1
|
Braamhaar DJM, Pellikaan WF, List D, Korir D, Tanga CM, Oosting SJ. Defatted black soldier fly larvae meal as a substitute of soybean meal in dairy cow diets. Animal 2025; 19:101476. [PMID: 40117710 DOI: 10.1016/j.animal.2025.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
The replacement of soybean meal (SBM) with insect meal, e.g. black soldier fly larvae meal (BSFLM), as an alternative protein source in livestock feed is gaining traction globally. To date, no in vivo studies have been conducted to test the impact of BSFLM on the milk production of dairy cows. This study quantified the effects of replacing SBM with defatted black soldier fly larvae meal (DBSFLM) in diets of lactating dairy cows on feed intake, milk production and composition, apparent total-tract digestibility, feed- and nitrogen use efficiency. Twelve lactating Holstein-Friesian cows were used in a replicated 3 × 3 Latin square design (18 d per period) with 3 protein treatments: a diet containing SBM as the main protein source (control, SBM); a diet with a 50: 50 mixture of SBM and DBSFLM (SBM: DBSFLM, 50: 50); and a diet with DBSFLM (DBSFLM). Animals were blocked per Latin square based on milk yield (MY), and the amount of concentrate in the diets was adjusted for MY. Diets were provided as a total mixed ration and offered ad libitum. Our results showed no treatment effects (P > 0.05) on milk yield and composition. DM and organic matter (OM) intake were significantly higher (P ≤ 0.003) for cows fed SBM (17.6 and 16.2 kg/d, respectively) compared with DBSFLM (16.6 and 15.1 kg/d, respectively), while DM and OM intake of SBM: DBSFLM (17.5 and 16.0 kg/d, respectively) did not differ from SBM but were higher compared with DBSFLM. CP intake was significantly higher (P = 0.003) for cows fed SBM (2.68 kg/d) compared with both DBSFLM (2.50 kg/d) and SBM: DBSFLM (2.54 kg/d), while CP intake for SBM: DBSFLM did not differ from DBSFLM. Apparent total-tract digestibility of NDF and ADF were significantly lower (P ≤ 0.024) for cows fed SBM (46.7 and 45.6%, respectively) compared with DBSFLM (54.0 and 52.0%, respectively), with SBM: DBSFLM (51.0 and 49.7%, respectively) not differing from either diet. No treatment effects were observed for DM, OM, CP and ether extract digestibility, and feed and nitrogen use efficiency. Incorporating DBSFLM into dairy cow diets did not significantly compromise the milk yield and composition, suggesting its potential to reduce the reliance on SBM and contribute to circular food systems.
Collapse
Affiliation(s)
- D J M Braamhaar
- Animal Production Systems Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands.
| | - W F Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - D List
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - D Korir
- Livestock, System and Environment, Mazingira Centre, International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - C M Tanga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100 Nairobi, Kenya
| | - S J Oosting
- Animal Production Systems Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
2
|
Rossi G, Psarianos M, Ojha S, Schlüter OK. Review: Insects as a novel feed ingredient: processing technologies, quality and safety considerations. Animal 2025:101495. [PMID: 40263065 DOI: 10.1016/j.animal.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
The current food system is placing significant strain on limited available resources. Novel protein sources have been suggested as a potential solution for ensuring further growth without compromising the natural balance of the planet. In this direction, edible insects appear to be crucial players. Consumers may not always prefer the direct use of insects as human food, indicating that the indirect use of insects as animal feed might be more suitable. Insects are characterised by high nutritional value and similar digestibility compared to more traditional feed such as soybean meal and fishmeal. However, effective introduction of edible insects in animal diets requires one or more processing operations. Processing is paramount for ensuring high microbiological safety while improving the quality, digestibility and palatability of the insect. Additionally, feed processing could allow a combination of insect-based ingredients with other traditional feed ingredients, obtaining a uniform and stable mixture, which can easily and conveniently be provided to the farmed animals. In this review, an overview of the most common processing methods (blanching, grinding, drying, mixing, extrusion) applied to edible insects with the aim of delivering high-quality insect-based feed is presented. Each processing step is carefully evaluated, the pros and cons of each operation are considered and important recommendations are provided. Barriers and opportunities for advancing the use of insects within the feed sector are finally illustrated. A strong emphasis is placed on the need of evaluating the effect of any processing step on the quality and safety of insect-derived products, particularly considering the possibility of replacing traditional feed ingredients with insect-derived materials.
Collapse
Affiliation(s)
- G Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - M Psarianos
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - S Ojha
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, X91 K0EK Waterford, Ireland
| | - O K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
3
|
Qi Z, Zhang Y, Han R, Qin G, Jiang H, Jiang D, Che D. Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature. Animals (Basel) 2025; 15:846. [PMID: 40150376 PMCID: PMC11939406 DOI: 10.3390/ani15060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The aim of this experiment is to investigate the effects of optimizing the dietary energy supply of Songliao Black growing and fattening pigs on their growth performance, nutrient digestibility, nitrogen balance, energy metabolism and oxidation energy supply, slaughter performance, and meat quality at a low ambient temperature. Forty-eight 75-day-old Songliao Black growing barrows with an initial weight of 33.38 ± 1.29 kg were randomized into two groups, with four replicates in each group and six pigs in each replicate. Two groups (CON group: low fat, normal energy; TES group: high fat, high energy) were fed isonitrogenous diets with different energy levels and fat contents. The experimental animals were raised at the same ambient temperature (10 ± 1 °C) all day. After 5 days of pre-feeding, the formal experiment began. Four Songliao Black barrows weighing approximately 80 kg were selected from each group for a five-day experimental period for digestibility and metabolism and respiratory calorimetry tests. All pigs (185 days of age) were slaughtered simultaneously at the end of the 110-day experimental period when their average body weight reached approximately 110 kg. The results showed that the average daily feed intake of the TES group was lower than that of the CON group (p < 0.05). Compared with the CON group, the feed-to-gain ratio was lower in the TES group during the fattening period (p < 0.05). Compared with the CON group, the crude fat digestibility, deposition energy, energy deposition rate, deposition energy of fat, and fat oxidation were higher (p < 0.05), and the intake and urinary nitrogen, carbohydrate oxidation, urinary energy, and protein oxidation were lower in the TES group (p < 0.05). Compared with the CON group, the serum high-density lipoprotein concentration, low-density lipoprotein concentration, and triglyceride concentration were higher in the TES group (p < 0.05), while alanine aminotransferase and aspartate aminotransferase concentrations were lower in the TES group (p < 0.05). Compared with the CON group, the backfat thickness was higher in the TES group (p < 0.05). Compared with the CON group, the weight gain/digestible protein and live lean meat mass/digestible protein were higher in the TES group (p < 0.05). Compared with the CON group, the yellowness (b*45min) value of the longissimus thoracis was higher in the TES group (p < 0.05), and the shear force was lower (p < 0.05). Therefore, at a low ambient temperature, appropriately increasing the levels of dietary fat and energy was beneficial for improving the production performance and energy utilization efficiency and reducing CO2 emissions and protein oxidation, saving protein resources of Songliao Black pigs.
Collapse
Affiliation(s)
| | | | - Rui Han
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Z.Q.); (Y.Z.); (G.Q.); (H.J.); (D.J.)
| | | | | | | | - Dongsheng Che
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Z.Q.); (Y.Z.); (G.Q.); (H.J.); (D.J.)
| |
Collapse
|
4
|
Zai X, Ma X, Weng G, Song M, Lu Y, Yang L, Deng D. Effect of Passiflora Edulis Sims Peel Feed on Meat Quality of Finishing Pigs. Foods 2025; 14:561. [PMID: 40002005 PMCID: PMC11854249 DOI: 10.3390/foods14040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Passiflora edulis Sims peel (Chinese name Baixiangguo, BXG) is a by-product with a high nutritional and economic value of Passiflora edulis Sims. In this study, corn was partly replaced with BXG to make feed for finishing pigs and the effects on the carcass traits, meat quality, muscle amino acid profile, and gene expression of finishing pigs were evaluated. A total of 20 healthy finishing pigs (Duroc × Landrace × Large) were randomly divided into two groups. The control group (CON) was fed the basal diet, and the experimental group (BXG) was fed a basal diet with BXG instead of 10% corn for a period of 43 d. Compared to the CON group, the carcass weight, intramuscular fat content, and marbling score were significantly increased, while the drip loss, b* value, and shear force of the BXG group were significantly reduced (p < 0.05). Gene expression analysis showed that the mRNA expression of lipid synthesis and oxidative-type fiber related genes was significantly increased in the BXG group (p < 0.05). Proteomic research revealed that the metabolic pathways of the BXG and CON groups differed significantly. A total of 36 differentially expressed proteins were identified, mainly related to energy metabolism, fatty acid degradation, and endocrine regulation pathways. However, the contents of glutamine, glutamate, proline, and other amino acids in the BXG group were significantly reduced (p < 0.05). Overall, this study has a positive effect on improving meat quality, but the specific mechanism needs to be further explored, which offers practical guidance for the application of BXG in producing higher-quality pork and further promotes its commercial application.
Collapse
Affiliation(s)
- Xueying Zai
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.M.); (G.W.); (M.S.)
