1
|
Fan CH, Huang E, Lo WC, Yeh CK. Ultrasound-cavitation-enhanced drug delivery via microbubble clustering induced by acoustic vortex tweezers. ULTRASONICS SONOCHEMISTRY 2025; 114:107273. [PMID: 39979196 PMCID: PMC12013124 DOI: 10.1016/j.ultsonch.2025.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
The application of acoustic vortex tweezers (AVT) in conjunction with ultrasound (US) cavitation pulses presents a promising noninvasive approach for the delivery of high concentrations of therapeutic agents. This methodology facilitates the aggregation of drug-loaded microbubbles (MBs) into clusters, which are subsequently destroyed to release their contents. Nevertheless, prior investigations have not thoroughly examined the resonance frequency and cavitation activity of MB clusters, critical factors that could enhance the efficiency of payload release. Theoretically, the resonance frequency of an MB cluster is expected to approximate that of a single large bubble of comparable size, thus being significantly lower than that of the individual MBs constituting the cluster. Accordingly, this study aims to optimize the release of payloads from AVT-trapped MB clusters, which measure 15 to 40 μm (mean radius: 24.7 μm) in size, by employing US at their resonance frequency of 100 kHz, henceforth referred to as "on-resonance US." In this investigation, MBs were loaded with the model drug DiI, resulting in the formation of DiI-MBs, which were then clustered utilizing AVT. On-resonance US excitation was subsequently applied to enhance the release of the drug payload. The dimensional characteristics of the DiI-MB clusters formed via 3-MHz AVT were measured to determine the range of resonance frequencies. Concurrent optical and acoustic analyses were conducted to evaluate the size, oscillation dynamics, and cavitation activity of the DiI-MB clusters in response to on-resonance US excitation. Additionally, the payload release from these clusters was quantitatively assessed. Our results indicate that significant oscillations of individual DiI-MB clusters commenced at a pressure of 44 kPa during 100 kHz US excitation. Further quantitative experiments demonstrated that the synergistic combination of AVT and 100-kHz US at 65 kPa significantly enhanced the payload release efficiency to 93 %. This efficiency surpassed that achieved with either method independently, with increases of 1.8-fold relative to AVT alone and 2.3-fold compared to 100-kHz US alone. The acoustic analyses revealed the onset of inertial cavitation at 44 kPa, which strongly correlated with payload release efficiency (R2 = 0.78). These findings underscore the potential of our proposed methodology in monitoring and enhancing the efficiency of drug release.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Elaine Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Chen Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Del Campo Fonseca A, Ahmed D. Ultrasound robotics for precision therapy. Adv Drug Deliv Rev 2024; 205:115164. [PMID: 38145721 DOI: 10.1016/j.addr.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
In recent years, the application of microrobots in precision therapy has gained significant attention. The small size and maneuverability of these micromachines enable them to potentially access regions that are difficult to reach using traditional methods; thus, reducing off-target toxicities and maximizing treatment effectiveness. Specifically, acoustic actuation has emerged as a promising method to exert control. By harnessing the power of acoustic energy, these small machines potentially navigate the body, assemble at the desired sites, and deliver therapies with enhanced precision and effectiveness. Amidst the enthusiasm surrounding these miniature agents, their translation to clinical environments has proven difficult. The primary objectives of this review are threefold: firstly, to offer an overview of the fundamental acoustic principles employed in the field of microrobots; secondly, to assess their current applications in medical therapies, encompassing tissue targeting, drug delivery or even cell infiltration; and lastly, to delve into the continuous efforts aimed at integrating acoustic microrobots into in vivo applications.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
3
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
4
|
Okbay Gunes A, Karadag N, Cakir H, Hakyemez Toptan H, Karatekin G. The Associations Between Lung Ultrasonography Scores in the First Day of Life and Clinical Outcomes: Authors' Reply. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1033-1034. [PMID: 34196035 DOI: 10.1002/jum.15771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Asli Okbay Gunes
- Department of Pediatrics, Division of Neonatology, University of Health Sciences, Zeynep Kamil Maternity and Children's Training and Research Hospital-Istanbul, Istanbul, Turkey
| | - Nilgun Karadag
- Department of Pediatrics, Division of Neonatology, University of Health Sciences, Zeynep Kamil Maternity and Children's Training and Research Hospital-Istanbul, Istanbul, Turkey
| | - Hakan Cakir
- Department of Pediatrics, Division of Neonatology, University of Health Sciences, Zeynep Kamil Maternity and Children's Training and Research Hospital-Istanbul, Istanbul, Turkey
| | - Handan Hakyemez Toptan
- Department of Pediatrics, Division of Neonatology, University of Health Sciences, Zeynep Kamil Maternity and Children's Training and Research Hospital-Istanbul, Istanbul, Turkey
