1
|
Hunstiger D, Ma H, Paton AJ, Peebles CAM. Improving trans-cinnamic acid production in a model cyanobacterium. Biotechnol Prog 2025; 41:e3512. [PMID: 40235106 PMCID: PMC12000639 DOI: 10.1002/btpr.3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 04/17/2025]
Abstract
trans-Cinnamic acid (tCA) is a precursor in the synthesis of many high-value compounds with bio-active qualities useful in applications like medicine, polymers, and cosmetics. Currently tCA is produced by industrial chemical synthesis from fossil fuels or cost-prohibitive isolation from terrestrial plants. Cyanobacteria, a type of photosynthetic bacteria, can be readily engineered to convert sunlight and carbon dioxide into metabolites of interest at relatively high amounts compared to terrestrial plants. The purpose of this study is to advance the industrial and commercial value of cyanobacteria as a biological factory for renewable production of tCA. Production of tCA has previously been demonstrated in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) via expression of non-native phenylalanine ammonia lyase (PAL) from various organisms. This project focuses on developing and characterizing a new high-titer strain of S. 6803 expressing a plant PAL gene controlled by an inducible promoter. We assessed production in shake flasks under constant light, a 12 h:12 h light:dark cycle, and environmental photobioreactors (ePBRs) with a sinusoidal, rapidly fluctuating light environment. Our strain demonstrates a four-fold increase in tCA production to ~500 mg L-1 by 14 days compared to previously reported titers in S. 6803 under shake flask cultivation and a 30-50% improved average tCA production per culture density (60 mg·L-1·OD730 -1) in ePBRs over comparable previously reported culture methods. Our study progresses S. 6803 tCA bioproduction into higher culture volumes, up to 500 mL, while further validating the strength of an inducible system for tCA production in S. 6803.
Collapse
Affiliation(s)
- Darcy Hunstiger
- Cell and Molecular Biology ProgramColorado State UniversityFort CollinsColoradoUSA
| | - Hayley Ma
- Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsColoradoUSA
- Present address:
Entegris Inc.Round RockTexasUSA
| | - Andrew J. Paton
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Christie A. M. Peebles
- Cell and Molecular Biology ProgramColorado State UniversityFort CollinsColoradoUSA
- Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Melis A, Hidalgo Martinez DA, Betterle N. Perspectives of cyanobacterial cell factories. PHOTOSYNTHESIS RESEARCH 2024; 162:459-471. [PMID: 37966575 PMCID: PMC11615099 DOI: 10.1007/s11120-023-01056-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Cyanobacteria are prokaryotic photosynthetic microorganisms that can generate, in addition to biomass, useful chemicals and proteins/enzymes, essentially from sunlight, carbon dioxide, and water. Selected aspects of cyanobacterial production (isoprenoids and high-value proteins) and scale-up methods suitable for product generation and downstream processing are addressed in this review. The work focuses on the challenge and promise of specialty chemicals and proteins production, with isoprenoid products and biopharma proteins as study cases, and the challenges encountered in the expression of recombinant proteins/enzymes, which underline the essence of synthetic biology with these microorganisms. Progress and the current state-of-the-art in these targeted topics are emphasized.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, MC-3102, Berkeley, CA, 94720-3102, USA.