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.M.); (G.W.); (M.S.)
| | - Guangying Weng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.M.); (G.W.); (M.S.)
| | - Min Song
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.M.); (G.W.); (M.S.)
| | - Yusheng Lu
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liyi Yang
- Guangzhou Daqiao Food Equipment Co., Ltd., Guangzhou 510640, China;
| | - Dun Deng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.M.); (G.W.); (M.S.)
| |
Collapse
|
5
|
Kim SW, Choi H, Lin C, Mateo RD. Effects of increasing levels of benzoic acid fed to pigs on nitrogen utilization and metabolism affecting growth performance, ammonia emissions, and carcass characteristics. J Anim Sci 2025; 103:skaf101. [PMID: 40159678 PMCID: PMC12080708 DOI: 10.1093/jas/skaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
The objectives of this study were to investigate the effects of increasing levels of benzoic acid (BA) on nitrogen utilization and metabolism affecting growth performance, ammonia emissions, and carcass characteristics, and to determine the optimal levels of BA for the growth performance and carcass characteristics when fed to pigs from weaning to market. A total of 480 pigs (6.0 ± 1.5 kg) were assigned to 4 dietary treatments in a randomized complete block design with initial body weight and group as blocks and were fed in 6 phases. Treatments included a basal diet with antibiotics (positive control, PC) and diets with 3 levels of BA (0.00%, 0.50%, and 1.00% BA) without antibiotics. The PC increased (P < 0.05) the average daily gain (ADG) and G:F during the overall period compared to no BA supplementation. Increasing levels of BA increased (P < 0.05) overall ADG quadratically (maximum at 0.53% or 7.5 g/d of BA). Increasing levels of BA increased (P < 0.05) overall G:F quadratically (maximum at 0.57% or 8.1 g/d of BA). Increasing levels of BA tended to increase (linear, P = 0.096) N digestibility and increased (linear, P < 0.05) N retention. The BA supplementation at 1.00% decreased (P < 0.05) urine pH and aerial ammonia emission from manure compared to no BA supplementation in the 24 h collection period. The BA supplementation at 1.00% decreased (P < 0.05) rate of change in aerial ammonia emission compared to no BA supplementation in the 24 h collection period. The PC increased (P < 0.05) shrink weight, hot carcass weight, and first rib backfat compared to no BA supplementation. Increasing levels of BA decreased (P < 0.05) loin color and marbling score linearly and increased (P < 0.05) the loin eye area quadratically (maximum at 0.59% or 8.1 g/d of BA). In conclusion, supplementation of BA in feeds enhanced growth performance, improved N utilization, reduced urine pH, reduced aerial ammonia emissions, and improved carcass characteristics of pigs. Supplementation of BA at a range of 0.53% to 0.59% (corresponding to 7.5 to 8.1 g/d of BA based on overall average daily feed intake) provided the optimal improvements in body weight gain, feed efficiency, and carcass characteristics when fed to pigs from weaning to market.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hyunjun Choi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Carol Lin
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 70828, USA
| | - Ronald D Mateo
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 70828, USA
| |
Collapse
|
6
|
Weng G, Yu M, Deng C, Liu Y, Song M, Deng J, Yin Y, Ma X, Deng D. Effects of dietary Brevibacillus laterosporus BL1 supplementation on meat quality, antioxidant capacity, and the profiles of muscle amino acids and fatty acids in finishing pigs. Meat Sci 2025; 219:109646. [PMID: 39260183 DOI: 10.1016/j.meatsci.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Consumer demand for tastier and higher-quality pork is increasing. Probiotics have been reported to improve meat quality, but the species of probiotics are limited, and efficacy is discrete. This study investigated the effects of dietary Brevibacillus laterosporus BL1 (live and heat-killed form) supplementation on the meat quality of finishing pigs. Results revealed that both live and heat-killed B. laterosporus BL1 supplementation increased pH24h and decreased drip loss (P < 0.05) compared to the control group (CON). Moreover, compared to the CON group, heat-killed B. laterosporus BL1 supplementation exhibited a stronger ability to improve meat quality (redness, shear force, inosine monophosphate, and intramuscular fat content, P < 0.05), antioxidant capacity, and free amino acid profiles of longissimus thoracis (LT) than live bacteria without impairing porcine growth performance. Further, heat-killed B. laterosporus BL1 supplementation favored up-regulating the expression of genes related to oxidative-type fiber in LT (P < 0.05). Proteomic analysis confirmed that Gene Ontology items related to oxidative metabolism were subsequently enriched with heat-killed B. laterosporus BL1 treatment in LT (P < 0.05). Overall, dietary heat-killed B. laterosporus BL1 supplementation may improve the meat quality of finishing pigs, which provides application guidance for B. laterosporus BL1 in producing higher-quality pork.
Collapse
Affiliation(s)
- Guangying Weng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi 330200, China
| | - Yucheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Min Song
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| | - Dun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
7
|
Chen L, Xu M, Shang R, Xin Y, Wang G, Li Y, Wang Z, Wang X, Sun H, Li L. Evaluating Different Supplements on the Growth Performance and Bioconversion Efficiency of Kitchen Waste by Black Soldier Fly Larvae. INSECTS 2024; 16:22. [PMID: 39859603 PMCID: PMC11765844 DOI: 10.3390/insects16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Black soldier fly larvae (BSFL) convert kitchen waste into high-quality insect feed. However, the optimal amount of auxiliary materials needed to improve the physical and chemical properties of kitchen waste and enhance BSFL bioconversion efficiency remains unresolved. In this study, maize stover and BSFL frass were added to kitchen waste (in groups G2 and G3, respectively) to explore their effects on the growth performance and bioconversion efficiency of BSFL. The group with only kitchen waste, without the addition of maize stover or BSF frass, was used as the control group and labeled as G1. On the 5th day, the body length of the BSFL in the G2 group was significantly greater than that in G1 and G3 (p < 0.05). The dry matter weight loss rate in the G3 group was significantly lower compared to that of G1 and G2 (p < 0.05), and the feed conversion rate (FCR) of G1 was significantly lower than that of G2 and G3 (p < 0.01). In summary, adding maize stover and BSFL frass increased BSFL feed intake and improved body weight gain. However, these additives did not significantly enhance BSFL bioconversion efficiency. The organic matter in maize stover and BSFL frass was utilized by the BSFL, and the heavy metal levels in each group of BSFL did not exceed standard limits.
Collapse
Affiliation(s)
- Lifei Chen
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| | | | | | | | | | | | | | | | | | - Lusheng Li
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| |
Collapse
|
8
|
Liu Y, Tang Y, Mei H, Liu Z, Li Z, Ma X, Luo Z, Huang W, Li Y, Yu M. Feeding citrus pomace fermented with combined probiotics improves growth performance, meat quality, fatty acid profile, and antioxidant capacity in yellow-feathered broilers. Front Vet Sci 2024; 11:1469947. [PMID: 39811146 PMCID: PMC11729385 DOI: 10.3389/fvets.2024.1469947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers. Methods A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP). Results The results showed that dietary FCP significantly increased (p < 0.05) the final-body-weight and average-daily-gain of broilers, and the pH45 min and b*24 h values in breast muscle, while tendentiously lowering the feed-to-gain ratio (p = 0.076). The levels of inosine monophosphate (p < 0.05) and intramuscular fat (p = 0.083) in the FCP group were higher than those in the control group. Remarkably, dietary FCP and UFCP increased the levels of polyunsaturated fatty acids (PUFAs) and n-6 PUFAs (p < 0.05). Moreover, dietary FCP decreased (p < 0.05) the malondialdehyde content and increased (p < 0.05) the glutathione peroxidase content in serum. Ingestion of FCP and UFCP increased the levels of total antioxidant capacity and catalase activity in serum, and concentrations of glutathione peroxidase and catalase in breast muscle (p < 0.05). Additionally, diet containing FCP or UFCP upregulated the expression of SREBP - 1c, FAS, NRF2, GSH-Px, and CAT in breast muscle (p < 0.05). Discussion Overall, dietary supplementation with FCP obviously improved meat quality, enhanced the antioxidant capacity and regulated the lipid metabolism, contributing to the improvement of growth performance of yellow-feathered broilers.
Collapse
Affiliation(s)
- Yanchen Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yantian Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan Branch, Heyuan, China
| | - Huadi Mei
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhichang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhihui Luo
- Longping Huangmang Ecological Agriculture Farm, Qingyuan, China
| | - Weiwen Huang
- Kaiping Xufeng Farming and Husbandry Co., Ltd, Jiangmen, China
| | - Yuanfei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Flis M, Czyżowski P, Rytlewski G, Grela ER. Insect Meal as a Dietary Protein Source for Pheasant Quails: Performance, Carcass Traits, Amino Acid Profile and Mineral Contents in Muscles. Animals (Basel) 2024; 14:2992. [PMID: 39457922 PMCID: PMC11503892 DOI: 10.3390/ani14202992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of the study was to determine the effects of replacing soybean meal with insect meal on the body weight and the chemical composition of selected muscle groups of common pheasant females and males, including the mineral composition and the amino acid profile of the thigh and breast muscles. The study was conducted on three feeding groups, namely one control and two experimental groups. In the control group, plant feed components were used, which are commonly used to feed pheasants in confined breeding facilities. In the experimental groups, 100 g (group II) and 200 g (group III) portions of insect meal were introduced instead of the plant-protein components. The experiment used a preparation of insect larvae (Hermetia illucens) containing approximately 52% crude protein. The pheasant diet supplementation applied contributed to an increase in the proportion of muscles in the carcasses, with the highest effectiveness obtained for a 20% addition of insect meal. Lower and significant differences were noted in the feed conversion by birds from the experimental groups, as compared to the control group. The chemical composition of the birds' muscles also changed. The experimental groups exhibited higher protein and fat contents and a lower water content. No significant changes in the amino acid profile or the mineral composition of the muscles were noted. The few exceptions concerned the methionine levels in both muscle groups and the isoleucine levels in the breast muscles. In most cases, the mineral composition did not vary significantly (p < 0.05). When supplementing the diet of breeding pheasants for improving meatiness, a 20% addition of insect meal is recommended, which affects the production effect of this trait while reducing feed consumption and maintaining the fatty acid profile.
Collapse
Affiliation(s)
- Marian Flis
- Department of Animal Ethology and Wildlife Management, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Czyżowski
- Department of Animal Ethology and Wildlife Management, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Grzegorz Rytlewski
- Polish Hunting Association Gdańsk District Board, 80-286 Gdańsk, Poland;
| | - Eugeniusz R. Grela
- Institute of Animal Nutrition and Bromatology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
10
|
Saathoff S, Goodman CL, Haas E, Mettelmann I, Stanley D. A cell line derived from the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00934-y. [PMID: 38935254 DOI: 10.1007/s11626-024-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Insect cell lines are effective tools used in industry and academia. For example, they are used in screening potential insecticides, in making certain proteins for biomedical applications, and in basic research into insect biology. So far, there are no cell lines derived from the black soldier fly, Hermetia illucens (BSF). This may become an issue because BSFs are employed in a range of industrial and household processes. BSFs are used in producing biodiesel, in developing cosmetics and skin creams, and in the production of some medicines and animal feeds. BSF larvae process waste streams from a variety of sources into food for some animals and are also used in household composting. Our BSF cell line, designated BCIRL-HiE0122021-SGS, was developed from eggs using the medium CLG#2 (50% L-15 + 50% EX-CELL 420, with 9% FBS and antibiotics), with many other media being tested. This cell line consists of attached cells with a variety of morphologies and its identity was authenticated using CO1 barcoding. A growth curve was generated and the resulting doubling time was 118 h. We quantified the fatty acid methyl esters (FAMES) and recorded the expected range of saturated, monounsaturated, and polyunsaturated FAMEs, with only trace levels of lauric acid being noted. The BSF cell line is available free of charge by request.