| | - Guner Karatekin
- Department of Pediatrics, Division of Neonatology, University of Health Sciences, Zeynep Kamil Maternity and Children's Training and Research Hospital-Istanbul, Istanbul, Turkey
| |
Collapse
|
5
|
Zhao L, Lin H, Hu Y, Chen X, Chen S, Zhang X. Corneal Lamb wave imaging for quantitative assessment of collagen cross-linking treatment based on comb-push ultrasound shear elastography. ULTRASONICS 2021; 116:106478. [PMID: 34174743 DOI: 10.1016/j.ultras.2021.106478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Keratoconus, a serious corneal disorder, often causes highly irregular astigmatism and different degrees of visual impairment. Riboflavin/UVA corneal collagen cross-linking(CXL) is currently approved for effective treatment of keratoconus by enhancing the mechanical strength of collagen fibers in the cornea. However, few methods are capable of quantitatively and non-destructively assessing the mechanical properties of the cornea before and after CXL treatments. This study developed a corneal viscoelasticity imaging method based on comb-push ultrasound shear elastography (CUSE) and implemented this method on a Verasonics™ Vantage 256 ultrasound open system with a high-frequency linear array ultrasound transducer. Push beams were generated by three teeth each consisting of 10 elements (working frequency = 10.41 MHz) for inducing Lamb wave propagation in the cornea, and then the system immediately switched to the plane wave imaging mode using 60 elements in the middle (working frequency = 18 MHz). This method can provide a high-resolution 2D Lamb wave velocity image overlapping with a B-mode image as well as quantitative viscoelasticity estimation according to experimentally obtained phase velocity dispersion of Lamb waves. The validation experiments were performed on ex vivo porcine corneas, and the accuracy of elasticity estimation was verified by a tensile test. The results showed that the shear elasticity increased and the viscosity decreased after CXL treatment. The shear elasticity results (reported as mean ± standard deviation) of one control group with no CXL treatment and three CXL-treated groups named as 10 min, 30 min, and 60 min groups according to UV irradiation time were 14.62 ± 3.38 kPa, 49.47 ± 3.63 kPa, 116.54 ± 23.99 kPa, and 197.89 ± 39.64 kPa, respectively, which was in agreement with the results of tensile tests. The ultrasound safety measurement indicated that this method could have acceptable safety, but further to ocular tissue and vision function. The study demonstrated the possibility of using a commercial ultrasound system to obtain high-resolution images of corneal mechanical properties as well as the ability to quantify changes induced by CXL treatment. Therefore, the proposed method could serve as a helpful tool in the studies related in corneal biomechanics.
Collapse
Affiliation(s)
- Linfeng Zhao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Haoming Lin
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yaxin Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Siping Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xinyu Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.
| |
Collapse
|
6
|
Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Indexed: 12/14/2022]
Abstract
The emerging field of implantable bioelectronics has attracted widespread attention in modern society because it can improve treatment outcomes, reduce healthcare costs, and lead to an improvement in the quality of life. However, their continuous operation is often limited by conventional bulky and rigid batteries with a limited lifespan, which must be surgically removed after completing their missions and/or replaced after being exhausted. Herein, this paper gives a comprehensive review of recent advances in nonconventional energy solutions for implantable bioelectronics, emphasizing the miniaturized, flexible, biocompatible, and biodegradable power devices. According to their source of energy, the promising alternative energy solutions are sorted into three main categories, including energy storage devices (batteries and supercapacitors), internal energy-harvesting devices (including biofuel cells, piezoelectric/triboelectric energy harvesters, thermoelectric and biopotential power generators), and external wireless power transmission technologies (including inductive coupling/radiofrequency, ultrasound-induced, and photovoltaic devices). Their fundamentals, materials strategies, structural design, output performances, animal experiments, and typical biomedical applications are also discussed. It is expected to offer complementary power sources to extend the battery lifetime of bioelectronics while acting as an independent power supply. Thereafter, the existing challenges and perspectives associated with these powering devices are also outlined, with a focus on implantable bioelectronics.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Mingjiao Shao
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Cunjiang Yu
- Department of Mechanical Engineering Texas Center for Superconductivity University of Houston Houston TX 77204 USA
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
7
|