| | - Diego Alberto Hidalgo Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nico Betterle
- SoLELab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| |
Collapse
|
3
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
4
|
Blanc-Garin V, Chenebault C, Diaz-Santos E, Vincent M, Sassi JF, Cassier-Chauvat C, Chauvat F. Exploring the potential of the model cyanobacterium Synechocystis PCC 6803 for the photosynthetic production of various high-value terpenes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:110. [PMID: 36242067 PMCID: PMC9564069 DOI: 10.1186/s13068-022-02211-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Background The robust model cyanobacterium Synechocystis PCC 6803 is increasingly explored for its potential to use solar energy, water and atmospheric CO2 for the carbon-neutral production of terpenes, the high-value chemicals that can be used for the production of drugs, flavors, fragrances and biofuels. However, as terpenes are chemically diverse, it is extremely difficult to predict whether Synechocystis is a suitable chassis for the photosynthetic production of various terpenes or only a few of them. Results We have performed the first-time engineering and comparative analysis of the best-studied cyanobacterium Synechocystis PCC 6803 for the photosynthetic production of five chemically diverse high-value terpenes: two monoterpenes (C10H16) limonene (cyclic molecule) and pinene (bicyclic), and three sesquiterpenes (C15H24) bisabolene (cyclic), farnesene (linear) and santalene (cyclic). All terpene producers appeared to grow well and to be genetically stable, as shown by the absence of changes in their production levels during the 5–9-month periods of their sub-cultivation under photoautotrophic conditions). We also found that Synechocystis PCC 6803 can efficiently and stably produce farnesene and santalene, which had never been produced before by this model organism or any other cyanobacteria, respectively. Similar production levels were observed for cells growing on nitrate (the standard nitrogen source for cyanobacteria) or urea (cheaper than nitrate). Furthermore, higher levels of farnesene were produced by cloning the heterologous farnesene synthase gene in a RSF1010-derived replicating plasmid as compared to the well-used slr0168 neutral cloning site of the chromosome. Conclusions Altogether, the present results indicate that Synechocystis PCC 6803 is better suited to produce sesquiterpenes (particularly farnesene, the most highly produced terpene of this study) than monoterpenes (especially pinene). Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02211-0.
Collapse
Affiliation(s)
- Victoire Blanc-Garin
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Célia Chenebault
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Encarnación Diaz-Santos
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Marine Vincent
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Jean-François Sassi
- Commissariat À L’énergie Atomique Et Aux Énergies Alternatives (CEA), Centre de Cadarache, 13108 St Paul Lez Durance, France
| | - Corinne Cassier-Chauvat
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Franck Chauvat
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| |
Collapse
|
5
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Klaus O, Hilgers F, Nakielski A, Hasenklever D, Jaeger KE, Axmann IM, Drepper T. Engineering phototrophic bacteria for the production of terpenoids. Curr Opin Biotechnol 2022; 77:102764. [PMID: 35932511 DOI: 10.1016/j.copbio.2022.102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
With more than 80 000 compounds, terpenoids represent one of the largest classes of secondary metabolites naturally produced by various plants and other organisms. Owing to the tremendous structural diversity, they offer a wide range of properties relevant for biotechnological and pharmaceutical applications. In this context, heterologous terpenoid production in engineered microbial hosts represents an often cost-effective and eco-friendly way to make these valuable compounds industrially available. This review provides an overview of current strategies to employ and engineer oxygenic and anoxygenic phototrophic bacteria as alternative cell factories for sustainable terpenoid production. Besides terpenoid pathway engineering, the effects of different illumination strategies on terpenoid photoproduction are key elements in the latest studies.
Collapse
Affiliation(s)
- Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Hasenklever
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Institute of Bio, and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
7
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
8
|
Blanc-Garin V, Veaudor T, Sétif P, Gontero B, Lemaire SD, Chauvat F, Cassier-Chauvat C. First in vivo analysis of the regulatory protein CP12 of the model cyanobacterium Synechocystis PCC 6803: Biotechnological implications. FRONTIERS IN PLANT SCIENCE 2022; 13:999672. [PMID: 36176677 PMCID: PMC9514657 DOI: 10.3389/fpls.2022.999672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
We report the first in vivo analysis of a canonical CP12 regulatory protein, namely the unique CP12 of the model cyanobacterium Synechocystis PCC 6803, which has the advantage of being able to grow photoautotrophically, photomixotrophically, and photoheterotrophically. The data showed that CP12 is dispensable to cell growth under standard (continuous) light and light/dark cycle, whereas it is essential for the catabolism of exogenously added glucose that normally sustains cell growth in absence of photosynthesis. Furthermore, to be active in glucose catabolism, CP12 requires its three conserved features: its AWD_VEEL motif and its two pairs of cysteine residues. Also interestingly, CP12 was found to regulate the redox equilibrium of NADPH, an activity involving its AWD_VEEL motif and its C-ter cysteine residues, but not its N-ter cysteine residues. This finding is important because NADPH powers up the methylerythritol 4-phosphate (MEP) pathway that synthesizes the geranyl-diphosphate (GPP) and farnesyl-diphosphate (FPP) metabolites, which can be transformed into high-value terpenes by recombinant cyanobacteria producing plant terpene synthase enzymes. Therefore, we have introduced into the Δcp12 mutant and the wild-type (control) strain our replicative plasmids directing the production of the monoterpene limonene and the sesquiterpene bisabolene. The photosynthetic production of both bisabolene and limonene appeared to be increased (more than two-fold) in the Δcp12 mutant as compared to the WT strain. Furthermore, the level of bisabolene production was also higher to those previously reported for various strains of Synechocystis PCC 6803 growing under standard (non-optimized) photoautotrophic conditions. Hence, the presently described Δcp12 strain with a healthy photoautotrophic growth and an increased capability to produce terpenes, is an attractive cell chassis for further gene manipulations aiming at engineering cyanobacteria for high-level photoproduction of terpenes.