Collapse
Affiliation(s)
- Stephen Saathoff
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| | | | - Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, 68178, USA
| | - Ian Mettelmann
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, 68178, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, 1503 S. Providence Rd, Columbia, MO, 65203, USA
| |
Collapse
|
11
|
Zhai X, Dang L, Wang S, Li W, Sun C. Effects of Succinate on Growth Performance, Meat Quality and Lipid Synthesis in Bama Miniature Pigs. Animals (Basel) 2024; 14:999. [PMID: 38612238 PMCID: PMC11011074 DOI: 10.3390/ani14070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Succinate, one of the intermediates of the tricarboxylic acid cycle, is now recognized to play a role in a broad range of physiological and pathophysiological settings, but its role in adipogenesis is unclear. Our study used Bama miniature pigs as a model to explore the effects of succinate on performance, meat quality, and fat formation. The results showed that adding 1% succinate significantly increased the average daily gain, feed/gain ratio, eye muscle area, and body fat content (p < 0.05), but had no effect on feed intake. Further meat quality analysis showed that succinate increased the marbling score and intramuscular fat content of longissimus dorsi muscle (LM), while decreasing the shear force and the cross-sectional area of LM (p < 0.05). Metabolomics analysis of LM revealed that succinate reshaped levels of fatty acids, triglycerides, glycerophospholipids, and sphingolipids in LM. Succinate promotes adipogenic differentiation in porcine primary preadipocytes. Finally, dietary succinate supplementation increased succinylation modification rather than acetylation modification in the adipose tissue pool. This study elucidated the effects of succinate on the growth and meat quality of pigs and its mechanism of action and provided a reference for the role of succinate in the nutrition and metabolism of pigs.
Collapse
Affiliation(s)
- Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Liping Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Shiyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Wenyuan Li
- Agriculture and Rural Bureau of Yuanyang County, Xinxiang 453000, China;
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| |
Collapse
|
12
|
Zacharis C, Bonos E, Voidarou C(C, Magklaras G, Fotou K, Giannenas I, Giavasis I, Mitsagga C, Athanassiou C, Antonopoulou E, Grigoriadou K, Tzora A, Skoufos I. Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study. Vet Sci 2024; 11:73. [PMID: 38393091 PMCID: PMC10893168 DOI: 10.3390/vetsci11020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Nowadays, the global animal industry faces considerable challenges in securing sufficient feed resources. Responding to consumer demands for reduced use of antibiotics in animal nutrition, better animal welfare status, and reduced impact on the environment, there is an increased urgency to develop innovative functional feeds with a reduced environmental footprint and the ability to improve meat quality and safety. In an effort to explore innovative feed ingredients for growing pig diets, the combined dietary supplementation of Tenebrio molitor larvae and chitosan was investigated. An experimental trial was performed with 48 weaned pigs (34 days of life; mixed sex) that were randomly assigned to four treatment groups (with six males and six females each): Group A (control), Group B (supplemented with T. molitor larvae at 10%), Group C (supplemented with chitosan at 0.05%), and Group D (supplemented with both ingredients at 10% and 0.05%, respectively). On the 42nd day of the experimental trial, samples of blood, feces, and carcass parts were taken for analysis. The results indicated that the insect larvae meal significantly improved (p < 0.05) overall performance, increased (p < 0.05) blood red blood cell content, increased meat phenolic content (p < 0.05), improved meat oxidative stability (p < 0.05), and affected meat fatty acid profile (p < 0.05). On the other hand, chitosan had no significant effect on overall performance (p > 0.05), but it significantly increased blood lymphocyte content (p < 0.05), affected the fecal microbiota (p < 0.05), improved meat oxidative stability (p < 0.05), increased meat phenolic content (p < 0.05), and affected meat fatty acid composition (p < 0.05) and (p < 0.05) meat color. Finally, the combined use of both T. molitor and chitosan significantly affected some important zootechnical parameters (p < 0.05), fecal microbial populations (p < 0.05), meat color (p < 0.05), and fatty acid profile (p < 0.05). Further investigation into the potential interaction between insect larvae meals and chitosan in pig diets is advised.
Collapse
Affiliation(s)
- Christos Zacharis
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Eleftherios Bonos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Georgios Magklaras
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Konstantina Fotou
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Giavasis
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Chrysanthi Mitsagga
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Christos Athanassiou
- Department of Agriculture, Plant Production and Rural Environment, University of Thessaly, 38446 Nea Ionia, Greece;
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO)-DIMITRA, 57001 Thessaloniki, Greece;
| | - Athina Tzora
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece; (C.Z.); (E.B.); (C.V.); (G.M.); (K.F.); (A.T.); (I.S.)
| |
Collapse
|
13
|
Tanga CM, Ekesi S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:303-331. [PMID: 37758222 DOI: 10.1146/annurev-ento-020123-013621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Edible insects are gaining traction worldwide for research and development. This review synthesizes a large and well-established body of research literature on the high nutritional value and variety of pharmacological properties of edible insects. Positive benefits of insect-derived products include immune enhancement; gastrointestinal protection; antitumor, antioxidant, and anti-inflammatory capacities; antibacterial activities; blood lipid and glucose regulation; lowering of blood pressure; and decreased risk of cardiovascular diseases. However, the pharmacological mechanisms of these active components of edible insects in humans have received limited research attention. In addition, we discuss health risks (safety); application prospects; regulations and policies governing their production and consumption with a view to promote innovations, intraglobal trade, and economic development; and suggestions for future directions for further pharmacological functional studies. The aim is to review the current state of knowledge and research trends on edible insects as functional ingredients beneficial to the nutrition and health of humans and animals (livestock, aquatic species, and pets).
Collapse
Affiliation(s)
- Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| |
Collapse
|
14
|
Lestingi A. Alternative and Sustainable Protein Sources in Pig Diet: A Review. Animals (Basel) 2024; 14:310. [PMID: 38275770 PMCID: PMC10812645 DOI: 10.3390/ani14020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The search for alternative protein sources to soybean meal (SBM) in animal feeding is a strategic objective to reduce production costs and contribute to sustainable animal production. Spirulina, due to the high protein content, has emerged as a potential cost-effective, sustainable, viable, and high-nutritional-value food resource for many animal species. Insect larvae (Tenebrio molitor and Hermetia illucens) are also considered potential alternatives to SBM, given their high edible percentage of almost 100%, as well as a protein value higher than that of vegetable proteins. Rapeseed meal and grain legumes, such as fava beans, peas, lupins, and chickpea, can also be used as locally producible protein ingredients. This study reviews the nutritional value of these potential alternatives to SBM in pig diets, and their effects on animal performance, digestion, immune system, and the physicochemical and sensorial characteristics of meat, including processed pork products. The limits on their use in pig feeding are also reviewed to indicate gaps to be filled in future research on the supplementation level of these potential alternative protein sources in pig diets.
Collapse
Affiliation(s)
- Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy
| |
Collapse
|
15
|
Müller Richli M, Weinlaender F, Wallner M, Pöllinger-Zierler B, Kern J, Scheeder MRL. Effect of feeding Alphitobius diaperinus meal on fattening performance and meat quality of growing-finishing pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2023.2176311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Martina Müller Richli
- SUISAG, Sempach, Switzerland
- School of Agricultural, Forest and Food Sciences, BFH-HAFL, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Deng L, Hao S, Zou W, Wei P, Sun W, Wu H, Lu W, He Y. Effects of Supplementing Growing-Finishing Crossbred Pigs with Glycerin, Vitamin C and Niacinamide on Carcass Characteristics and Meat Quality. Animals (Basel) 2023; 13:3635. [PMID: 38066986 PMCID: PMC10705760 DOI: 10.3390/ani13233635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
The objective of this study was to determine the influence of supplementing the diet of growing-finishing pigs with glycerin and/or a mixture of vitamin C and niacinamide on carcass traits and pork quality. Eighty-four weaned piglets with an initial average body weight of 20.35 ± 2.14 kg were assigned, at random, to four groups for a 103-day feeding experiment: control; glycerin-supplemented group; vitamin C and niacinamide-supplemented group; and glycerin, vitamin C and niacinamide-supplemented group. At the end of the experiment, three pigs/group were randomly selected and slaughtered, and samples were collected for analysis. The results indicated that supplementing crossbred pigs with glycerin, vitamin C and niacinamide simultaneously increased the redness (a*) value (p < 0.05), glycerol content (p < 0.01) and myristoleic acid content (p < 0.01) in the longissimus dorsi and tended to increase the level of flavor amino acids, linoleic acid, linolenic acid and erucic acid, as well as the percentage and density of type I myofibers in the longissimus dorsi and the semimembranosus muscle. Glycerin had an influence (p < 0.01) on the erucic acid content in the longissimus dorsi and the semimembranosus muscle, and vitamin C and niacinamide had an interaction effect (p < 0.05) on the redness (a*) value of the longissimus dorsi. Glycerin, vitamin C and niacinamide supplementation in the diet of crossbred pigs improved the color, flavor and nutritional value of pork, which contributed to an increased intent to purchase this product.
Collapse
Affiliation(s)
- Linglan Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Lin C, Xia X, Li Y, Ma R, Zhu L, Li X, Tang Y, Wang C. Heavy metals transport patterns and risk evaluation in the pig manure- black soldier fly-tilapia food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122565. [PMID: 37742861 DOI: 10.1016/j.envpol.2023.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Black soldier fly (BSF) individuals can consume animal excrement and transform it into high-protein food that can be used for animals. This study investigated the changes in the levels of heavy metals (HMs) in BSF individuals and their growth related to ingesting pig manure. According to the trial findings, BSFs fed pig manure had the highest protein concentration of 21.98% and were the least expensive, and its HMs within an acceptable range. Tilapia grew the best when its feed contained half of BSF. Its single-tailed fish weight gain rate was 73.12%, and its survival rate was 100%. The total target hazard quotient (TTHQ) values of tilapia fed with various concentrations of BSF were 0.098-0.181, which were all <1. This indicated that there were no potential hazards posed to humans or the environment. This study offers fundamental information regarding the safety of BSF assessment as well as scientific backing for the widespread utilization of BSF, especially in the pig manure-BSF-tilapia food chain.
