitesh Chopra
- Department of Biosciences, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
7
|
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1618. [PMID: 39452955 PMCID: PMC11510578 DOI: 10.3390/nano14201618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| |
Collapse
|
8
|
Dăescu DI, Dreavă DM, Todea A, Peter F, Păușescu I. Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications. Polymers (Basel) 2024; 16:2256. [PMID: 39204476 PMCID: PMC11359790 DOI: 10.3390/polym16162256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV-VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer-flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat's quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy.
Collapse
Affiliation(s)
| | | | | | | | - Iulia Păușescu
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timișoara, 300001, Vasile Pârvan 6, 300001 Timișoara, Romania; (D.I.D.); (D.M.D.); (A.T.); (F.P.)
| |
Collapse
|
9
|
Cai T, Ge-Zhang S, Zhang C, Mu P, Cui J. Excellent Antibacterial Properties of Silver/Silica-Chitosan/Polyvinyl Alcohol Transparent Film. Int J Mol Sci 2024; 25:8125. [PMID: 39125695 PMCID: PMC11311888 DOI: 10.3390/ijms25158125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Transparent films with excellent antibacterial properties and strong mechanical properties are highly sought after in packaging applications. In this study, Ag/SiO2 nanoparticles were introduced into a mixed solution of chitosan (CS) and polyvinyl alcohol (PVA) and a Ag/SiO2-CS-PVA transparent film was developed. The excellent properties of the film were confirmed by light transmittance, water contact angle tests and tensile tests. In addition, for the antibacterial test, the antibacterial properties of the sample against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were explored, and the average size of the bacteriostatic circle was measured by the cross method. The final results show that Ag/SiO2-CS-PVA transparent film has the advantages of good antibacterial properties, high transparency and high mechanical strength.
Collapse
Affiliation(s)
- Taoyang Cai
- College of Science, Northeast Forestry University, Harbin 150040, China; (T.C.)
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (T.C.)
| | - Chang Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (T.C.)
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China; (T.C.)
| | - Jingang Cui
- College of Science, Northeast Forestry University, Harbin 150040, China; (T.C.)
| |
Collapse
|
10
|
Ivanov Y, Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms 2024; 12:1378. [PMID: 39065146 PMCID: PMC11279212 DOI: 10.3390/microorganisms12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of antimicrobial food packaging is a very important and current goal, but it still difficult to implement in practice. Reducing microbial contamination and preserving food quality are very important tasks for food manufacturers as the use of antimicrobial packaging can preserve the health of consumers. On the other hand, the difficulty of degrading packaging materials, leading to environmental pollution, is also an important problem. These problems can be solved by using biodegradable biopolymers and antimicrobial agents in the production of food packaging. Very suitable antimicrobial agents are grape seed and skin extracts as they have high antioxidant and antimicrobial capacity and are obtained from grape pomace, a waste product of winemaking. The present review presents the valuable bioactive compounds contained in grape seeds and skins, the methods used to obtain the extracts, and their antimicrobial and antioxidant properties. Then, the application of grape seed and skin extracts for the production of antimicrobial packaging is reviewed. Emphasis is placed on antimicrobial packaging based on various biopolymers. Special attention is also paid to the application of the extract of grape skins to obtain intelligent indicator packages for the continuous monitoring of the freshness and quality of foods. The focus is mainly placed on the antimicrobial properties of the packaging against different types of microorganisms and their applications for food packaging. The presented data prove the good potential of grape seed and skin extracts to be used as active agents in the preparation of antimicrobial food packaging.
Collapse
Affiliation(s)
| | - Tzonka Godjevargova
- Department Biotechnology, University “prof. d-r A. Zlatarov”, 8010 Burgas, Bulgaria;
| |
Collapse
|
11
|
Li Q, Gong Y, Du T, Zhang L, Ma Y, Zhang T, Wu Z, Zhang W, Wang J. Modified halloysite nanotubes as GRAS nanocarrier for intelligent monitoring and food preservation. Food Chem 2024; 444:138678. [PMID: 38330598 DOI: 10.1016/j.foodchem.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Conventional "all-in-one" methods for multi-component active packaging systems are not wholly adequate for fresh food. Given the need for multifunctional properties, introducing halloysite nanotubes (HNTs) could be a promising way to achieve controllable release of active ingredients while endowing with pH-sensitive performance. Here, we pioneered a GRAS composite with multifunctional properties, employing natural HNTs as a nanocarrier, citral (Cit) as an active antimicrobial agent, and myricetin (Myr) for monitoring freshness. The Cit-HNTs-Myr had excellent DPPH, ABTS and ·OH radical scavenging capacity, dual-model (contact and fumigant) antibacterial properties, and pH-sensitive performance. Subsequently, a smart tag prepared by dipping cellulose fibers into Cit-HNTs-Myr, which extended the shelf life of shrimp and blueberries, and provided freshness information for the shrimp. These results demonstrate the applicability of Cit-HNTs-Myr in the preservation of perishable goods and freshness monitoring.