Collapse
Affiliation(s)
- Victoire Blanc-Garin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Théo Veaudor
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Sétif
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, Marseille, France
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, CNRS, UMR7238, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Franck Chauvat
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Corinne Cassier-Chauvat,
| |
Collapse
|
9
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Carruthers DN, Lee TS. Diversifying Isoprenoid Platforms via Atypical Carbon Substrates and Non-model Microorganisms. Front Microbiol 2021; 12:791089. [PMID: 34925299 PMCID: PMC8677530 DOI: 10.3389/fmicb.2021.791089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Isoprenoid compounds are biologically ubiquitous, and their characteristic modularity has afforded products ranging from pharmaceuticals to biofuels. Isoprenoid production has been largely successful in Escherichia coli and Saccharomyces cerevisiae with metabolic engineering of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways coupled with the expression of heterologous terpene synthases. Yet conventional microbial chassis pose several major obstacles to successful commercialization including the affordability of sugar substrates at scale, precursor flux limitations, and intermediate feedback-inhibition. Now, recent studies have challenged typical isoprenoid paradigms by expanding the boundaries of terpene biosynthesis and using non-model organisms including those capable of metabolizing atypical C1 substrates. Conversely, investigations of non-model organisms have historically informed optimization in conventional microbes by tuning heterologous gene expression. Here, we review advances in isoprenoid biosynthesis with specific focus on the synergy between model and non-model organisms that may elevate the commercial viability of isoprenoid platforms by addressing the dichotomy between high titer production and inexpensive substrates.
Collapse
Affiliation(s)
- David N Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Veerabadhran M, Natesan S, MubarakAli D, Xu S, Yang F. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. CHEMOSPHERE 2021; 285:131436. [PMID: 34256200 DOI: 10.1016/j.chemosphere.2021.131436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Microalgal biomass and its fine chemical production from microalgae have pioneered algal bioprocess technology with few limitations such as lab-to-industry. However, laboratory-scale transitions and industrial applications are hindered by a plethora of limitations comprising expensive in culturing methods. Therefore, to emphasize the profitable benefits, the algal culturing techniques appropriately employed for large-scale microalgal biomass yield necessitates intricate assessment to emphasize the profitable benefits. The present review holistically compiles the culturing strategies for improving microalgal biomass production based on appropriate factors like designing better bioreactor designs. On the other hand, synthetic biology approaches for abridging the effective industrial transition success explored recently. Prospects in synthetic biology for enhanced microalgal biomass production based on cultivation strategies and various mechanistic modes approach to enrich cost-effective and viable output are discussed. The State-of-the-art culturing techniques encompassing enhancement of photosynthetic activity, designing bioreactor design, and potential augmenting protocols for biomass yield employing indoor cultivation in both (Open and or/closed) methods are enumerated. Further, limitations hindering the microalgal bioproducts development are critically evaluated for improving culturing techniques for microalgal cell factories, subsequently escalating the cost-benefit ratio in bioproducts synthesis from microalgae. The comprehensive analysis could provide a rational and deeper detailed insight for microalgal entrepreneurs through alternative culturing technology viz., synthetic biology and genome engineering in an Industrial perspective arena.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