Charles EJ, Tian Y, Zhang A, Wu D, Mehaffey JH, Gigliotti JC, Klibanov AL, Kron IL, Yang Z. Pulsed ultrasound attenuates the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2021; 161:e297-e306. [PMID: 31839230 PMCID: PMC7195241 DOI: 10.1016/j.jtcvs.2019.10.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Acute hyperglycemia during myocardial infarction worsens outcomes in part by inflammatory mechanisms. Pulsed ultrasound has anti-inflammatory potential in bone healing and neuromodulation. We hypothesized that pulsed ultrasound would attenuate the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury via the cholinergic anti-inflammatory pathway. METHODS Acute hyperglycemia was induced in wild-type C57BL6 or acetylcholine-receptor knockout (α7nAChR-/-) mice by intraperitoneal injection of glucose. Pulsed ultrasound (frequency 7 MHz, bursting mechanical index 1.2, duration 1 second, repeated every 6 seconds for 2 minutes, 20-second total exposure) was performed at the spleen or neck after glucose injection. Separate mice underwent vagotomy before treatment. The left coronary artery was occluded for 20 minutes, followed by 60 minutes of reperfusion. The primary end point was infarct size in explanted hearts. RESULTS Splenic pulsed ultrasound significantly decreased infarct size in wild-type C57BL6 mice exposed to acute hyperglycemia and myocardial ischemia-reperfusion injury (5.2% ± 4.4% vs 16.9% ± 12.5% of risk region, P = .013). Knockout of α7nAChR abrogated the beneficial effect of splenic pulsed ultrasound (22.2% ± 12.1%, P = .79 vs control). Neck pulsed ultrasound attenuated the hyperglycemic exacerbation of myocardial infarct size (3.5% ± 4.8%, P = .004 vs control); however, the cardioprotective effect disappeared in mice that underwent vagotomy. Plasma acetylcholine, β2 adrenergic receptor, and phosphorylated Akt levels were increased after splenic pulsed ultrasound treatment. CONCLUSIONS Pulsed ultrasound treatment of the spleen or neck attenuated the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury leading to a 3-fold decrease in infarct size. Pulsed ultrasound may provide cardioprotection via the cholinergic anti-inflammatory pathway and could be a promising new nonpharmacologic, noninvasive therapy to reduce infarct size during acute myocardial infarction and improve patient outcomes.
Collapse
Affiliation(s)
- Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Yikui Tian
- Department of Surgery, University of Virginia, Charlottesville, Va; Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Aimee Zhang
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Di Wu
- Department of Surgery, University of Virginia, Charlottesville, Va
| | | | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University, Lynchburg, Va
| | | | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Va; Department of Surgery, University of Arizona, Tucson, Ariz
| | - Zequan Yang
- Department of Surgery, University of Virginia, Charlottesville, Va.
| |
Collapse
|
8
|
Improvement of light penetration in biological tissue using an ultrasound-induced heating tunnel. Sci Rep 2020; 10:17406. [PMID: 33060643 PMCID: PMC7562700 DOI: 10.1038/s41598-020-73878-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The major obstacles of optical imaging and photothermal therapy in biomedical applications is the strong scattering of light within biological tissues resulting in light defocusing and limited penetration. In this study, we propose high intensity focused ultrasound (HIFU)-induced heating tunnel to reduce the photon scattering. To verify our idea, Monte Carlo simulation and intralipid-phantom experiments were conducted. The results show that the thermal effect created by HIFU could improve the light fluence at the targeted region by 3% in both simulation and phantom experiments. Owing to the fluence increase, similar results can also be found in the photoacoustic experiments. In conclusion, our proposed method shows a noninvasive way to increase the light delivery efficiency in turbid medium. It is expected that our finding has a potential for improving the focal light delivery in photoacoustic imaging and photothermal therapy.
Collapse
|
9
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
10
|
Snehota M, Vachutka J, Ter Haar G, Dolezal L, Kolarova H. Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. ULTRASONICS 2020; 107:106167. [PMID: 32402858 DOI: 10.1016/j.ultras.2020.106167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 05/07/2023]
Abstract
Current in vitro sonication experiments show immense variability in experimental set-ups and methods used. As a result, there is uncertainty in the ultrasound field parameters experienced by sonicated samples, poor reproducibility of these experiments and thus reduced scientific value of the results obtained. The scope of this narrative review is to briefly describe mechanisms of action of ultrasound, list the most frequently used experimental set-ups and focus on a description of factors influencing the outcomes and reproducibility of these experiments. The factors assessed include: proper reporting of ultrasound exposure parameters, experimental geometry, coupling medium quality, influence of culture vessels, formation of standing waves, motion/rotation of the sonicated sample and the characteristics of the sample itself. In the discussion we describe pros and cons of particular exposure geometries and factors, and make a few recommendations as to how to increase the reproducibility and validity of the experiments performed.