Collapse
Affiliation(s)
- Changquan Lin
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiting Xia
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Li
- Tsinghua University School of Environment, Beijing, 100084, China
| | - Rong Ma
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Langping Zhu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotian Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Youqian Tang
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Chunming Wang
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Kawasaki K, Zhao J, Takao N, Sato M, Ban T, Tamamaki K, Kagami M, Yano K. Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets. Animals (Basel) 2023; 13:3410. [PMID: 37958165 PMCID: PMC10647472 DOI: 10.3390/ani13213410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The escalating demand for meat, driven by global population growth, necessitates sustainable solutions for animal feed production. This study investigated the effects of substituting conventional protein resources in sow and piglet dietary regimens with black soldier fly (BSF; Hermetia illucens) meal on reproductive efficiency, blood profile, piglet growth, and intestinal tissue morphology. The results indicate that substituting animal-derived and soy proteins with BSF meal does not compromise sow reproductive performance. Although no notable disparities were observed in piglet growth, the feed conversion ratio from the 28- to 35-day age marks were lower in the BSF-fed groups. This suggests that the animal protein-BSF substitution rate may require optimization, potentially involving chitin removal from BSF meal to enhance digestibility. Minor variations in the hematological composition and properties in piglets, with elevated high-density lipoprotein cholesterol levels in the high BSF group at the 28-day mark, were potentially attributable to the unique fatty acid composition of BSF meal. Moreover, this study potentiates future exploration into the efficacy of complete animal protein substitution with BSF meals on piglet nutrition and physiology, particularly in fattening pigs. The practical implementation of BSF meals in animal feed production holds promise for enhancing the sustainability of the swine industry.
Collapse
Affiliation(s)
- Kiyonori Kawasaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Junliang Zhao
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Natsu Takao
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Masaki Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Takuma Ban
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Kaoru Tamamaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Masanori Kagami
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.)
| | - Kiminobu Yano
- University Farm, Kagawa University, Showa 300-2, Sanuki, Kagawa 769-2304, Japan
| |
Collapse
|
19
|
Zacharis C, Bonos E, Giannenas I, Skoufos I, Tzora A, Voidarou CC, Tsinas A, Fotou K, Papadopoulos G, Mitsagga C, Athanassiou C, Antonopoulou E, Grigoriadou K. Utilization of Tenebrio molitor Larvae Reared with Different Substrates as Feed Ingredients in Growing Pigs. Vet Sci 2023; 10:393. [PMID: 37368779 DOI: 10.3390/vetsci10060393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The procurement of adequate feed resources is one of the most important challenges for the animal industry worldwide. While the need for feeds rich in protein is constantly increasing, their production cannot readily keep up. Consequently, to overcome this challenge in a sustainable way, it is necessary to identify and develop new feeding strategies and feed ingredients, such as insect meals. In the present study, Tenebrio molitor larvae that were reared on two different substrates (standard and enriched with medicinal aromatic plant material) were used as feed ingredients for growing pigs. A total of 36 weaned pigs (34 days old) were randomly allocated to three treatment groups and fed either the control diet (A) or diets supplemented at 10% with one of the two insect meals (B and C). At the end of the trial (42 days), blood, feces, and meat samples were collected for analysis. The insect meal supplementation did not affect (p > 0.05) overall performance but significantly modified (p < 0.001) the fecal microflora balance and the blood cholesterol (p < 0.001), while the rest of the blood parameters tested were not affected. Moreover, this dietary supplementation significantly affected some microbial populations (p < 0.001), improved the total phenolic content (p < 0.05), and the fatty acid profile (p < 0.001) of the meat cuts, but did not affect (p > 0.05) meat color or proximate composition. Further research is needed to evaluate the different types and levels of inclusion of insect meals in pig nutrition.
Collapse
Affiliation(s)
- Christos Zacharis
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Skoufos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | | | - Anastasios Tsinas
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Konstantina Fotou
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Georgios Papadopoulos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Mitsagga
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Christos Athanassiou
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Nea Ionia, Greece
| | - Efthimia Antonopoulou
- Department of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DIMITRA, 57001 Thessaloniki, Greece
| |
Collapse
|
20
|
Li Y, Mei H, Liu Y, Li Z, Qamar H, Yu M, Ma X. Dietary Supplementation with Rutin Alters Meat Quality, Fatty Acid Profile, Antioxidant Capacity, and Expression Levels of Genes Associated with Lipid Metabolism in Breast Muscle of Qingyuan Partridge Chickens. Foods 2023; 12:2302. [PMID: 37372511 DOI: 10.3390/foods12122302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Consumer demand for tasty and quality meat has been quickly increasing. This study investigated how dietary supplemented rutin affects meat quality, muscle fatty acid profile, and antioxidant capacity in the Chinese indigenous Qingyuan partridge chicken. A cohort of 180 healthy 119-day-old chickens was subjected to a randomized assignment into three groups, identified as the control, R200, and R400 groups, with respective supplementation of 0, 200, and 400 mg/kg of rutin. The results revealed insignificance in growth performance, namely, average daily gain, average daily feed intake, and feed-to-gain ratio, across the various treatment groups (p > 0.05). Nevertheless, dietary rutin supplementation increased (p < 0.05) breast muscle yield and intramuscular fat content in breast muscle and decreased (p < 0.05) drip loss in breast muscle. Rutin supplementation increased (p < 0.05) the content of high-density lipoprotein but decreased (p < 0.05) the contents of glucose, triglyceride, and total cholesterol in serum. Rutin supplementation increased (p < 0.05) the levels of DHA (C22:6n-3), total polyunsaturated fatty acids (PUFAs), n-3 PUFAs, decanoic acid (C10:0), the activity of Δ5 + Δ6 (22:6 (n - 3)/18:3 (n - 3)), and the ratio of PUFA/SFA in breast muscle but decreased (p < 0.05) the level of palmitoleic acid (C16:1n-7), the ratio of n-6/n-3 PUFAs, and the activity of Δ9 (16:1 (n - 7)/16:0). Rutin treatment also reduced (p < 0.05) the contents of malondialdehyde in serum and breast muscle, and increased (p < 0.05) the catalase activity and total antioxidant capacity in serum and breast muscle and the activity of total superoxide dismutase in serum. Additionally, rutin supplementation downregulated the expression of AMPKα and upregulated the expression of PPARG, FADS1, FAS, ELOVL7, NRF2, and CAT in breast muscle (p < 0.05). Convincingly, the results revealed that rutin supplementation improved meat quality, fatty acid profiles, especially n-3 PUFAs, and the antioxidant capacity of Qingyuan partridge chickens.
Collapse
Affiliation(s)
- Yuanfei Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Huadi Mei
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Yanchen Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
21
|
Sogari G, Bellezza Oddon S, Gasco L, van Huis A, Spranghers T, Mancini S. Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal 2023; 17 Suppl 2:100904. [PMID: 37500376 DOI: 10.1016/j.animal.2023.100904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
The search for new, alternative and sustainable feeding sources, including insects, has become an important challenge on the feed market. In 2017, the European Union (EU) started to allow the use of insect meals as feeds for fish. In addition, in 2021, the EU also authorised the use of insect meal for pig and poultry farming. However, the adoption of insect meal by the European aquaculture sector is still limited, and this is mostly due to the lack of availability of insects and their higher costs than conventional feed ingredients. Thus, the insect-based feed industry is still in its infancy, and its successful development and integration in the food value chain depend on several factors. Among these, the technical feasibility and production of quality products, and acceptance by European consumers and farmers are relevant factors. To address these points, this narrative review describes the state of the art of the potential role of insect-based feeds. The stakeholders' and consumers' perspectives are investigated, along with the effects of insect-based feeds on the production and nutritional values of fish, poultry (meat and eggs), and pork. Indeed, matching the nutritional values of insect products with conventional feeds is one of the future challenges of the insect sector, as their nutritional composition is highly dependent on the rearing substrates, and thus, their use in animal feeding needs to be investigated carefully. Feeding animals with insect-based diets affects their growth performances and the chemical composition of the derived products (fish fillets, meat, and eggs). Whether these effects can be considered positive or negative seems to depend to a great extent on the percentage of insects included in their diets and the chemical composition of the ingredients. The use of insect-based feeds has also shown a potential to improve the nutritional features and values of animal products and even to add new ones. Finally, many of the acceptance studies on the use of insects in feeds have focused mostly on the consumers' perception rather than on industry stakeholders (e.g., farmers). Future research should focus more on the farmers' perceptions on and market analyses of these innovative feeds. Even though it is likely that the upscaling of the insect sector will lead to a decrease in prices and an increase in market availability, it is still critical to understand the potential barriers and drivers for the implementation of insects as feeds from a production point of view.
Collapse
Affiliation(s)
- G Sogari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 45, 43124 Parma, Italy
| | - S Bellezza Oddon
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy.
| | - L Gasco
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy
| | - A van Huis
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - T Spranghers
- Centre of Expertise for Agro- and Biotechnology, VIVES University of Applied Sciences, Wilgenstraat 32, 8800 Roeselare, Belgium
| | - S Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
22
|
Yan Y, Zhang J, Chen X, Wang Z. Effects of Black Soldier Fly Larvae ( Hermetia illucens Larvae) Meal on the Production Performance and Cecal Microbiota of Hens. Vet Sci 2023; 10:vetsci10050364. [PMID: 37235447 DOI: 10.3390/vetsci10050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of Hermetia illucens larvae meal (HILM) as a feed supplement on production performance and cecal microflora were studied in 900 Hy-line Brown laying hens. Laying hens (60 weeks old) were randomly divided into four groups. Each group had five replicates, and each replicate had 45 hens. The control group was fed with a corn-soybean-based diet, and the experimental groups were fed with 1% HILM, 2% HILM, or 3% HILM. Results were as follows: (1) With the increase in HILM level, the laying rate increased linearly (p ≤ 0.05), and the feed/egg and cracked-egg rate decreased linearly (p ≤ 0.05). (2) Community composition analysis showed that the dominant bacteria in each group were Bacteroidetes and Firmicutes, followed by Actinobacteria and Proteobacteria, which accounted for more than 97% of 16S rRNA gene sequence of the total cecal bacteria. (3) Alpha diversity analysis at the operational taxonomic unit classification level showed that the HILM-addition groups had higher community richness and community diversity than the control group. (4) Principal co-ordinates analysis showed that the cecum samples in each group were significantly separated (p ≤ 0.05). At the phylum level, the relative abundance of Bacteroidetes in the HILM addition groups was significantly lower than that in the control group (p < 0.001), and the relative abundance of Firmicutes in the HILM addition groups was significantly higher than that in the control group (p < 0.001). In conclusion, dietary HILM supplementation had a significant effect on the production performance and cecal microflora of laying hens at the late laying period under the conditions of this experiment but had no adverse effect on the intestinal dominant flora.