12
|
Zhao Y, Zhu K, Li J, Zhao Y, Li S, Zhang C, Xiao D, Yu A. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb Biotechnol 2021; 14:2497-2513. [PMID: 33605546 PMCID: PMC8601197 DOI: 10.1111/1751-7915.13768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The natural plant product bisabolene serves as a precursor for the production of a wide range of industrially relevant chemicals. However, the low abundance of bisabolene in plants renders its isolation from plant sources non-economically viable. Therefore, creation of microbial cell factories for bisabolene production supported by synthetic biology and metabolic engineering strategies presents a more competitive and environmentally sustainable method for industrial production of bisabolene. In this proof-of-principle study, for the first time, we engineered the oleaginous yeast Yarrowia lipolytica to produce α-bisabolene, β-bisabolene and γ-bisabolene through heterologous expression of the α-bisabolene synthase from Abies grandis, the β-bisabolene synthase gene from Zingiber officinale and the γ-bisabolene synthase gene from Helianthus annuus respectively. Subsequently, two metabolic engineering approaches, including overexpression of the endogenous mevalonate pathway genes and introduction of heterologous multidrug efflux transporters, were employed in order to improve bisabolene production. Furthermore, the fermentation conditions were optimized to maximize bisabolene production by the engineered Y. lipolytica strains from glucose. Finally, we explored the potential of the engineered Y. lipolytica strains for bisabolene production from the waste cooking oil. To our knowledge, this is the first report of bisabolene production in Y. lipolytica using metabolic engineering strategies. These findings provide valuable insights into the engineering of Y. lipolytica for a higher-level production of bisabolene and its utilization in converting waste cooking oil into various industrially valuable products.
Collapse
Affiliation(s)
- Yakun Zhao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Kun Zhu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Jian Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Yu Zhao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Shenglong Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyCollege of BiotechnologyTianjin University of Science and TechnologyNo. 29 the 13th Street TEDATianjin300457China
| |
Collapse
|
13
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
14
|
Tran KM, Lee HM, Thai TD, Shen J, Eyun SI, Na D. Synthetically engineered microbial scavengers for enhanced bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126516. [PMID: 34218189 DOI: 10.1016/j.jhazmat.2021.126516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial bioremediation has gained attention as a cheap, efficient, and sustainable technology to manage the increasing environmental pollution. Since microorganisms in nature are not evolved to degrade pollutants, there is an increasing demand for developing safer and more efficient pollutant-scavengers for enhanced bioremediation. In this review, we introduce the strategies and technologies developed in the field of synthetic biology and their applications to the construction of microbial scavengers with improved efficiency of biodegradation while minimizing the impact of genetically engineered microbial scavengers on ecosystems. In addition, we discuss recent achievements in the biodegradation of fastidious pollutants, greenhouse gases, and microplastics using engineered microbial scavengers. Using synthetic microbial scavengers and multidisciplinary technologies, toxic pollutants could be more easily eliminated, and the environment could be more efficiently recovered.