Collapse
Affiliation(s)
- Qingqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuxin Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiyi Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Kaloper S, Plohl O, Smole Možina S, Vesel A, Šimat V, Fras Zemljič L. Exploring chitosan-plant extract bilayer coatings: Advancements in active food packaging via polypropylene modification. Int J Biol Macromol 2024; 270:132308. [PMID: 38740163 DOI: 10.1016/j.ijbiomac.2024.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.
Collapse
Affiliation(s)
- Saša Kaloper
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sonja Smole Možina
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova ulica 30, 1000 Ljubljana, Slovenia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
13
|
Liu Z, Zhang M, Hao Y, Hu W, Zhu W, Wang H, Li L. Application of surface-modified functional packaging in food storage: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13343. [PMID: 38629458 DOI: 10.1111/1541-4337.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.
Collapse
Affiliation(s)
- Zhuolin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Mengmeng Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Yi Hao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Wenqing Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Weizhong Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - He Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| |
Collapse
|
14
|
Spada E, De Cianni R, Di Vita G, Mancuso T. Balancing Freshness and Sustainability: Charting a Course for Meat Industry Innovation and Consumer Acceptance. Foods 2024; 13:1092. [PMID: 38611396 PMCID: PMC11011882 DOI: 10.3390/foods13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The agribusiness sector is constantly seeking solutions to enhance food security, sustainability, and resilience. Recent estimates indicate that one-third of the total food production remains unused due to waste or limited shelf life, resulting in negative environmental and ethical consequences. Consequently, exploring technological solutions to extend the shelf life of food products could be a crucial option to address this issue. However, the success of these technological solutions is closely linked to the perception of the end-consumers, particularly in the short term. Based on these considerations, this paper presents a systematic literature review of the main technological innovations in the fresh meat industry and of consumers' perceptions of such innovations. Regarding innovative technologies, this review focused on active and smart packaging. Amidst various technological innovations, including the utilization of fundamental matrices and natural additives, a noticeable gap exists in consumer perception studies. This study represents the first comprehensive compilation of research on consumers' perceptions and acceptance of innovations designed to extend the shelf life of fresh meat. Moreover, it sheds light on the existing barriers that hinder the complete embrace of these innovations.
Collapse
Affiliation(s)
- Emanuele Spada
- Department of Agriculture (AGRARIA), University Mediterranea of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy;
| | - Rachele De Cianni
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (R.D.C.); (T.M.)
| | - Giuseppe Di Vita
- Department of Agriculture Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Teresina Mancuso
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (R.D.C.); (T.M.)
| |
Collapse
|
15
|
Güler K, Yanık T, Alak G. Investigations on the shelf life of rainbow trout fillets covered by quinoa biofilms enriched with different essential oils ( Nigella sativa and Mentha piperita). FOOD SCI TECHNOL INT 2024; 30:251-259. [PMID: 36523191 DOI: 10.1177/10820132221145973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Having no adverse effects on the consumer's health, causing zero or minimal damage to the environment, and maintaining the nutritional quality of the product are too important criteria for food packaging materials. Edible biofilm packaging techniques are successful to meet many of these features. To strengthen this claim, rainbow trout (Oncorhynchus mykiss) fillets were coated with an edible film solution (obtained from quinoa starch), which attracted a lot of attention in terms of nutritional value. The prepared biofilm solutions were applied in four different groups (control, quinoa, quinoa + black seed oil, and quinoa + mint oil) and stored in refrigerator conditions (4 ± 1 °C) for 15 days. Microbiological (total aerobic mesophilic bacteria, psychrophilic bacteria, Pseudomonas, lactic acid bacteria, and Enterobacteriaceae) and chemical analyses (TBARS, TVB-N, pH) were performed on certain days of storage. At the end of the study, it was stated that coating fish fillets with edible quinoa, which was enriched by black cumin and mint essential oils, had positive chemical and microbiological results. The highest value for pH was 7.03 ± 0.09 obtained in the control group. It was found that black seed oil has antimicrobial specifications via slowing the microorganism development and prolongs the storage time. The TVB-N value was below the consumable limit value (25 mg/100 g) in the treatment groups and the TBARS value was lowest (1.62 ± 0.21 μmolMA/kg) in the black seed oil group. Consequently, it is suggested that black seed oil may be used on trout fillets to prolong storage time.