Collapse
Affiliation(s)
- Yan Yan
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Jinjin Zhang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Xiaochen Chen
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Zhanbin Wang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| |
Collapse
|
23
|
Zhu Q, Azad MAK, Dong H, Li C, Li R, Cheng Y, Liu Y, Yin Y, Kong X. Sow-Offspring Diets Supplemented with Probiotics and Synbiotics Are Associated with Offspring's Growth Performance and Meat Quality. Int J Mol Sci 2023; 24:ijms24087668. [PMID: 37108828 PMCID: PMC10144797 DOI: 10.3390/ijms24087668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics and synbiotics supplementation have been shown to play potential roles in animal production. The present study aimed to evaluate the effects of dietary probiotics and synbiotics supplementation to sows during gestation and lactation and to offspring pigs (sow-offspring) on offspring pigs' growth performance and meat quality. Sixty-four healthy Bama mini-pigs were selected and randomly allocated into four groups after mating: the control, antibiotics, probiotics, and synbiotics groups. After weaning, two offspring pigs per litter were selected, and four offspring pigs from two litters were merged into one pen. The offspring pigs were fed a basal diet and the same feed additive according to their corresponding sows, representing the control group (Con group), sow-offspring antibiotics group (S-OA group), sow-offspring probiotics group (S-OP group), and sow-offspring synbiotics group (S-OS group). Eight pigs per group were euthanized and sampled at 65, 95, and 125 d old for further analyses. Our findings showed that probiotics supplementation in sow-offspring diets promoted growth and feed intake of offspring pigs during 95-125 d old. Moreover, sow-offspring diets supplemented with probiotics and synbiotics altered meat quality (meat color, pH45min, pH24h, drip loss, cooking yield, and shear force), plasma UN and AMM levels, and gene expressions associated with muscle-fiber types (MyHCI, MyHCIIa, MyHCIIx, and MyHCIIb) and muscle growth and development (Myf5, Myf6, MyoD, and MyoG). This study provides a theoretical basis for the maternal-offspring integration regulation of meat quality by dietary probiotics and synbiotics supplementation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Dong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chenjian Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruixuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
24
|
Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals (Basel) 2023; 13:ani13030494. [PMID: 36766383 PMCID: PMC9913794 DOI: 10.3390/ani13030494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Soybean is one of the most expensive and limiting feed ingredients in diet formulations; however, in pig farming, it represents the main source of protein. The production and supply of soybean are critical steps due to their environmental impact and feed/food competition for land use. Therefore, research is focusing on finding alternatives to replace soybean partially or totally. However, alternative ingredients should ensure similar growth performance, carcass traits, and meat quality characteristics compared to conventional soybean-based diets. The objective of this review was to evaluate the impact of different alternative protein sources to soybean in pig nutrition and their effects on growth performance, carcass, and meat quality traits. The review process was performed on Scopus®, and it considered research findings published from 2012 to the present on the Sus scrofa species. Articles without a control group fed with soybean were discarded. The main alternative protein sources identified were other legumes and distillers' dried grain with solubles (fish and animal proteins, oilseed by- and co-products). Interesting innovative protein sources included by-products from other industries (residues), microalgae and insects. Nevertheless, in dietary formulations, close attention must be paid to address the nutritional requirements, balance the supply of amino acids, avoid anti-nutritional or toxic compounds occasionally present in alternative protein sources, as well as determine the availability of protein feed in specific geographical areas.
Collapse
|
25
|
Liu S, Xie J, Fan Z, Ma X, Yin Y. Effects of low protein diet with a balanced amino acid pattern on growth performance, meat quality and cecal microflora of finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:957-967. [PMID: 36178065 DOI: 10.1002/jsfa.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of low protein diets balanced with four amino acids on growth performance, meat quality and cecal microflora of finishing pigs. Fifty-four healthy hybrid barrows (Duroc × Landrace × Yorkshire) with an average body weight of 70.12 ± 4.03 kg were randomly assigned to one of the three dietary treatments with six replicate pens per treatment (three barrows per pen). The three dietary treatments included a normal protein diet (NP), a low protein diet (LP) and a very low protein diet (VLP). RESULTS The average daily gain, average daily feed intake and feed conversion ratio of pigs were not significantly changed with the LP and VLP diets compared to the NP diet (P > 0.05). The water holding capacity and shear force of longissimus dorsi muscle were decreased, whereas the intramuscular fat content of the longissimus dorsi muscle was increased (P < 0.05) in pigs fed with the LP and VLP diets compared to the NP diet. The contents of saturated fatty acids in muscle were decreased (P < 0.05), whereas the content of polyunsaturated fatty acids in muscle was increased (P < 0.01) with the VLP diet compared to the NP diet. The contents of histamine, spermidine, spermine and tyramine of muscle were decreased with the VLP diet compared to the NP diet (P < 0.05). The relative abundance of Turicibacter, Terrisporobacter, Clostridium_sensu_stricto_1 and UCG-005 was higher (P < 0.05), whereas the relative abundance of Lactobacillus and Streptococcus was lower (P < 0.05) in pigs fed with the LP and VLP diets compared to the NP diet. Based on the correlation of cecal microbiota and cecal biogenic amine, the contents of tyramine, spermidine and histamine were negatively correlated with the abundance of Terrisporobacter (P < 0.01) and the content of histamine was positively correlated with the abundance of Lactobacillus (P < 0.01). CONCLUSION Balanced with four essential amino acids, the VLP diet with crude protein levels decreased by > 4% increased the intramuscular fat content, changed the fatty acid and amino acid composition of longissimus dorsi muscle and the profile of cecum microbiota, and reduced the content of cecum bioamine, with no negative effect on the growth performance of pigs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanghang Liu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Junyan Xie
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Fan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Effects of Hermetia illucens Larvae Meal and Astaxanthin as Feed Additives on Health and Production Indices in Weaned Pigs. Animals (Basel) 2022; 13:ani13010163. [PMID: 36611771 PMCID: PMC9817779 DOI: 10.3390/ani13010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Weaning is a critical period in farming, and therefore, searching for health-promoting feed additives of natural origin is necessary. This study aimed to evaluate the effects of full-fat H. illucens larvae meal (HI) and astaxanthin (AST) supplementation on the growth performance and health status of weaned pigs. The experiment was carried out on 48 pigs (8.7 kg) divided into six groups: I-control; II-2.5% HI; III-5% HI; IV-2.5% HI and AST; V-5% HI and AST; VI-AST. The experiment lasted from the 35th to 70th day of age, and animals were fed ad libitum. The results obtained indicate that HI meal and astaxanthin had no effect on feed intake and utilization, weight gain, or organ weight. Additionally, blood parameters remained within the norms. It seems that astaxanthin supports the inhibition of oxidative stress, which became apparent in the case of some red blood cell parameters. The 2.5% HI and AST supplementation can reduce the susceptibility of pork fat to oxidation (lower adipose tissue TBARS). However, 5% HI in feed was not beneficial because of the adverse changes in some red cell indices, and it should be combined with the antioxidant AST to improve these indices.
Collapse
|
27
|
Kierończyk B, Rawski M, Mikołajczak Z, Homska N, Jankowski J, Ognik K, Józefiak A, Mazurkiewicz J, Józefiak D. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:60-79. [PMID: 36101841 PMCID: PMC9442335 DOI: 10.1016/j.aninu.2022.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 10/29/2022]
Abstract
The aim of this review is to present and discuss the most recent literature about the processing of insect biomass and its impact on nutritive value, further implementation of meals and fats derived from invertebrates to livestock (poultry and swine), aquaculture (salmonids), and companion animal diets and their impact on growth performance, metabolic response, and gastrointestinal microbiota shifts. Additionally, the most important barriers to obtaining unified products in terms of their nutritive value are considered, i.e., to define insects' nutrient requirements, including various technological groups and further biomass processing (slaughtering, drying, and storage). Due to the current limitation in the insect production process consisting of the lack of infrastructure, there is stress on the relatively small amount of insect products added to the animal diets as a functional feed additive. Currently, only in the case of pet nutrition may insects be considered a full replacement for commonly used environmentally harmful and allergenic products. Simultaneously, the least information has been published on this topic. Thus, more scientific data are needed, particularly when the pet food branch and insect-based diets are rapidly growing.
Collapse
Affiliation(s)
- Bartosz Kierończyk
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Zuzanna Mikołajczak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Natalia Homska
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Agata Józefiak
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Damian Józefiak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
28
|
Comparative Proteomic Analysis of Bacillus subtilis and Aspergillus niger in Black Soldier Fly Co-Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Black soldier fly larvae have gained popularity as an organic waste bio-conversional tool and fodder protein replacement in recent decades. It can consume all kinds of animal feces, kitchen waste and agricultural waste with great efficiency and transform them into high-value insect protein, fatty acids, and amino acids, which makes the larva a good substitute for costly fish meal and bean pulp in animal diets. However, excess chitin in the larva skin limits its application as an animal feed additive, consequently, employing fermentation with zymocytes to remove the chitin is necessary. In this study, we raised black soldier fly larvae (BSFL) with different carbon sources, such as chicken feces, straws and glucose, and examined the growth condition; we applied Bacillus subtilis and Aspergillus niger to co-ferment BSFL paste to analyze its nutrition changes. Data revealed that among the four kinds of cultures, the body weight of the corn powder group increased most rapidly; the wood chip group was the most underweight; however, it increased faster than others before day 4, and contained the least fat. Label-free quantitative proteomic analysis revealed that the expression of multiple enzymes from B. subtilis and A. niger involved in polysaccharide hydrolysis, amino acid biosynthesis and fatty acid metabolism, such as peptidase of S8 family, maltogenic α-amylase, oligo-1,6-glucosidase and lysophospholipase like protein changed significantly compared to the control group. Production detection showed that free amino acids, acid-soluble proteins, and short-chain fatty acids increased after fermentation; 13 out of 17 amino acids were increased and total free amino acids were increased from 0.08 g/100 g to 0.3 g/100 g; organic acids increased by 4.81 to 17 fold through fermentation, respectively; the actual protein content declined from 3.03 g/100 g to 1.81 g/100 g, the peptide content increased from 1.3 g/100 g to 2.46 g/100 g, the chitin degradation rate was 40.3%, and fat decreased 30% (p < 0.05). These findings might provide important information for future applications of black soldier fly larvae in different carbon waste recycling measures and material for animal feed/organic fertilizer after fermentation.