Collapse
Affiliation(s)
- Martin Snehota
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| | - Jaromir Vachutka
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic.
| | - Gail Ter Haar
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London SM2 5PT, United Kingdom
| | - Ladislav Dolezal
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
11
|
Mashiane SE, van Dyk B, Casmod Y. Ultrasound biosafety: Knowledge and opinions of health practitioners who perform obstetric scans in South Africa. Health SA 2019; 24:1028. [PMID: 31934395 PMCID: PMC6917423 DOI: 10.4102/hsag.v24i0.1028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diagnostic ultrasound is generally considered as a safe test in pregnancy. To date there is no evidence that ultrasound has caused harm to the developing foetus. However, with the number of obstetric scans on the rise and the steep increase in acoustic output achieved by modern machines, the lack of evidence of absolute safety remains a concern. Acoustic output is under the direct control of the operator and is therefore the operator's responsibility to keep the intensity as low as reasonably achievable. A situation analysis in the South African context was deemed necessary to determine end user knowledge and opinions on safe antenatal ultrasound practice. AIM The aim of this quantitative descriptive, cross-sectional study was to evaluate the knowledge and practice of health practitioners who perform antenatal scans regarding safety aspects of diagnostic ultrasound. SETTING A self-administered questionnaire was distributed at two national congresses, hosted by the South African Society of Ultrasound and Obstetrics (SASUOG) and South African Society of Obstetricians (SASOG) committees. METHOD Quota non-probability sampling allowed for the identification of professional categories capable of providing information relevant to the study objectives. The sample represented a population with experience in obstetric ultrasound. RESULTS Compared to international studies, South African end users demonstrated better knowledge of safety indices than their international counterparts. It is, however, discouraging that end users still demonstrate insufficient knowledge regarding factors contributing to adverse biological effects. CONCLUSION With room for improvement, an effort should be made to comply with international standards through increased training efforts and raising awareness.
Collapse
Affiliation(s)
- Salome E Mashiane
- Department of Medical Imaging and Radiation Sciences, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Barbara van Dyk
- Department of Medical Imaging and Radiation Sciences, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Yasmin Casmod
- Department of Medical Imaging and Radiation Sciences, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
12
|
|
13
|
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1509-1536. [PMID: 31109842 PMCID: PMC6996285 DOI: 10.1016/j.ultrasmedbio.2018.12.015] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.
Collapse
Affiliation(s)
- Joseph Blackmore
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shamit Shrivastava
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Nueroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
14
|
Reinišová L, Hermanová S, Pumera M. Micro/nanomachines: what is needed for them to become a real force in cancer therapy? NANOSCALE 2019; 11:6519-6532. [PMID: 30632584 DOI: 10.1039/c8nr08022d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Conventional drug delivery systems face several issues in medical applications, such as cyto/genotoxicity and off-targeting. These issues are particularly significant for cancer therapeutics because many of the currently used systems are toxic in their free form. Self-propelled autonomous micro/nanomachines offer promising alternative drug delivery systems based on high cargo loading, fast autonomous movement, precise targeting and the on-demand release of therapeutics in vivo. With this unique set of properties, it is not surprising that they are receiving considerable research attention. However, much less is reported about the drawbacks that hinder their systemic in vivo application. In this review, a biomedical perspective is used to assess micro/nanomotor-based anticancer drug delivery systems reported to date. Advantages along with present issues are highlighted and recommendations which need to be considered to develop an effective biocompatible micro/nanomotor-based delivery system for cancer therapy are discussed.
Collapse
Affiliation(s)
- Lucie Reinišová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | | | | |
Collapse
|
15
|
Duck F, Leighton T. Frequency bands for ultrasound, suitable for the consideration of its health effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2490. [PMID: 30404482 DOI: 10.1121/1.5063578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 06/08/2023]
Abstract
It is proposed that the ultrasound frequency spectrum should be divided into three bands in order to facilitate a more rational assessment of its health effects. Whilst statement of the frequencies at the borders of these bands facilitates their definition, it is recognized that these observables vary continuously with frequency and consequently these border frequencies should not be used to rule out the possibility of a given effect occurring. The lowest band, US(A), lies between 17.8 and 500 kHz. In this band acoustic cavitation and its associated forces form the dominant process resulting in biological effects in liquids and soft tissues, whereas health effects from airborne ultrasound have been reported but are far less researched. In the middle band, US(B), between 500 kHz and 100 MHz, temperature rise in tissues becomes the most important biological effect of exposure. The highest band, US(C), covers frequencies above 100 MHz, for which the radiation force becomes an increasingly important biophysical mechanism. A justification for the selection of 17.8 kHz in preference to any other threshold for the lower frequency limit for ultrasound is given.