Collapse
Affiliation(s)
- Kübra Güler
- Department of Aquaculture, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Telat Yanık
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
16
|
Bodie AR, Wythe LA, Dittoe DK, Rothrock MJ, O’Bryan CA, Ricke SC. Alternative Additives for Organic and Natural Ready-to-Eat Meats to Control Spoilage and Maintain Shelf Life: Current Perspectives in the United States. Foods 2024; 13:464. [PMID: 38338599 PMCID: PMC10855140 DOI: 10.3390/foods13030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Food additives are employed in the food industry to enhance the color, smell, and taste of foods, increase nutritional value, boost processing efficiency, and extend shelf life. Consumers are beginning to prioritize food ingredients that they perceive as supporting a healthy lifestyle, emphasizing ingredients they deem acceptable as alternative or "clean-label" ingredients. Ready-to-eat (RTE) meat products can be contaminated with pathogens and spoilage microorganisms after the cooking step, contributing to food spoilage losses and increasing the risk to consumers for foodborne illnesses. More recently, consumers have advocated for no artificial additives or preservatives, which has led to a search for antimicrobials that meet these demands but do not lessen the safety or quality of RTE meats. Lactates and diacetates are used almost universally to extend the shelf life of RTE meats by reducing spoilage organisms and preventing the outgrowth of the foodborne pathogen Listeria monocytogenes. These antimicrobials applied to RTE meats tend to be broad-spectrum in their activities, thus affecting overall microbial ecology. It is to the food processing industry's advantage to target spoilage organisms and pathogens specifically.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Lindsey A. Wythe
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Corliss A. O’Bryan
- Department of Food Science, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA;
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| |
Collapse
|
17
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
18
|
Barzan G, Sacco A, Giovannozzi AM, Portesi C, Schiavone C, Salafranca J, Wrona M, Nerín C, Rossi AM. Development of innovative antioxidant food packaging systems based on natural extracts from food industry waste and Moringa oleifera leaves. Food Chem 2024; 432:137088. [PMID: 37688815 DOI: 10.1016/j.foodchem.2023.137088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Active packaging that prolongs food shelf life, maintaining its quality and safety, is an increasing industrial demand, especially if integrated in a circular economy model. In this study, the fabrication and characterization of sustainable cellulose-based active packaging using food-industry waste and natural extracts as antioxidant agents was assessed. Grape marc, olive pomace and moringa leaf extracts obtained by supercritical fluid, antisolvent and maceration extraction in different solvents were compared for their antioxidant power and phenolic content. Grape and moringa macerates in acetone and methanol, as the most efficient and cost-effective extracts, were incorporated in the packaging as coatings or in-between layers. Both systems showed significant free-radical protection in vitro (antioxidant power 50%) and more than 50% prevention of ground beef lipid peroxidation over 16 days by indirect TBARS and direct in situ Raman microspectroscopy measurements. Therefore, these systems are promising for industrial applications and more sustainable farm-to-fork food production systems.
Collapse
Affiliation(s)
- Giulia Barzan
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Alessio Sacco
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Andrea Mario Giovannozzi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Chiara Portesi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Consolato Schiavone
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Jesús Salafranca
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Magdalena Wrona
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Cristina Nerín
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Andrea Mario Rossi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| |
Collapse
|
19
|
Lu S, Zhou Y, Hu X, Wang T, Xu B, Cui R, Ma T, Song Y. Tailoring the optical and mechanical properties of cellulose nanocrystal film by sugar alcohols and its pH/humidity-responsive behavior. Int J Biol Macromol 2023; 253:127316. [PMID: 37820913 DOI: 10.1016/j.ijbiomac.2023.127316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Cellulose nanocrystals (CNC) have gained widespread attention in intelligent food packaging because of their iridescent optical properties. Here, we report a CNC composite film employing CNC, sugar alcohols (e.g., maltol, erythritol, mannitol, sorbitol, and xylitol) and natural pigment anthocyanins, which has a special iridescent color that can be used as a pH and humidity sensor. The effects of five sugar alcohols with different addition ratios on the structural, optical, and mechanical properties of the CNC films were investigated. The results demonstrated that the addition of sugar alcohol made composite films exhibiting a red-shift of λmax, a more uniform color in visual observation, and a larger pitch. Among them, the CNC-mannitol composite film with a ratio of 10:1 exhibited the best mechanical properties, possessing a tensile stress strength of 57 MPa and toughness of 137 J/m3. Subsequently, anthocyanins were incorporated to this composite film, which showed a marked color change along with the pH from 2 to 12 and exhibited a reversible color change from red to transparent upon a relative humidity change from 35 % to 85 %. Overall, such multi-environment-responsive iridescent films with excellent mechanical properties have a great potential for use in intelligent food packaging applications.
Collapse
Affiliation(s)
- Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuxing Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Tianhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Bo Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ranran Cui
- Guangxi Qingqing Biotech Co., Ltd, Guangxi, Fangchenggang 538000, China
| | - Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
20
|
Giotopoulou I, Fotiadou R, Stamatis H, Barkoula NM. Development of Low-Density Polyethylene Films Coated with Phenolic Substances for Prolonged Bioactivity. Polymers (Basel) 2023; 15:4580. [PMID: 38232018 PMCID: PMC10707956 DOI: 10.3390/polym15234580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The current study proposes an efficient coating methodology for the development of low-density polyethylene (LDPE) films with prolonged bioactivity for food packaging applications. Three natural phenolic-based substances were incorporated at optimized concentrations in methyl-cellulose-based solutions and used as coatings on LDPE films. The amount of surfactant/emulsifier was optimized to control the entrapment of the bioactive substances, minimizing the loss of the substances during processing, and offering prolonged bioactivity. As a result, the growth of Escherichia coli was substantially inhibited after interaction with the coated films, while coated films presented excellent antioxidant activities and maintained their mechanical performance after coating. Considerable bioactivity was observed after up to 7 days of storage in sealed bags in the case of carvacrol- and thymol-coated films. Interestingly, films coated with olive-leaf extract maintained a high level of antimicrobial and antioxidant properties, at least for 40 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Renia Fotiadou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | | |
Collapse
|
21
|
Li X, Liu D, Pu Y, Zhong Y. Recent Advance of Intelligent Packaging Aided by Artificial Intelligence for Monitoring Food Freshness. Foods 2023; 12:2976. [PMID: 37569245 PMCID: PMC10418964 DOI: 10.3390/foods12152976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is a pressing concern for human society, as it directly impacts people's lives, while food freshness serves as one of the most crucial indicators in ensuring food safety. There exist diverse techniques for monitoring food freshness, among which intelligent packaging based on artificial intelligence technology boasts the advantages of low cost, high efficiency, fast speed and wide applicability; however, it is currently underutilized. By analyzing the current research status of intelligent packaging both domestically and internationally, this paper provides a clear classification of intelligent packaging technology. Additionally, it outlines the advantages and disadvantages of using intelligent packaging technology for food freshness detection methods, while summarizing the latest research progress in applying artificial intelligence-based technologies to food freshness detection through intelligent packaging. Finally, the author points out the limitations of the current research, and anticipates future developments in artificial intelligence technology for assisting freshness detection in intelligent packaging. This will provide valuable insights for the future development of intelligent packaging in the field of food freshness detection.