Collapse
|
29
|
Go YB, Lee JH, Lee BK, Oh HJ, Kim YJ, An JW, Chang SY, Song DC, Cho HA, Park HR, Chun JY, Cho JH. Effect of insect protein and protease on growth performance, blood profiles, fecal microflora and gas emission in growing pig. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1063-1076. [PMID: 36812026 PMCID: PMC9890344 DOI: 10.5187/jast.2022.e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Two experiments were conducted to determine the effect of Hermetia illucens larvae (HIL) as protein and protease on growth performance, blood profiles, fecal microflora, and gas emission in growing pig. In experiment 1, the seventy-two crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial body weight (BW) of 27.98 ± 2.95 kg were randomly allotted to one of four dietary treatments (3 pigs per pen and 6 replicates pen per treatments). The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two diets (Poultry offal diets and HIL diets) without or with supplementing protease. The poultry offal in basal diet has been replaced by HIL. In experiment 2, the four crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an initial BW of 28.2 ± 0.1 kg were individually accepted in stainless steel metabolism cages. The dietary treatments included: 1) PO- (PO-; poultry offal diet), 2) PO+ (PO- + 0.05% protease), 3) HIL- (3% PO of PO- diet was replacement 3% HIL), 4) HIL+ (HIL- + 0.05% protease). In experiment 1, From weeks 0 to 2, average daily gain (ADG) and feed efficiency (G:F) were significantly increased in the PO diet group compared with the HIL group. From weeks 2 to 4, ADG and G:F were higher for protease group than for non-protease group. At weeks 2 and 4, the PO diet group had lower blood urea nitrogen (BUN) levels than HIL diet group. In experiment 2, crude protein (CP) and nitrogen (N) retention were decreased by HIL diet at weeks 2 and 4. The fecal microflora and gas emission were not affected by HIL and protease. The HIL diet showed lower CP digestibility than PO diet and total essential amino acids digestibility tended to higher in PO diet than HIL diet. In summary, the present study revealed that replacement of the PO protein with the HIL protein and the additive of protease in growing pig diets during the overall experimental period had no negative effect.
Collapse
Affiliation(s)
- Young Bin Go
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Ji Hwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Byong Kon Lee
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Han Jin Oh
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Yong Ju Kim
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Jae Woo An
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Se Yeon Chang
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Dong Cheol Song
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyun Ah Cho
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Hae Ryoung Park
- Korea Agriculture Technology Promotion
Agency, Iksan 54667, Korea
| | - Ji Yeon Chun
- Department of Food Bioengineering, College
of Engineering, Jeju National University, Jeju 63243,
Korea,Corresponding author Ji Yeon Chun,
Department of Food Bioengineering, College of Engineering, Jeju National
University, Jeju 63243, Korea. Tel: +82-64-754-3615, E-mail:
| | - Jin Ho Cho
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea,Corresponding author Jin Ho Cho,
Department of Animal Sciences, Chungbuk National University, Cheongju 28644,
Korea. Tel: +82-43-261-2544, E-mail:
| |
Collapse
|
30
|
Aisyah HN, Athirah ZAR, Hanani WR, Arshad SS, Hassim HA, Nazarudin MF, Ina-Salwany MY. The effect of feeding black soldier fly larvae on growth performance, protein, and fat content of red hybrid tilapia (Oreochromis spp.). Vet World 2022; 15:2453-2457. [DOI: 10.14202/vetworld.2022.2453-2457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: In the aquaculture industry, the crucial goal is to minimize production costs, especially feeding costs, without significant side effects. Black soldier fly larva (BSFL) is a locally available, eco-friendly, and sustainable source that is high in crude protein (42% dry matter [DM]) and fat (35% DM). This study aimed to determine the growth performance along with the composition of crude fat and protein in red hybrid fingerlings after the addition of BSFL into the diet.
Materials and Methods: A total of 120 fingerlings of uniform size (mean initial weight of 1.46 ± 0.06 g) were randomly assigned to one of four groups (n = 10) (A, B, C, and D) per tank (1 m × 2 m × 1 m). For 21 days, Group A (control group) was fed with 100% commercial diet; Group B was fed with 90% commercial fish diet + 10% BSFL; Group C was fed with 80% commercial fish diet + 20% BSFL; and Group D was fed with 70% commercial fish diet + 30% BSFL. Feed efficiency, growth performance, and proximate composition analysis were performed on the fish.
Results: The results displayed that the group with the highest BSFL percentage had a greater effect on protein and fat composition than the control group. The proximate composition analysis of fish-fed diet revealed that an increase in the level of BSFL inclusion increases the protein content in the fish. In comparison to the other groups, the experimental diet with 30% BSFL inclusion has the highest levels of crude protein (80.30% DM) and fat (2.90% DM).
Conclusion: It is concluded that incorporating BSFL into a commercial diet for red hybrid tilapia fingerlings increased crude protein and fat composition, providing an alternative protein and fat source in fish diets.
Collapse
Affiliation(s)
- H. N. Aisyah
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Z. A. R. Athirah
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - W. R. Hanani
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - S. S. Arshad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - H. A. Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia; Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M. F. Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M. Y. Ina-Salwany
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals (Basel) 2022; 12:ani12202743. [PMID: 36290129 PMCID: PMC9597806 DOI: 10.3390/ani12202743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
This research was conducted to study the effects of dietary inclusion of mulberry leaf powder (MLP) on growth performance, meat quality, antioxidant activity, and carcass traits of Tibetan pigs. Eighteen Tibetan pigs (33.8 ± 1.1 kg) were assigned to two treatment groups randomly and received either the control diet (CON) or a basal diet containing 8% MLP (MLP) for two months. After the two-month feeding trial, the MLP group showed lower backfat thickness while a higher lean percentage. Compared with CON pigs, MLP pigs had higher serum CAT activity. In addition, dietary MLP supplementation significantly decreased the muscle shear force. Muscle fiber morphology analysis showed that MLP pigs had larger muscle fiber density while smaller muscle fiber cross-sectional area. Up-regulated gene expression of myosin heavy chain (MyHC)IIa was also observed in MLP pigs. These results indicate that the enhanced antioxidant activity and altered muscle fiber type and morphology appeared to contribute to the improvement of meat quality in Tibetan pigs fed diets containing MLP.
Collapse
|
32
|
Gao L, Yan Q, Li J, Pang T, Lu L, Yi X, Jones CS, Zhang J. Elephant grass supplementation in the feed of fattening pigs affects growth performance, carcass characteristics, blood profiles and intestinal microorganisms. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.911692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the effects of the dietary inclusion of elephant grass on the growth performance, blood profiles, carcass characteristics, ileum and stomach microbiota of fattening pigs, pigs were fed one of seven diets including a basal diet (Control), and six treatments, where the basal diet was supplemented with 10%, 15% or 20% of elephant grass, Cenchrus purpureus cv. Guiminyin (CpGui10, CpGui15, CpGui20) or cv. Purple (CpP10, CpP15, CpP20). Results showed that supplementation of 20% CpGui in the diet significantly increased (P < 0.05) average daily gain (ADG) and gain to feed (G/F) ratio by the end of the experiment. Additionally, pigs fed the CpGui20 diet showed higher (0.01 < P < 0.05) slaughter weight and tended to have increased loin-eye area and lean meat percentage, and, decreased backfat thickness compared with control pigs. Furthermore, 16S ribosomal DNA gene amplicon profiling showed that the inclusion of elephant grass in the diet was associated with modulation of the ileum and stomach microbiota composition at the order level. Relative abundance of the Lactobacillales order in the ileum and stomach increased with different proportions of elephant grass, while that of Enterobacteriales decreased. In conclusion, these results indicate that at up to 20% inclusion in the diet of pigs, elephant grass can promote enhanced growth performance and carcass characteristics, and, modulate the ileum and stomach microbiota composition of the pigs.
Collapse
|
33
|
Growth Performance and Meat Quality of Growing Pigs Fed with Black Soldier Fly (Hermetia illucens) Larvae as Alternative Protein Source. Processes (Basel) 2022. [DOI: 10.3390/pr10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Insects have been used as animal feed protein sources in livestock and poultry breeding, and their impact on pork quality needs to be studied. This experiment mainly explores the effect of adding black soldier flies to the feed on the growth performance and meat quality of pigs. All 24 weaned piglets were randomly divided into three groups, one group was given a normal diet as the control group (C), and the other two groups were supplemented with 4% (T1) and 8% (T2) black soldier flies as an alternative protein source, respectively. Pig growth performance and carcass traits were measured at the end of the 113-day experiment. After euthanizing the pigs, we used metabolomics to detect pig dorsal muscle and qPCR to detect gene expression in dorsal muscle and adipose tissue. For the average daily gain and backfat thickness, T2 group was significantly higher than T1 group and C group (p < 0.05). Intramuscular fat content was significantly elevated in the T1 and T2 groups (p < 0.05). The metabolomics results showed that there were significant differences in metabolites among the three groups (p < 0.05). The addition of black soldier flies could increase the content of some free amino acids, and the content of lipid metabolites also changed significantly (p < 0.05). The gene expression of type 1 muscle fibers in the T1 group and the PGC-1α gene expression in the T1 and T2 groups were significantly increased in the dorsal muscle (p < 0.05). The results of the present study showed that adding 4% black soldier fly instead of fish meal in the diet of growing pigs can significantly improve meat quality and supplementation of 8% black soldier flies has beneficial effects on growth performance of pigs.