Collapse
Affiliation(s)
- Francis Duck
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Timothy Leighton
- Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
16
|
Moderiano M, McEvoy M, Childs J, Esterman A. Safety of Ultrasound Exposure: Knowledge, Attitudes, and Practices of Australasian Sonographers. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2018. [DOI: 10.1177/8756479318791512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: While perceived as safe, diagnostic ultrasound has the potential to cause biological effects on the body tissues. The aim of this study was to evaluate knowledge, attitudes, and practices of Australasian sonographers on bioeffects and safety of ultrasound scanning. Methods: Focus groups were used to develop a questionnaire to explore knowledge, attitudes, and practices of ultrasound safety, which was then distributed to Australasian sonographers. Thematic (focus groups) and descriptive (questionnaires) analyses were undertaken. Results: A 37-item questionnaire addressed knowledge, attitudes, and practices of ultrasound safety. In 47 collected responses, sonographers demonstrated good familiarity of thermal index (TI) (79%), mechanical index (MI) (68%), and “as low as reasonably achievable” (ALARA) principle (85%). However, most sonographers could not accurately define TI (13%) and had poor knowledge of safety guidelines relating to TI (19%) and MI (14%). Over 30% were uncertain about their attitudes to ultrasound safety issues. While 52% always and 30% most of the time adhere to ALARA, 37% of sonographers reported never monitoring TI and MI. Discussion: While familiar with safety terms, knowledge of safety guidelines was lacking. Many sonographers were uncertain about their attitudes to the safety of scans, and safety practices involving monitoring for bioeffects were not a high priority.
Collapse
Affiliation(s)
| | - Maureen McEvoy
- Sansom Institute of Health Research, University of South Australia, Australia
| | - Jessie Childs
- Sansom Institute of Health Research, University of South Australia, Australia
| | - Adrian Esterman
- Sansom Institute of Health Research, University of South Australia, Australia
| |
Collapse
|
17
|
Moderiano M, McEvoy M, Childs J, Esterman A. Safety of ultrasound exposure: Knowledge, attitudes and practices of Australasian sonographers. SONOGRAPHY 2017. [DOI: 10.1002/sono.12113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Maureen McEvoy
- Sansom Institute of Health Research, University of South Australia; Australia
| | - Jessie Childs
- Sansom Institute of Health Research, University of South Australia; Australia
| | - Adrian Esterman
- Sansom Institute of Health Research, University of South Australia; Australia
| |
Collapse
|
18
|
Senefonte FRDA, Aydos RD, Oliveira VMD, Bósio MAC, Figueiró-Filho EA. Doppler velocimetry in fetal rats exposed to enoxaparin and unfractionated heparin (UFH) during pregnancy. Acta Cir Bras 2017; 32:325-333. [PMID: 28591361 DOI: 10.1590/s0102-865020170050000001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/20/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose: To evaluate the effects of enoxaparin and unfractionated heparin (UFH) administered in prophylactic and therapeutic doses on fetal vessels in healthy pregnant Wistar rats, according to Doppler velocimetry measurements. Methods: Fifty animals were assigned to one of five groups: controls (saline), prophylactic and therapeutic enoxaparin (1 and 2 mg/kg/day, respectively), and prophylactic and therapeutic UFH (72 and 400 UI/kg/day, respectively). Uterine horns were examined by ultrasound for identification of live fetuses. A sample of these fetuses underwent Doppler velocimetry. Spectral curves, peak systolic velocity (PSV), pulsatility index (PI), and resistance index (RI) of the middle cerebral artery, ductus venosus, and umbilical artery were investigated. Differences were considered statistically significant when p<0.05. Results: No significant differences in PSV, PI, or RI values were observed among the groups. Conclusion: Doppler velocimetry measurements revealed no significant effects of enoxaparin or unfractionated heparin on fetal vessels in pregnant Wistar rats.