Collapse
Affiliation(s)
| | | | | | - Yunfei Zhong
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (X.L.); (D.L.); (Y.P.)
| |
Collapse
|
22
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Hasanah NN, Mohamad Azman E, Rozzamri A, Zainal Abedin NH, Ismail-Fitry MR. A Systematic Review of Butterfly Pea Flower ( Clitoria ternatea L.): Extraction and Application as a Food Freshness pH-Indicator for Polymer-Based Intelligent Packaging. Polymers (Basel) 2023; 15:polym15112541. [PMID: 37299340 DOI: 10.3390/polym15112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The butterfly pea flower (Clitoria ternatea L.) (BPF) has a high anthocyanin content, which can be incorporated into polymer-based films to produce intelligent packaging for real-time food freshness indicators. The objective of this work was to systematically review the polymer characteristics used as BPF extract carriers and their application on various food products as intelligent packaging systems. This systematic review was developed based on scientific reports accessible on the databases provided by PSAS, UPM, and Google Scholar between 2010 and 2023. It covers the morphology, anthocyanin extraction, and applications of anthocyanin-rich colourants from butterfly pea flower (BPF) and as pH indicators in intelligent packaging systems. Probe ultrasonication extraction was successfully employed to extract a higher yield, which showed a 246.48% better extraction of anthocyanins from BPFs for food applications. In comparison to anthocyanins from other natural sources, BPFs have a major benefit in food packaging due to their unique colour spectrum throughout a wide range of pH values. Several studies reported that the immobilisation of BPF in different polymeric film matrixes could affect their physicochemical properties, but they could still effectively monitor the quality of perishable food in real-time. In conclusion, the development of intelligent films employing BPF's anthocyanins is a potential strategy for the future of food packaging systems.
Collapse
Affiliation(s)
- Nur Nabilah Hasanah
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Ashari Rozzamri
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nur Hanani Zainal Abedin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
24
|
Echegaray N, Goksen G, Kumar M, Sharma R, Hassoun A, Lorenzo JM, Dar BN. A critical review on protein-based smart packaging systems: Understanding the development, characteristics, innovations, and potential applications. Crit Rev Food Sci Nutr 2023; 64:8633-8648. [PMID: 37114905 DOI: 10.1080/10408398.2023.2202256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The use of packaging in the food industry is essential to protect food and improve its shelf life. However, traditional packaging, based on petroleum derivatives, presents some problems because it is non-biodegradable and is obtained from nonrenewable sources. In contrast, protein-based smart packaging is presented as an environmentally friendly strategy that also permits obtaining packaging with excellent characteristics for the formation of smart films and coatings. This review aims to summarize recent developments in smart packaging, focusing on edible films/coatings materials, originating from animal and plant protein sources. Various characteristics like mechanical, barrier, functional, sensory, and sustainability of packaging systems are discussed, and the processes used for their development are also described. Moreover, relevant examples of the application of these smart packaging technologies in muscle foods and some innovations in this area are presented. Protein-based films and coatings from plant and animal origins have great potential to enhance food safety and quality, and reduce environmental issues (e.g., plastic pollution and food waste). Some characteristics of the packages can be improved by incorporating polysaccharides, lipids, and other components as antioxidants, antimicrobials, and nanoparticles in protein-based composites. Promising results have been shown in many muscle foods, such as meat, fish, and other seafood. These innovative smart packaging systems are characterized by their renewable and biodegradable nature, and sustainability, among other features that go beyond typical protection barriers (namely, active, functional, and intelligent features). Nonetheless, the utilization of protein-based responsive films and coatings at industrial level still need optimization to be technologically and economically valid and viable.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rajan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
- Facultad de Ciencias de Ourense, University of Vigo, Area de Tecnología de los Alimentos, Ourense, Spain
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| |
Collapse
|
25
|
Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
26
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
27
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
28
|
Bazilio FS, dos Santos LMG, Silva CB, Neto SAV, Senna CA, Archanjo BS, do Couto Jacob S, de Mello Pereira Abrantes S. Migration of silver nanoparticles from plastic materials, with antimicrobial action, destined for food contact. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:654-665. [PMID: 36712209 PMCID: PMC9873845 DOI: 10.1007/s13197-022-05650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 12/16/2022]
Abstract
Five materials with antimicrobial function, by adding silver, were investigated to evaluate total silver concentration in the polymers and migration of silver nanoparticles from the materials in contact with food. The migration test was carried out by contacting plastic material with food simulant. Migration concentrations and average silver particle sizes were determined by mass spectrometry with inductively coupled plasma, performed in single particle mode (spICP-MS). Additionally, silver particles size and shape were characterized by scanning electron microscopy (SEM) with chemical identification by energy-dispersive X-ray spectroscopy (EDS). Most of samples showed detectable total silver concentrations and all samples showed migration of silver nanoparticles, with concentrations found between 0.00433 and 1.35 ng kg-1. Indeed, the migration study indicated the presence of silver nanoparticles in all food simulants, with sizes bellow 95 nm. The average particle size determined for acetic acid was greater than that observed in the other simulants. In the images obtained by SEM/EDS also confirmed the presence of spherical silver nanoparticles, between 17 and 80 nm. The findings reported herein will aid the health area concerning of human health risk assessments, aiming at regulating this type of material from a food safety point of view.