Collapse
|
34
|
Zhu Q, Song M, Azad MAK, Ma C, Yin Y, Kong X. Probiotics and Synbiotics Addition to Bama Mini-Pigs' Diet Improve Carcass Traits and Meat Quality by Altering Plasma Metabolites and Related Gene Expression of Offspring. Front Vet Sci 2022; 9:779745. [PMID: 35873696 PMCID: PMC9301501 DOI: 10.3389/fvets.2022.779745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of maternal probiotics and synbiotics addition on several traits and parameters in offspring. A total of 64 Bama mini pigs were randomly allocated into the control (basal diet), antibiotic (50 g/t virginiamycin), probiotics (200 mL/day probiotics), or synbiotics (500 g/t xylo-oligosaccharides and 200 mL/day probiotics) group and fed with experimental diets during pregnancy and lactation. After weaning, two piglets per litter and eight piglets per group were selected and fed with a basal diet. Eight pigs per group were selected for analysis at 65, 95, and 125 days of age. The results showed that the addition of probiotics increased the average daily feed intake of the pigs during the 66- to 95-day-old periods and backfat thickness at 65 and 125 days of age, and that the addition of synbiotics increased backfat thickness and decreased muscle percentage and loin-eye area at 125 days of age. The addition of maternal probiotics increased the cooking yield and pH45min value at 65 and 95 days of age, respectively, the addition of synbiotics increased the meat color at 95 days of age, and the addition of probiotics and synbiotics decreased drip loss and shear force in 65- and 125-day-old pigs, respectively. However, maternal antibiotic addition increased shear force in 125-day-old pigs. Dietary probiotics and synbiotics addition in sows' diets increased several amino acids (AAs), including total AAs, histidine, methionine, asparagine, arginine, and leucine, and decreased glycine, proline, isoleucine, α-aminoadipic acid, α-amino-n-butyric acid, β-alanine, and γ-amino-n-butyric acid in the plasma and longissimus thoracis (LT) muscle of offspring at different stages. In the LT muscle fatty acid (FA) analysis, saturated FA (including C16:0, C17:0, and C20:0) and C18:1n9t contents were lower, and C18:2n6c, C16:1, C20:1, and unsaturated FA contents were higher in the probiotics group. C10:0, C12:0, and C14:0 contents were higher in 65-day-old pigs, and C20:1 and C18:1n9t contents were lower in the synbiotics group in 95- and 125-day-old pigs, respectively. The plasma biochemical analysis revealed that the addition of maternal probiotics and synbiotics decreased plasma cholinesterase, urea nitrogen, and glucose levels in 95-day-old pigs, and that the addition of synbiotics increased plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol concentrations in 65-day-old pigs and triglyceride concentration in 125-day-old pigs. The addition of maternal probiotics and synbiotics regulated muscle fiber type, myogenic regulation, and lipid metabolism-related gene expression of LT muscle in offspring. In conclusion, the addition of maternal probiotics and synbiotics improved the piglet feed intake and altered the meat quality parameters, plasma metabolites, and gene expression related to meat quality.
Collapse
Affiliation(s)
- Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Yulong Yin
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
- *Correspondence: Xiangfeng Kong
| |
Collapse
|
35
|
Abstract
Globally, the utilization of alternative protein sources in livestock feed has been extensively deliberated and established to be the best novel approach. Extensive research indicated that insects provide good opportunities as a sustainable, high quality, and low-cost component of animal feed. The use of insects in animal diet sounds to be the prospective opportunity leading to sustainability of animal feeds and meet the intensifying worldwide plea for livestock products. The value of these protein sources has, however, increased due to limited production, competition between humans and animals. The use of insects for feeding farmed animals represents a promising alternative because of the nutritional properties of insects and the possible environmental benefits, given the sustainability of this type of farming. Yet little has been documented about the nutrient composition of various insect meals, the impact of insect meal in the animal feed industry, safety, and attitude and willingness of farmers to accept insect-based animal feed and food. Therefore, this chapter seeks to document the potential utilization of insect meal as livestock feed.
Collapse
|
36
|
Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. SUSTAINABILITY 2022. [DOI: 10.3390/su14031292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most widely used feed ingredients in the world are fishmeal and soybean, which, despite having high-quality digestible protein and good fat content, are considered environmentally unsustainable and increasingly expensive. This issue also involves the guinea pig, a very important animal protein source for people in Andean regions in South America. Here we investigate the substitution of soybean meal with 50% and 100% black soldier fly larvae meal in the guinea pig diet and its effects on meat quality (fatty acid profile, amino acid profile, water-holding capacity, pH, proximal composition, and color). The results showed no differences in the protein content and amino acid profile of meat nor in the n-6:n-3 and P/S ratios, but did show an increment in the desirable fats (mono- and polyunsaturated fatty acids) in the guinea pigs fed with black soldier fly larvae meal. All the other analyzed parameters showed no differences among the diets tested. These results suggest that total replacement of soybean meal with black soldier fly larvae meal in guinea pig nutrition is feasible since meat quality was maintained or improved.
Collapse
|
37
|
Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, Wu Q, Xiong Y, Jiang Z, Wang F, Yang G, Wang L, Yi H. Dietary Hermetia illucens Larvae Meal Improves Growth Performance and Intestinal Barrier Function of Weaned Pigs Under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr 2022; 8:812011. [PMID: 35118109 PMCID: PMC8805673 DOI: 10.3389/fnut.2021.812011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens larvae meal (HI) on the growth performance and intestinal barrier function of weaned pigs. To achieve this, 72 weaned pigs [28-day-old, 8.44 ± 0.04 kg body weight (BW)] were randomly assigned to three dietary treatments: basal diet (negative control, NC), zinc oxide-supplemented diet (positive control, PC), and HI-supplemented diet [100% replacement of fishmeal (FM), HI], for 28 days in the presence of enterotoxigenic Escherichia coli (ETEC). The results showed that HI and PC increased (p < 0.05) the average daily gain (ADG) and average daily feed intake (ADFI) of weaned pigs from day 1 to 14, and decreased diarrhea incidence from day 1 to 28. Additionally, HI increased (p < 0.05) claudin-1, occludin, mucin-1 (MUC-1), and MUC-2 expression, goblet cell number, and secretory immunoglobulin A (sIgA) concentration in the intestine of weaned pigs. Compared with NC, HI downregulated (p < 0.05) interleukin-1β (IL-1β) and IL-8 expression, and upregulated IL-10, transforming growth factor-β (TGF-β), antimicrobial peptide [porcine β defensin 1 (pBD1), pBD2, protegrin 1-5 (PG1-5)] expression in the jejunum or ileum. Moreover, HI decreased (p < 0.05) toll-like receptor 2 (TLR2), phosphorylated nuclear factor-κB (p-NF-κB), and phosphorylated mitogen-activated protein kinase (p-MAPK) expression, and increased sirtuin 1 (SIRT1) expression in the ileum. Additionally, HI increased histone deacetylase 3 (HDAC3) expression and acetylation of histone 3 lysine 27 (acH3k27) in the ileum. Furthermore, HI positively influenced the intestinal microbiota composition and diversity of weaned pigs and increased (p < 0.05) butyrate and valerate concentrations. Overall, dietary HI improved growth performance and intestinal barrier function, as well as regulated histone acetylation and TLR2-NF-κB/MAPK signaling pathways in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - E. Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhikang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengying Wang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Geling Yang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Li Wang
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Hongbo Yi
| |
Collapse
|
38
|
Live black soldier fly larvae (Hermetia illucens) provisioning is a promising environmental enrichment for pigs as indicated by feed- and enrichment-preference tests. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Abstract
The exponential increase of global demand for proteins and lipids can no longer be satisfied by classical sources. High amounts of CO2 produced by intensive livestock breeding and its effects on the environment are the main factors that prevent the use of animals as primary sources for proteins and lipids, calling for the use of new sustainable sources, such as insects. The massive breeding of bioconverter insects as a feed source has been a major topic in recent years, with both economic and scientific aspects related to rearing and subsequent processing optimization. The larvae of Hermetia illucens (Diptera: Stratiomyidae) (also known as Black Soldier Fly) can be used for the eco-sustainable production of proteins and lipids with high biological and economic value. Lipids can be obtained from BSF bioconversion processes and are present in high quantities in the last instar larvae and prepupae. Fats obtained from BSF are used as animal feed ingredients, in the formulation of several products for personal care, and in biodiesel production. To enable the use of insect-derived lipids, it is important to understand how to optimize their extraction. Here, we summarize the published information on the composition, the extraction methods, and the possible applications of the BSF lipid component.
Collapse
|
40
|
Li M, Wang G, Shang R, Xu Q, Zhang J, Sun R, Li L. Comparative Lipid Profile Analysis of Hermetia illucens Larvae Fed Food Waste at Different Days of Age Using an LC-MS-Based Lipidomics Approach. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:17. [PMID: 34718646 PMCID: PMC8557848 DOI: 10.1093/jisesa/ieab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A lipidomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS) was applied to analyze the molecular-level mechanism of lipid deposition in Hermetia illucens (H. illucens) larvae fed food waste (FW) at different days of age. The H. illucens larvae reared on FW substrates generally became larger, heavier, and fatter at 5-15 d of age. A large amount of glycerolipids (GL) were deposited, while glycerophospholipids (GP), sphingolipids, and derivatized lipids became relatively less abundant during the growth stage of the larvae. Forty-three subclasses of 3,205 lipid molecules were identified in larvae, and 139 lipids (79 upregulated and 60 downregulated during larval growth and development) were identified as potential biomarkers (variable importance in projection > 1; P < 0.05). The differential lipids were mainly enriched in 19 metabolic pathways, of which 9 metabolic pathways related to lipids, including GL and GP metabolisms. The results demonstrate that the lipid composition and mechanisms changed during the growth and development stage of H. illucens larvae. To the best of our knowledge, this is the first work exploring the molecular-level mechanism of lipid deposition during the growth and development stage of H. illucens larvae. The findings provide novel information for determining and utilizing the nutritional value of H. illucens larvae.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Guiying Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Rongsheng Shang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qinglong Xu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Jincheng Zhang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Ran Sun
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Lusheng Li
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
41
|
Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Growth characteristics and meat quality of broiler chickens fed earthworm meal from Eudrilus eugeniae as a protein source. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. SUSTAINABILITY 2021. [DOI: 10.3390/su13042303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Collapse
|
44
|
Liu X, Liu X, Yao Y, Qu X, Chen J, Xie K, Wang X, Qi Y, Xiao B, He C. Effects of different levels of Hermetia illucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1878946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xu Liu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xin Liu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Fishery Affairs Center, Huaihua, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jifa Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun, P. R. China
| | - Kailai Xie
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xingju Wang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yi Qi
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
45
|
Chu X, Li M, Wang G, Wang K, Shang R, Wang Z, Li L. Evaluation of the Low Inclusion of Full-Fatted Hermetia illucens Larvae Meal for Layer Chickens: Growth Performance, Nutrient Digestibility, and Gut Health. Front Vet Sci 2020; 7:585843. [PMID: 33330711 PMCID: PMC7728616 DOI: 10.3389/fvets.2020.585843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/15/2023] Open
Abstract
Substitution of feed protein source with defatted black soldier fly larvae meal (BSFM) has been evaluated intensively in poultry, but information about full-fatted BSFM is still very limited. The aim of the present study was to investigate the effect of dietary low inclusion of full-fatted BSFM on the growth performance, plasma antioxidant ability, nutrient digestibility, and gut health of layer chickens during 1-42 days of age. A total of 480 female 1-day-old Hy-Line Brown chickens were divided into four dietary treatments, with the inclusion of 0, 3, 6, and 9% of full-fatted BSFM. Each treatment included six replicates and 20 birds per replicate. As dietary full-fatted BSFM inclusion levels increased, there was a quadratic increase in final weight and average daily gain and a quadratic decrease in feed/gain ratio. Dietary full-fatted BSFM inclusion levels increased the digestibility of crude protein and ether extract quadratically as well as ileum mucosal sIgA concentration linearly, but these had no effect on intestinal morphology. Additionally, an increase in dietary full-fatted BSFM inclusion levels resulted in a linear increase in glutathione peroxidase and total superoxide dismutase activities and a linear decrease in malondialdehyde content in plasma. The encouraging results of the improvement of growth performance, nutrient digestibility, antioxidant ability, and gut health parameters suggested that partially full-fatted BSFM inclusion can be suitable protein ingredients for layer chickens' diets at the starter period.