Collapse
Affiliation(s)
- Flavio Renato de Almeida Senefonte
- Fellow PhD degree, Postgraduate Program in Health and Development, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil. Conception, design, intellectual and scientific content of the study; technical procedures; acquisition and interpretation of data; statistical analysis; manuscript writing; critical revision
| | - Ricardo Dutra Aydos
- PhD, Associate Professor, Department of Surgery, UFMS, Campo Grande-MS, Brazil. Intellectual and scientific content of the study, critical revision, final approval
| | - Vanessa Marcon de Oliveira
- PhD, Pharmacist, Centro de Ciências Biológicas e da Saúde, UFMS, Campo Grande-MS, Brazil. Technical procedures, acquisition and interpretation of data
| | | | - Ernesto Antonio Figueiró-Filho
- PhD, Associate Professor, UFMS, Campo Grande-MS, Brazil. Conception, design, intellectual and scientific content of the study; critical revision; final approval
| |
Collapse
|
19
|
Bioeffects of Diagnostic Dynamic 3-Dimensional (4-Dimensional) Ultrasound on Ultrastructure of Cerebral Cells of Fetal Mice in Late Pregnancy. Ultrasound Q 2017; 32:296-301. [PMID: 26808170 DOI: 10.1097/ruq.0000000000000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to study the bioeffects of diagnostic dynamic 3-dimensional ultrasound (4D) on ultrastructure of cerebral cells of fetal mice in late pregnancy. Thirty pregnant mice carrying 18th embryonic day fetuses were randomly allocated into 6 groups, namely, control group, sham-exposed group, 5 minute-exposed group, 10 minute-exposed group, 20 minute-exposed group, and 30 minute-exposed groups (5 in each group). In exposure groups, mice were put under the dynamic 3D ultrasound system's probe for 5 to 30 minutes. Mice in sham-exposed group did not receive ultrasound wave. At 24th hour after birth, 10 pups of each group were randomly selected (2 in each litter) and euthanized by decapitation, and the brains were immediately removed. Right parietal lobes were taken as specimen. The specimens were firstly fixed with glutaraldehyde and secondly with osmic acid, then sections were made and observed under the transmission electron microscope. There were no obvious abnormal ultrastructure changes in control group, sham-exposed group, and 5 minute-exposed group under transmission electron microscope. Ten minute-exposed group showed some enlarged mitochondria, broken crista, vacuolated endoplasmic resticulums, and a few apoptosis cells. More abnormal organelles and apoptosis cells were observed in 20 minute-exposed and 30 minute-exposed groups (P < 0.05). Dynamic 3D (4D) ultrasound exposure for more than 10 minutes may result in abnormal neuronal ultrastructure changes and apoptosis cells in fetal mouse cerebrum.
Collapse
|
20
|
Yan WC, Chua QW, Ong XJ, Sharma VK, Tong YW, Wang CH. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J Colloid Interface Sci 2017; 501:282-293. [PMID: 28460221 DOI: 10.1016/j.jcis.2017.04.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
A single-step fabrication method, coaxial electrohydrodynamic atomization (CEHDA), was developed to synthesize drug-loaded microbubbles (MBs) for combination treatment of ischemic stroke. The bioactivity of therapeutic agent (tPA, tissue plasminogen activator) after preparation was evaluated, showing that CEHDA could be very promising method for producing MBs with therapeutic functions. The bubble performance and tPA release profiles were also examined by exposing the bubbles to 2MHz ultrasound of various intensities. The results showed that the mean diameter of tPA-loaded MBs was found to fluctuate about its original diameter when exposed to ultrasound and higher intensity ultrasound was more effective in triggering the burst of CEHDA MBs. High ultrasound-triggered bubble disintegration effectiveness in a short period (first 5min) fits well with the requirement of short ultrasound exposure time for human brain. Moreover, a numerical model was also applied to investigate the stability of the fabricated MBs in the bloodstream. It was found that MB dissolution time increased with initial radius, decreased with initial surface tension and increased with initial shell resistance but it was barely affected by the average excessive bloodstream pressure.
Collapse
Affiliation(s)
- Wei-Cheng Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qing Wei Chua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiu Jing Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
21
|
Kubota R, Yamashita Y, Kenmotsu T, Yoshikawa Y, Yoshida K, Watanabe Y, Imanaka T, Yoshikawa K. Double-Strand Breaks in Genome-Sized DNA Caused by Ultrasound. Chemphyschem 2017; 18:959-964. [PMID: 28170150 PMCID: PMC5413823 DOI: 10.1002/cphc.201601325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 11/10/2022]
Abstract
DNA double-strand breaks (DSBs) caused by ultrasound were evaluated in a quantitative manner by single-molecule fluorescence microscopy. We compared the effect of time-interval (or pulse) sonication to that of continuous wave (CW) sonication at a fixed frequency of 30 kHz. Pulses caused fewer DSBs than CW sonication under the same total input ultrasound energy when the pulse repetition period was above the order of a second. In contrast, pulses caused more DSBs than CW sonication for pulse widths shorter than a second. These effect of ultrasound on DNA were interpreted in terms of the time-dependent decay in the probability of breakage during the duration of a pulse. We propose a simple phenomenological model by considering a characteristic decay in the probability of DSBs during single-pulse sonication, which reproduces the essence of the experimental trend. In addition, a data analysis revealed a characteristic scaling behavior between the number of pulses and the number of DSBs.