Collapse
Affiliation(s)
- Fabio Silvestre Bazilio
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Lisia Maria Gobbo dos Santos
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Cristiane Barata Silva
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Santos Alves Vicentini Neto
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Carlos Alberto Senna
- Directorate of Scientific Metrology and Materials Division, National Institute of Metrology, Quality and Technology INMETRO, Duque de Caxias, Brazil
| | - Bráulio Soares Archanjo
- Directorate of Scientific Metrology and Materials Division, National Institute of Metrology, Quality and Technology INMETRO, Duque de Caxias, Brazil
| | - Silvana do Couto Jacob
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Shirley de Mello Pereira Abrantes
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| |
Collapse
|
29
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
30
|
Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1004-1020. [PMID: 35303759 DOI: 10.1002/jsfa.11880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the strong increase in products consumption, the purchase of products on online platforms as well as the requirements for greater safety and food protection are a concern for food and packaging industries. Active packaging brings huge advances in the extension of product shelf-life and food degradation and losses reduction. This systematic work aims to collect and evaluate all existing strategies and technologies of active packaging that can be applied in food products, with a global view of new possibilities for food preservation. Oxygen scavengers, carbon dioxide emitters/absorbers, ethylene scavengers, antimicrobial and antioxidant active packaging, and other active systems and technologies are summarized including the products commercially available and the respective mechanisms of action. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
31
|
Gan M, Guo C, Liao W, Liu X, Wang Q. Development and characterization of chitosan/bacterial cellulose/pullulan bilayer film with sustained release curcumin. Int J Biol Macromol 2023; 226:301-311. [PMID: 36495997 DOI: 10.1016/j.ijbiomac.2022.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
A natural biopolymer bilayer film based on chitosan and bacterial cellulose with a protective layer of pullulan was developed by a two-step solution casting method. Curcumin was incorporated as an active antioxidant and antibacterial agent into the inner layer. The films with different curcumin concentrations were systematically characterized. Fourier transform infrared spectroscopy and X-ray diffraction analyses showed high compatibility between curcumin and the polysaccharide matrix through intermolecular interactions, which was verified by enhanced mechanical and barrier properties. The curcumin incorporation improved the thermal stability by >35.4 %, along with lower visible and ultraviolet light transmittance (< 8.6 %) and water solubility (< 25.1 %). The film had both antibacterial and antioxidant properties, and the sustained release of curcumin was largest (> 58.8 %) in the fatty food simulant lasting for over 155 h. The results suggested that the film containing 0.2 % curcumin had ideal physical and functional properties, suggesting its potential as a novel packaging material for the preservation of high-fat food.
Collapse
Affiliation(s)
- Miaoyu Gan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Caoyu Guo
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Wenying Liao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Xiaoli Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China.