Collapse
Affiliation(s)
- Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Thi Duc Thai
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhao Shen
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
15
|
Zhao J, Wei H, Chen J, Li L, Li K, Liu J. Efficient biosynthesis of D-allulose in Bacillus subtilis through D-psicose 3-epimerase translation modification. Int J Biol Macromol 2021; 187:1-8. [PMID: 34293357 DOI: 10.1016/j.ijbiomac.2021.07.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The combined catalysis of glucose isomerase (GI) and D-psicose 3-epimerase (DPEase) provided a convenient route for the direct synthesis of D-allulose from d-glucose, whose cost is lower than d-fructose. In the present research, the weak activity of DPEase was the key rate-limiting step and resulted in the accumulation of d-fructose in engineered Bacillus subtilis. Then, the 5'-untranslated region (5'-UTR) structure of the mRNA translational initiation region was optimized for the precise control of DPEase expression. The manipulation of the 5'-UTR region promoted the accessibility to ribosome binding and the stability of mRNA, resulting in a maximum of 1.73- and 1.98-fold increase in DPEase activity and intracellular mRNA amount, respectively. Under the optimal catalytic conditions of 75 °C, pH 6.5, 110 g/L d-glucose, and 1 mmol/L Co2+, the reaction equilibrium time was reduced from 7.6 h to 6.1 h. We hope that our results could provide a facilitated strategy for large-scale production of D-allulose at low-cost.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Hongbei Wei
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jing Chen
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Lihong Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
16
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
17
|
Liu CL, Xue K, Yang Y, Liu X, Li Y, Lee TS, Bai Z, Tan T. Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol 2021; 42:73-92. [PMID: 34256675 DOI: 10.1080/07388551.2021.1924112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sesquiterpenes are a large variety of terpene natural products, widely existing in plants, fungi, marine organisms, insects, and microbes. Value-added sesquiterpenes are extensively used in industries such as: food, drugs, fragrances, and fuels. With an increase in market demands and the price of sesquiterpenes, the biosynthesis of sesquiterpenes by microbial fermentation methods from renewable feedstocks is acquiring increasing attention. Synthetic biology provides robust tools of sesquiterpene production in microorganisms. This review presents a summary of metabolic engineering strategies on the hosts and pathway engineering for sesquiterpene production. Advances in synthetic biology provide new strategies on the creation of desired hosts for sesquiterpene production. Especially, metabolic engineering strategies for the production of sesquiterpenes such as: amorphadiene, farnesene, bisabolene, and caryophyllene are emphasized in: Escherichia coli, Saccharomyces cerevisiae, and other microorganisms. Challenges and future perspectives of the bioprocess for translating sesquiterpene production into practical industrial work are also discussed.
Collapse
Affiliation(s)
- Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Kai Xue
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
18
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
19
|
Rodrigues JS, Lindberg P. Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production. Metab Eng Commun 2020; 12:e00159. [PMID: 33489752 PMCID: PMC7809396 DOI: 10.1016/j.mec.2020.e00159] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Terpenoids are a wide class of organic compounds with industrial relevance. The natural ability of cyanobacteria to produce terpenoids via the methylerythritol 4-phosphate (MEP) pathway makes these organisms appealing candidates for the generation of light-driven cell factories for green chemistry. Here we address the improvement of the production of (E)-α-bisabolene, a valuable biofuel feedstock, in Synechocystis sp. PCC 6803 via sequential heterologous expression of bottleneck enzymes of the native pathway. Expression of the bisabolene synthase is sufficient to complete the biosynthetic pathway of bisabolene. Expression of a farnesyl-pyrophosphate synthase from Escherichia coli did not influence production of bisabolene, while enhancement of the MEP pathway via additional overexpression of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and IPP/DMAPP isomerase (IDI) significantly increased production per cell. However, in the absence of a carbon sink, the overexpression of DXS and IDI leads to significant growth impairment. The final engineered strain reached a volumetric titre of 9 mg L−1 culture of bisabolene after growing for 12 days. When the cultures were grown in a high cell density (HCD) system, we observed an increase in the volumetric titres by one order of magnitude for all producing-strains. The strain with improved MEP pathway presented an increase twice as much as the remaining engineered strains, yielding more than 180 mg L−1 culture after 10 days of cultivation. Furthermore, the overexpression of these two MEP enzymes prevented the previously reported decrease in the bisabolene specific titres when grown in HCD conditions, where primary metabolism is usually favoured. We conclude that fine-tuning of the cyanobacterial terpenoid pathway is crucial for the generation of microbial platforms for terpenoid production on industrial-scale. Overexpressing two bottleneck enzymes from MEP pathway doubles bisabolene titres. Enhancing MEP pathway in the absence of a proper carbon sink compromised growth. Growth of bisabolene-producing strains in HDC system increased titres by 10-fold. Improving MEP pathway prevents decrease in specific titres of cells grown in HDC. The best producing strain reached 180 mg L−1 bisabolene after 10 days growth in HDC.