Collapse
Affiliation(s)
- Rinko Kubota
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Yusuke Yamashita
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, Chiba, 263-0022, Japan
| | - Yoshiaki Watanabe
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
22
|
|
23
|
Leighton TG. Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? Proc Math Phys Eng Sci 2016; 472:20150624. [PMID: 26997897 PMCID: PMC4786042 DOI: 10.1098/rspa.2015.0624] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 11/12/2022] Open
Abstract
New measurements indicate that the public are being exposed, without their knowledge, to airborne ultrasound. Existing guidelines are insufficient for such exposures; the vast majority refers to occupational exposure only (where workers are aware of the exposure, can be monitored and can wear protection). Existing guidelines are based on an insufficient evidence base, most of which was collected over 40 years ago by researchers who themselves considered it insufficient to finalize guidelines, but which produced preliminary guidelines. This warning of inadequacy was lost as nations and organizations issued 'new' guidelines based on these early guidelines, and through such repetition generated a false impression of consensus. The evidence base is so slim that few reports have progressed far along the sequence from anecdote to case study, to formal scientific controlled trials and epidemiological studies. Early studies reported hearing threshold shifts, nausea, headache, fatigue, migraine and tinnitus, but there is insufficient research on human subjects, and insufficient measurement of fields, to assess what health risk current occupational and public exposures might produce. Furthermore, the assumptions underpinning audiology and physical measurements at high frequencies must be questioned: simple extrapolation of approaches used at lower frequencies does not address current unknowns. Recommendations are provided.
Collapse
Affiliation(s)
- T. G. Leighton
- Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
24
|
Abstract
BACKGROUND Focused cardiac ultrasound (FoCUS) is a simplified, clinician-performed application of echocardiography that is rapidly expanding in use, especially in emergency and critical care medicine. Performed by appropriately trained clinicians, typically not cardiologists, FoCUS ascertains the essential information needed in critical scenarios for time-sensitive clinical decision making. A need exists for quality evidence-based review and clinical recommendations on its use. METHODS The World Interactive Network Focused on Critical UltraSound conducted an international, multispecialty, evidence-based, methodologically rigorous consensus process on FoCUS. Thirty-three experts from 16 countries were involved. A systematic multiple-database, double-track literature search (January 1980 to September 2013) was performed. The Grading of Recommendation, Assessment, Development and Evaluation method was used to determine the quality of available evidence and subsequent development of the recommendations. Evidence-based panel judgment and consensus was collected and analyzed by means of the RAND appropriateness method. RESULTS During four conferences (in New Delhi, Milan, Boston, and Barcelona), 108 statements were elaborated and discussed. Face-to-face debates were held in two rounds using the modified Delphi technique. Disagreement occurred for 10 statements. Weak or conditional recommendations were made for two statements and strong or very strong recommendations for 96. These recommendations delineate the nature, applications, technique, potential benefits, clinical integration, education, and certification principles for FoCUS, both for adults and pediatric patients. CONCLUSIONS This document presents the results of the first International Conference on FoCUS. For the first time, evidence-based clinical recommendations comprehensively address this branch of point-of-care ultrasound, providing a framework for FoCUS to standardize its application in different clinical settings around the world.
Collapse
|
25
|
Browning RJ, Rajkumar V, Pedley RB, Eckersley RJ, Blower PJ. Prospects for enhancement of targeted radionuclide therapy of cancer using ultrasound. J Labelled Comp Radiopharm 2014; 57:279-84. [PMID: 24347456 DOI: 10.1002/jlcr.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 01/18/2023]
Abstract
Ultrasound-mediated drug delivery is a promising means of enhancing delivery, distribution and effectiveness of drugs within tumours. In this review, prospects for exploiting ultrasound to improve the tumour delivery and distribution of radiolabelled antibodies for radioimmunotherapy and to overcome barriers imposed by tumour microenvironment are discussed.
Collapse
Affiliation(s)
- Richard J Browning
- King's College London, Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, 4th Floor Lambeth Wing, London, SE1 9EH, UK
| | | | | | | | | |
Collapse
|
26
|
Knuuti J, Bengel F, Bax JJ, Kaufmann PA, Le Guludec D, Perrone Filardi P, Marcassa C, Ajmone Marsan N, Achenbach S, Kitsiou A, Flotats A, Eeckhout E, Minn H, Hesse B. Risks and benefits of cardiac imaging: an analysis of risks related to imaging for coronary artery disease. Eur Heart J 2013; 35:633-8. [DOI: 10.1093/eurheartj/eht512] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Gateau J, Taccoen N, Tanter M, Aubry JF. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1812-25. [PMID: 23932270 DOI: 10.1016/j.ultrasmedbio.2013.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 05/05/2023]
Abstract
Bubbles can form in biological tissues through ultrasonic activation of natural gas nuclei. The damaging aftereffects raise safety concerns. However, the population of nuclei is currently unknown, and bubble nucleation is stochastic and thus unpredictable. This study investigates the statistical behavior of bubble nucleation experimentally and introduces a model-based analysis to determine the distribution of nuclei in biological samples-two pig blood samples in vitro. Combined ultra-fast passive and active cavitation detection with a linear array was used to detect nucleation from pulsed ultrasound excitations at 660 kHz. Single nucleation events were detected at peak rarefaction pressures from -3.6 to -24 MPa, and the nucleation probability over the range 0 to 1 was estimated from more than 330 independent acquisitions per sample. Model fitting of the experimental probability revealed that the distribution of nuclei is most likely continuous, and nuclei are rare in comparison to blood cells.