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G5C9, Canada
| |
Collapse
|
32
|
Firmanda A, Fahma F, Warsiki E, Syamsu K, Arnata IW, Sartika D, Suryanegara L, Qanytah, Suyanto A. Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Wu Y, Li C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp. Int J Biol Macromol 2022; 223:404-417. [PMID: 36347377 DOI: 10.1016/j.ijbiomac.2022.10.282] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional food packaging films were developed based on polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), tea polyphenol (TP) and black carrot anthocyanin (CA). Results of Zeta potential, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction showed that CA enhanced the stability of the particle dispersion system through hydrogen bonding and electrostatic interactions, promoted the compatibility between TP and PVA-CMC (PC) substrates, and enhanced the binding between the components of the films. Because of the interaction of TP and CA, PC-TP-CA films had better water resistance and water vapor barrier properties, thermal stability, antioxidant and antimicrobial properties. PC-CA and PC-TP-CA films exhibited excellent UV-blocking properties. They also showed distinct color responsiveness in the pH range of 2-13, significant sensitivity to ammonia vapor in a short period of time and excellent color stability over 20 days of storage under different conditions. When the film was applied to fish, it was found that PC-TP-CA film could extend the shelf life of fish by 1-2 days and successfully monitor the freshness of the fish in real-time. Considering all the physical and functional properties, the non-toxic and biodegradable PC-TP-CA film has excellent potential as a new multifunctional food packaging material in the future.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
34
|
Osmólska E, Stoma M, Starek-Wójcicka A. Application of Biosensors, Sensors, and Tags in Intelligent Packaging Used for Food Products-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249956. [PMID: 36560325 PMCID: PMC9783027 DOI: 10.3390/s22249956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
The current development of science and the contemporary market, combined with high demands from consumers, force manufacturers and scientists to implement new solutions in various industries, including the packaging industry. The emergence of new solutions in the field of intelligent packaging has provided an opportunity to extend the quality of food products and ensures that food will not cause any harm to the consumer's health. Due to physical, chemical, or biological factors, the state of food may be subject to degradation. The degradation may occur because the packaging, i.e., the protective element of food products, may be damaged during storage, transport, or other logistic and sales activities. This is especially important since most food products are highly perishable, and the maintenance of the quality of a food product is the most critical issue in the entire supply chain. Given the importance of the topic, the main purpose of this article was to provide a general overview of the application of biosensors, sensors, and tags in intelligent packaging used for food products. A short history and the genesis of intelligent packaging are presented, and the individual possibilities of application of sensors, biosensors, gas sensors, and RFID tags, as well as nanotechnology, in the area of the packaging of food products are characterized.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
35
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ehsani N, Rostamabadi H, Dadashi S, Ghanbarzadeh B, Kharazmi MS, Jafari SM. Electrospun nanofibers fabricated by natural biopolymers for intelligent food packaging. Crit Rev Food Sci Nutr 2022; 64:5016-5038. [PMID: 36419371 DOI: 10.1080/10408398.2022.2147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An "intelligent" or smart packaging is able to continuously monitor physicochemical and/or biological variations of packaged food materials, providing real-time information concerning their quality, maturity, and safety. Electrospun nanofiber (ENF) structures, nowadays, reckon as versatile biomaterial platforms in designing intelligent packaging (IP) systems. Natural biopolymer-based ENF traits, for example, surface chemistry, rate of degradation, fiber diameter, and degree of alignment, facilitate the development of unique, tunable IP, enhancing food quality, and safety. In this review, after a brief overview of the electrospinning process, we review food IP systems, which can be utilized to detect variations in food features, for example, those based on alterations in temperature, O2 level, time, humidity, pH, or microbial contamination. Different intelligent approaches that are applicable in engineering IP materials are then highlighted, that is, indicators, data carriers, and sensors. The latest research on the application of ENFs made with natural biopolymers in food IP and their performance on different packaged food types (i.e. meat, fruits and vegetables, dairy products, etc.) are underlined. Finally, the challenges and outlook of these systems in the food industry are discussed.
Collapse
Affiliation(s)
- Niloufar Ehsani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Dadashi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
37
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Azman N, Khairul WM, Sarbon N. A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Li C, Yun D, Wang Z, Xu F, Tang C, Liu J. Development of Shrimp Freshness Indicating Films by Embedding Anthocyanins-Rich Rhododendron simsii Flower Extract in Locust Bean Gum/Polyvinyl Alcohol Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217557. [PMID: 36363149 PMCID: PMC9656595 DOI: 10.3390/ma15217557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Freshness indicating films containing anthocyanins are one type of smart packaging technology. Anthocyanins in the films can show visual color changes when food spoilage occurs, thereby indicating the freshness degree of food in real-time. Rhododendron simsii is a landscape plant with attractive flowers that are abundant in anthocyanins. In this study, smart packaging films were prepared by embedding 2% and 4% R. simsii flower anthocyanins (RA) in locust bean gum- (LBG) and polyvinyl alcohol- (PVA) based matrices. The micro-structure, barrier, mechanical, thermal, antioxidant, and color-changeable properties of the films were determined. The potential application of the films in indicating the freshness of shrimp at 4 °C was also investigated. Results showed that the RA interacted with the LBG/PVA matrices through hydrogen bonds, which significantly improved the barrier, mechanical, thermal, antioxidant, pH-sensitive, and ammonia-sensitive properties of the films. Meanwhile, the performance of the films was remarkably influenced by the content of the RA. The film containing 4% RA had the highest light blocking ability, tensile strength (38.32 MPa), elongation at break (58.18%), and antioxidant activity, and also showed the lowest water vapor permeability (22.10 × 10-11 g m-1 s-1 Pa-1) and oxygen permeability (0.36 cm3 mm m-2 day-1 atm-1). The films containing 2% and 4% RA could effectively change their colors when the level of total volatile basic nitrogen in the shrimp exceeded the safe value, which demonstrated the suitability of the films for indicating the freshness degree of shrimp.