Collapse
|
46
|
Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, Khanal SK. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 117:58-80. [PMID: 32805602 DOI: 10.1016/j.wasman.2020.07.050] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Population growth and unprecedented economic growth and urbanization, especially in low- and middle-income countries, coupled with extreme weather patterns, the high-environmental footprint of agricultural practices, and disposal-oriented waste management practices, require significant changes in the ways we produce food, feed and fuel, and manage enormous amounts of organic wastes. Farming insects such as the black soldier fly (BSF) (Hermetia illucens) on diverse organic wastes provides an opportunity for producing nutrient-rich animal feed, fuel, organic fertilizer, and biobased products with concurrent valorization of wastes. Inclusion of BSF larvae/pupae in the diets of poultry, fish, and swine has shown promise as a potential substitute of conventional feed ingredients such as soybean meal and fish meal. Moreover, the bioactive compounds such as antimicrobial peptides, medium chain fatty acids, and chitin and its derivatives present in BSF larvae/pupae, could also add values to the animal diets. However, to realize the full potential of BSF-based biorefining, more research and development efforts are necessary for scaling up the production and processing of BSF biomass using more mechanized and automated systems. More studies are also needed to ensure the safety of the BSF biomass grown on various organic wastes for animal feed (also food) and legalizing the feed application of BSF biomass to wider categories of animals. This critical review presents the current status of the BSF technology, identifies the research gaps, highlights the challenges towards industrial scale production, and provides future perspectives.
Collapse
Affiliation(s)
- K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
47
|
Yu M, Li Z, Chen W, Wang G, Rong T, Liu Z, Wang F, Ma X. Hermetia illucens larvae as a Fishmeal replacement alters intestinal specific bacterial populations and immune homeostasis in weanling piglets. J Anim Sci 2020; 98:5810268. [PMID: 32191809 DOI: 10.1093/jas/skz395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hermetia illucens larvae meal (HILM) are rich in proteins and chitin, and represent an innovative feed ingredient for animals. However, little is known about the intestinal bacteria and immune homeostasis response of HILM as a fishmeal replacement on weanling piglets. Thus, this study aimed to investigate the changes in specific ileal and cecal bacterial populations and their metabolic profiles, and ileal immune indexes in weanling piglets fed with a diet containing HILM. A total of 128 weanling piglets were fed either a basal diet or 1 of 3 diets with 1%, 2%, and 4% HILM (HI0, HI1, HI2, and HI4, respectively). Each group consisted of 8 pens (replicates), with 4 pigs per pen. After 28 d of feeding, 8 barrows per treatment were euthanized, the ileal and cecal digesta, and ileal mucosa were collected for analyzing bacterial population and metabolic profiles, and immune indexes, respectively. Results showed that HILM increased (P < 0.05, maximum in HI2) the number of Lactobacillus and Bifidobacterium in the ileum and cecum, but quadratically decreased (P < 0.05, minimum in HI2) the number of Escherichia coli. In the cecum, the number of Firmicutes, Ruminococcus, Clostridium cluster IV, and Prevotella showed a quadratic response to increasing (P < 0.05, maximum in HI2) HILM levels. Lactate and butyrate concentrations in the ileum and cecum were quadratically increased (P < 0.05, maximum in HI2) with increasing HILM levels. In the cecum, the amines, phenol, and indole compounds concentrations were quadratically decreased (P < 0.05, minimum in HI2) with increasing HILM levels, while total short-chain fatty acids and acetate concentrations were quadratically increased (P < 0.05, maximum in HI2). In the ileum, the TLR4, NF-κB, MyD88, and TNF-α mRNA expressions were quadratically decreased (P < 0.05, minimum in HI2) with increasing HILM levels, while the mRNA expression of IL-10, barrier function (MUC1, ZO-1, Occludin, and Claudin-2), and development-related genes (IGF-1, GLP-2, and EGF) was quadratically increased (P < 0.05, maximum in HI2). Furthermore, the changes in the mucosal gene expression were associated with changes in the bacterial populations and their metabolites. Collectively, these results showed that a diet supplemented with 2% HILM affected specific bacterial populations and metabolic profiles, and maintained ileal immune status. These findings provide new insights into the use of insect meal as a suitable alternative protein source for swine feeding.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| | - Fengyin Wang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat quality and Safety Control and Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Yu M, Li Z, Rong T, Wang G, Liu Z, Chen W, Li J, Li J, Ma X. Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J Anim Sci Biotechnol 2020; 11:78. [PMID: 32782789 PMCID: PMC7412799 DOI: 10.1186/s40104-020-00484-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND With increasing health awareness among consumers, the demand for healthier, tastier, higher quality and nutritional value pork is increasing. It has been shown that different dietary starch sources can alter the carcass traits and meat quality. However, research on the effects of different starch sources with clear different amylose/amylopectin ratio on the amino acid and fatty acid composition in Longissimus thoracis (L. thoracis) muscle of pigs is limited. This study aimed to investigate the effects of different dietary starch sources on carcass traits, meat quality, muscle amino acid and fatty acid composition, and the mRNA expression levels of genes involved in lipid metabolism and muscle fiber characteristics in finishing pigs. A total of 72 Duroc × Landrace × Large White barrows were randomly allocated to 3 different dietary treatment groups with 8 replicate pens/group and 3 pigs per pen. Tapioca starch (TS), corn starch (CS), and pea starch (PS), with amylose/amylopectin ratio of 0.11, 0.25, and 0.44, respectively, were used as their dietary starch sources for 40 days. RESULTS Results showed that the PS diet significantly increased (P < 0.05) the final body weight, average daily gain, loin-eye area, and fat-free lean index compared with the TS diet, but significantly decreased (P < 0.05) the feed to gain ratio and backfat thickness. Compared with the TS diet, PS diet also increased (P < 0.05) the pH45 min, marbling scores, the content of intramuscular fat and inosine monophosphate in the L. thoracis, and decreased (P < 0.05) the drip loss and shear force. In addition, compared with the TS diet, PS diet increased (P < 0.05) the proportions of flavor amino acids, DHA, EPA, and n-3 polyunsaturated fatty acid (PUFA) in the L. thoracis compared with TS diet, but decreased (P < 0.05) the ratio of n-6/n-3 PUFA. Furthermore, compared with the TS diet, PS diet also upregulated (P < 0.05) the lipogenic genes (FAS, LPL, SCD, ACCα) and myosin heavy-chain (MyHC)-IIa mRNA expression levels compared with the TS diet, but downregulated (P < 0.05) the CPT1B and MyHC-IIb mRNA levels. CONCLUSIONS In conclusion, these results provided compelling evidence that the different dietary starch source altered the carcass traits, meat flavor and quality in finishing pigs, and consumption of a diet with higher amylose/amylopectin ratio results in the production of a healthy, higher quality, and nutritional value pork.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Jianhao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
49
|
Yu M, Li Z, Chen W, Rong T, Wang G, Wang F, Ma X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Cullere M, Woods MJ, van Emmenes L, Pieterse E, Hoffman LC, Dalle Zotte A. Hermetia illucens Larvae Reared on Different Substrates in Broiler Quail Diets: Effect on Physicochemical and Sensory Quality of the Quail Meat. Animals (Basel) 2019; 9:E525. [PMID: 31382479 PMCID: PMC6720972 DOI: 10.3390/ani9080525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
This research aimed at improving the fatty acid (FA) profile of Hermetia illucens larvae (HI) and evaluating the effects of their inclusion in growing broiler quails' diets on the meat physicochemical quality, including detailed amino acid (AA) and FA profiles, sensory traits, and retail display. HI larvae were reared on two different substrates: layer mash (HI1) and 50:50 layer mash/fish offal (HI2). A total of 300 10-day-old quails were allocated to the three dietary groups (five replicates/each): a soybean meal-based diet was formulated (Control), and two other diets were formulated that included either 10% HI1 or HI2. Quails were fed the experimental diets until slaughter. Diets were formulated to be isonitrogenous and isoenergetic. Breast meat quality was affected by the dietary treatments, which displayed different proximate compositions and AA and FA profiles. Meat physical quality, sensory profile, and retail display remained unaffected for the most part. Overall, results showed that it is possible to improve the FA profile of the HI-fed quails' meat and thus lipid quality through substrate modulation of the HI's diet.
Collapse
Affiliation(s)
- Marco Cullere
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Michael Josias Woods
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
- Department of Animal Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Liesel van Emmenes
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
- Department of Animal Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Elsje Pieterse
- Department of Animal Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Louwrens Christiaan Hoffman
- Department of Animal Sciences, Stellenbosch University, Matieland 7602, South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd, Coopers Plains 4108, Australia
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020 Padova, Italy.
| |
Collapse
|