Collapse
Affiliation(s)
- João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2). Metab Eng 2020; 62:275-286. [DOI: 10.1016/j.ymben.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2022]
|
21
|
Walls LE, Rios-Solis L. Sustainable Production of Microbial Isoprenoid Derived Advanced Biojet Fuels Using Different Generation Feedstocks: A Review. Front Bioeng Biotechnol 2020; 8:599560. [PMID: 33195174 PMCID: PMC7661957 DOI: 10.3389/fbioe.2020.599560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 01/17/2023] Open
Abstract
As the fastest mode of transport, the aircraft is a major driver for globalization and economic growth. The development of alternative advanced liquid fuels is critical to sustainable development within the sector. Such fuels should be compatible with existing infrastructure and derived from second generation feedstocks to avoid competition with food markets. With properties similar to petroleum based fuels, isoprenoid derived compounds such as limonene, bisabolane, farnesane, and pinene dimers are of increasing interest as "drop-in" replacement jet fuels. In this review potential isoprenoid derived jet fuels and progress toward their microbial production was discussed in detail. Although substantial advancements have been achieved, the use of first generation feedstocks remains ubiquitous. Lignocellulosic biomass is the most abundant raw material available for biofuel production, however, technological constraints associated with its pretreatment and saccharification hinder its economic feasibility for low-value commodity production. Non-conventional microbes with novel characteristics including cellulolytic bacteria and fungi capable of highly efficient lignocellulose degradation and xylose fermenting oleaginous yeast with enhanced lignin-associated inhibitor tolerance were investigated as alternatives to traditional model hosts. Finally, innovative bioprocessing methods including consolidated bioprocessing and sequential bioreactor approaches, with potential to capitalize on such unique natural capabilities were considered.
Collapse
Affiliation(s)
- Laura Ellen Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Assil-Companioni L, Büchsenschütz HC, Solymosi D, Dyczmons-Nowaczyk NG, Bauer KKF, Wallner S, Macheroux P, Allahverdiyeva Y, Nowaczyk MM, Kourist R. Engineering of NADPH Supply Boosts Photosynthesis-Driven Biotransformations. ACS Catal 2020; 10:11864-11877. [PMID: 33101760 PMCID: PMC7574619 DOI: 10.1021/acscatal.0c02601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Light-driven biocatalysis in recombinant cyanobacteria provides highly atom-efficient cofactor regeneration via photosynthesis, thereby remediating constraints associated with sacrificial cosubstrates. However, despite the remarkable specific activities of photobiocatalysts, self-shading at moderate-high cell densities limits efficient space-time-yields of heterologous enzymatic reactions. Moreover, efficient integration of an artificial electron sink into the tightly regulated network of cyanobacterial electron pathways can be highly challenging. Here, we used C=C bond reduction of 2-methylmaleimide by the NADPH-dependent ene-reductase YqjM as a model reaction for light-dependent biotransformations. Time-resolved NADPH fluorescence spectroscopy allowed direct monitoring of in-cell YqjM activity and revealed differences in NADPH steady-state levels and oxidation kinetics between different genetic constructs. This effect correlates with specific activities of whole-cells, which demonstrated conversions of >99%. Further channelling of electrons toward heterologous YqjM by inactivation of the flavodiiron proteins (Flv1/Flv3) led to a 2-fold improvement in specific activity at moderate cell densities, thereby elucidating the possibility of accelerating light-driven biotransformations by the removal of natural competing electron sinks. In the best case, an initial product formation rate of 18.3 mmol h-1 L-1 was reached, allowing the complete conversion of a 60 mM substrate solution within 4 h.
Collapse
Affiliation(s)
- Leen Assil-Companioni
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Dániel Solymosi
- Molecular
Plant Biology unit, Department of Biochemistry, Faculty of Science
and Engineering, University of Turku, Turku 20014, Finland
| | - Nina G. Dyczmons-Nowaczyk
- Department
of Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Kristin K. F. Bauer
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Silvia Wallner
- Institute
of Biochemistry, Graz University of Technology, Petersgasse 10, 8010 Graz, Austria
| | - Peter Macheroux
- Institute
of Biochemistry, Graz University of Technology, Petersgasse 10, 8010 Graz, Austria
| | - Yagut Allahverdiyeva
- Molecular
Plant Biology unit, Department of Biochemistry, Faculty of Science
and Engineering, University of Turku, Turku 20014, Finland
| | - Marc M. Nowaczyk
- Department
of Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|