Collapse
|
41
|
Li X, Zhang R, Hassan MM, Cheng Z, Mills J, Hou C, Realini CE, Chen L, Day L, Zheng X, Zhang D, Hicks TM. Active Packaging for the Extended Shelf-Life of Meat: Perspectives from Consumption Habits, Market Requirements and Packaging Practices in China and New Zealand. Foods 2022; 11:foods11182903. [PMID: 36141031 PMCID: PMC9506090 DOI: 10.3390/foods11182903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Active packaging (AP) has been developed to improve the safety, quality and integrity of food, and minimise food waste, while its application in meat is scarce. This review aims to describe meat production and consumption culture in China and New Zealand to provide the context for packaging innovation requirements, focusing on the emerging opportunities for AP to be used for the improvement of the shelf-life of pre-rigor, aged, and frozen-thawed meat products. Sustainable polymers utilised in the manufacturing of AP, manufacturing techniques, the release mechanisms of actives, and legal and regulatory constraints are also discussed. Diverse market compositions and consumption cultures in China and New Zealand require different packaging solutions to extend the shelf-life of meat. AP containing antimicrobials, moisture regulating agents, and antioxidants may be used for pre-rigor, dry- and wet-aged products and in improving the quality and shelf-life of frozen-thawed meat. Further innovations using sustainably produced polymers for AP, along with incorporating active compounds of multiple functions for effectively improving meat quality and shelf-life are necessary. Challenges remain to resolve issues with scaling the technology to commercially relevant volumes as well as complying with the rigorous legal and regulatory constraints in various countries.
Collapse
Affiliation(s)
- Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Renyu Zhang
- Food Technology & Processing Team, AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Correspondence: (R.Z.); (D.Z.)
| | | | - Zhe Cheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - John Mills
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Carolina E. Realini
- Food Technology & Processing Team, AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Day
- Food & Fibre Off-Farm Sector, AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4422, New Zealand
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence: (R.Z.); (D.Z.)
| | - Talia M. Hicks
- Food Technology & Processing Team, AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| |
Collapse
|
42
|
Ahmed MW, Haque MA, Mohibbullah M, Khan MSI, Islam MA, Mondal MHT, Ahmmed R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Food Quality, Drug Safety, and Increasing Public Health Measures in Supply Chain Management. Processes (Basel) 2022. [DOI: 10.3390/pr10091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, there has been an increased interest in public health measures concerning food quality and drug safety in supply chains and logistics operations. Against this backdrop, this study systematically reviewed the extant literature to identify gaps in studying food quality and drug safety, the proposed solutions to these issues, and potential future research directions. This study utilized content analysis. The objectives of the review were to (1) identify the factors affecting food quality and possible solutions to improve results, (2) analyze the factors that affect drug safety and identify ways to mitigate them through proper management; and (3) establish integrated supply chains for food and drugs by implementing modern technologies, followed by one another to ensure a multi-layered cross-verification cascade and resource management at the different phases to ensure quality, safety, and sustainability for the benefit of public health. This review investigated and identified the most recent trends and technologies used for successfully integrated supply chains that can guarantee food quality and drug safety. Using appropriate keywords, 298 articles were identified, and 205 were shortlisted for the analysis. All analysis and conclusions are based on the available literature. The outcomes of this paper identify new research directions in public health and supply chain management.
Collapse
|
44
|
Kamer DDA, Kaynarca GB, Yücel E, Gümüş T. Development of gelatin/PVA based colorimetric films with a wide pH sensing range winery solid by-product (Vinasse) for monitor shrimp freshness. Int J Biol Macromol 2022; 220:627-637. [PMID: 35995178 DOI: 10.1016/j.ijbiomac.2022.08.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
Anthocyanins were extracted from a winery solid by-product (Vinasse) and added to fish gelatin (FG) and polyvinyl alcohol (PVA) matrices to create freshness monitoring labels. Three different colorimetric indicator smart films [PWE = polyvinyl alcohol with wine extract (WE), FWE = fish gelatin with WE, and PFWE = polyvinyl alcohol and FG blended film with WE] were generated and examined for their suitability to monitor the freshness of shrimp. The mechanical and optical properties, ammonia sensitivity, and colorimetric analysis of smart films were determined. Fourier transform-infrared spectroscopy (FTIR) was used to evaluate the interaction of anthocyanins with FG and PVA and changes in the film's chemical composition with storage. The film surfaces were characterized with atomic force microscopy (AFM). The incorporation of WE enhanced the films' flexibility by providing plasticizer and surfactant properties. The PWE film showed the best color stability. The FWE film showed the least amount of total color change with exposure to ammonia gas and was deemed suitable for refrigerated food packaging. The color of all indicator films showed significant changes suggesting that PWE, FWE, and PFWE films can be utilized in the intelligent packaging application for protein-rich foods to detect spoilage.
Collapse
Affiliation(s)
- Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Türkiye
| | - Emel Yücel
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye.
| |
Collapse
|
45
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Converging Telco-Grade Solutions 5G and beyond to Support Production in Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Industry 4.0 initiative has been showing the way for industrial production to optimize operations based on collecting, processing, and sharing data. There are new requirements on the production floor: flexible but ultra-reliable, low latency wireless communications through interoperable systems can share data. Further challenges of data sharing and storage arise when diverse systems come into play at the Manufacturing Operations Management and Business Planning & Logistics levels. The emerging complex cyber-physical systems of systems need to be engineered with care. Regarding industrial requirements, the telecommunication industry has many similarities to production—including ultra-reliability, high complexity, and having humans “in-the-loop”. The current paper aims to provide an overview of converging telco-grade solutions that can be successfully applied in the wide sense of industrial production. These toolsets range from model-driven engineering through system interoperability frameworks, 5G- and 6G-supported manufacturing, and the telco-cloud to speech recognition in noisy environments.
Collapse
|
47
|
Chacha JS, Ofoedu CE, Xiao K. Essential
Oil‐Based
Active
Polymer‐Based
Packaging System: A Review on its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Agroprocessing School of Engineering and Technology Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu Morogoro Tanzania
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Imo State Owerri Nigeria
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
48
|
Olivas-Méndez P, Chávez-Martínez A, Santellano-Estrada E, Guerrero Asorey L, Sánchez-Vega R, Rentería-Monterrubio AL, Chávez-Flores D, Tirado-Gallegos JM, Méndez-Zamora G. Antioxidant and Antimicrobial Activity of Rosemary ( Rosmarinus officinalis) and Garlic ( Allium sativum) Essential Oils and Chipotle Pepper Oleoresin ( Capsicum annum) on Beef Hamburgers. Foods 2022; 11:foods11142018. [PMID: 35885261 PMCID: PMC9319248 DOI: 10.3390/foods11142018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
The inclusion of natural ingredients to preserve meat and meat products has increased in recent years. This study evaluated rosemary (REO) and garlic essential oils (GEO) as well as chipotle pepper oleoresin (CPO), alone or in combination, as preservatives on beef hamburgers (BH). Six treatments were evaluated: T1 (control, without additives), T2 (GEO 1%), T3 (REO 1%), T4 (CPO 0.5%), T5 (GEO 1% + CPO 0.5%) and T6 (REO 1% + CPO 0.5%). The microbiological quality, physicochemical characteristics, sensory evaluation, and lipid oxidation of hamburgers were evaluated. REO, GEO and CPO limited the growth of aerobic microorganisms, S. aureus, Salmonella spp., B. thermosphacta, moulds and yeasts, lactic acid bacteria and coliforms (p < 0.05); however, this effect depended on time. Furthermore, lipid oxidation decreased significantly (p < 0.5) in all treatments, except for T5 (GEO 1% + CPO 0.5%). Regarding sensory acceptance, consumers preferred BH with GEO in terms of colour, odour, flavour and overall appearance (p < 0.05). It is concluded that REO, GEO and CPO, alone or in combination, improve microbiological quality and inhibit the lipid oxidation of BH.
Collapse
Affiliation(s)
- Paulina Olivas-Méndez
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
| | - América Chávez-Martínez
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
| | - Eduardo Santellano-Estrada
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
| | - Luis Guerrero Asorey
- Food Technology Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet, s/n, 17121 Monells, Spain;
| | - Rogelio Sánchez-Vega
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
| | - Ana Luisa Rentería-Monterrubio
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
- Correspondence: ; Tel.: +52-614-434-0363
| | - David Chávez-Flores
- UACH-CA124 Química Aplicada y Educativa, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus UACH II, Chihuahua 31125, Mexico;
| | - Juan Manuel Tirado-Gallegos
- UACH-CA03 Tecnología de Alimentos de Origen Animal, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada, Chihuahua 33820, Mexico; (P.O.-M.); (A.C.-M.); (E.S.-E.); (R.S.-V.); (J.M.T.-G.)
| | - Gerardo Méndez-Zamora
- Laboratorio de Ingeniería, Ingeniería en Industrias Alimentarias, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, ExHacienda El Canadá, General Escobedo 66050, Mexico;
| |
Collapse
|
49
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
50
|
Avramia I, Amariei S. Formulation, Characterization and Optimization of β-Glucan and Pomegranate Juice Based Films for Its Potential in Diabetes. Nutrients 2022; 14:2142. [PMID: 35631282 PMCID: PMC9144072 DOI: 10.3390/nu14102142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to develop films based on β-glucans in association with pomegranate juice for its potential in metabolic disorders such as diabetes due to plenty of bioactive compounds from the film composition. Initially, a Box-Behnken design was generated by varying the level of β-glucan content (0.5, 1, 1.5 g), sodium alginate (0.2, 0.4, 0.6 g) and pomegranate juice (10, 20, 30 mL) for development of films. Subsequently, glycerin was added as 25% of the total dry matter. The optimization of the films prepared by the solvent casting method was conducted based on the different responses such as: water vapor transmission rate (WVTR), water vapor permeability (WVP), thickness, density, moisture content, solubility, film opacity and color. The water activity profile and FT-IR analysis were performed in all tests. The model was used to determine the optimal experimental values considering that the optimal film will make a sustained contribution to diabetes. The optimal values of the film sample made of β-glucans, sodium alginate, pomegranate juice and glycerin make it befitting for packaging dry powdered pharmaceuticals. Finally, antimicrobial activity against Gram-negative and Gram-positive bacteria, UV barrier properties and microcrack and pore detections through SEM were also investigated for the optimal film sample.
Collapse
Affiliation(s)
- Ionut Avramia
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|