Collapse
Affiliation(s)
- Jérôme Gateau
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Denis Diderot, Paris VII, 1 rue Jussieu 75005 Paris, France.
| | | | | | | |
Collapse
|
28
|
Abdallah WF, Patel H, Grant EG, Diniz B, Chader GJ, Humayun MS. Evaluation of ultrasound-assisted thrombolysis using custom liposomes in a model of retinal vein occlusion. Invest Ophthalmol Vis Sci 2012; 53:6920-7. [PMID: 22969076 DOI: 10.1167/iovs.12-10389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To study the potential efficacy of ultrasound (US) assisted by custom liposome (CLP) destruction as an innovative thrombolytic tool for the treatment of retinal vein occlusion (RVO). METHODS Experimental RVO was induced in the right eyes of 40 rabbits using laser photothrombosis; the US experiment took place 48 hours later. Rabbits were randomly divided into four equal groups: US+CLP group, US+saline group, CLP+sham US group, and no treatment group. The latter three groups acted as controls. Fundus fluorescein angiography and Doppler US were used to evaluate retinal blood flow. RESULTS CLP-assisted US thrombolysis resulted in restoration of flow in seven rabbits (70%). None of the control groups showed significant restoration of retinal venous blood flow. CONCLUSIONS US-assisted thrombolysis using liposomes resulted in a statistically significant reperfusion of retinal vessels in the rabbit experimental model of RVO. This approach might be promising in the treatment of RVO in humans. Further studies are needed to evaluate this approach in patients with RVO. Ultrasound assisted thrombolysis can be an innovative tool in management of retinal vein occlusion.
Collapse
|
29
|
Palte HD, Gayer S, Arrieta E, Scot Shaw E, Nose I, Lee E, Arheart KL, Dubovy S, Birnbach DJ, Parel JM. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes. Anesth Analg 2012; 115:194-201. [PMID: 22504211 PMCID: PMC3381790 DOI: 10.1213/ane.0b013e318253622e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. METHODS Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. RESULTS Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and nonorbital transducers revealed statistically significant differences (Bonferroni-adjusted P < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes, and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. CONCLUSIONS The nonorbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic ultrasound-guided blocks should only be performed with ocular-rated devices.
Collapse
Affiliation(s)
- Howard D Palte
- Department of Anesthesiology, Perioperative Medicine and Pain Management, Miller School of Medicine, 900 NW 17th Street, Miami FL 33136, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Browning RJ, Mulvana H, Tang MX, Hajnal JV, Wells DJ, Eckersley RJ. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1067-1077. [PMID: 22502878 DOI: 10.1016/j.ultrasmedbio.2012.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture.
Collapse
Affiliation(s)
- Richard J Browning
- Imaging Sciences Department, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Stepanskiy LG. Sonication-induced unfolding proteins. J Theor Biol 2012; 298:77-81. [PMID: 22266660 DOI: 10.1016/j.jtbi.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/26/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
32
|
Ahmadi F, McLoughlin IV, Chauhan S, ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 108:119-38. [PMID: 22402278 DOI: 10.1016/j.pbiomolbio.2012.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
Low-frequency (LF) ultrasound (20-100 kHz) has a diverse set of industrial and medical applications. In fact, high power industrial applications of ultrasound mainly occupy this frequency range. This range is also used for various therapeutic medical applications including sonophoresis (ultrasonic transdermal drug delivery), dentistry, eye surgery, body contouring, the breaking of kidney stones and eliminating blood clots. While emerging LF applications such as ultrasonic drug delivery continue to be developed and undergo translation for human use, significant gaps exist in the coverage of safety standards for this frequency range. Accordingly, the need to understand the biological effects of LF ultrasound is becoming more important. This paper presents a broad overview of bio-effects and safety of LF ultrasound as an aid to minimize and control the risk of these effects. Its particular focus is at low intensities where bio-effects are initially observed. To generate a clear perspective of hazards in LF exposure, the mechanisms of bio-effects and the main differences in action at low and high frequencies are investigated and a survey of harmful effects of LF ultrasound at low intensities is presented. Mechanical and thermal indices are widely used in high frequency diagnostic applications as a means of indicating safety of ultrasonic exposure. The direct application of these indices at low frequencies needs careful investigation. In this work, using numerical simulations based on the mathematical and physical rationale behind the indices at high frequencies, it is observed that while thermal index (TI) can be used directly in the LF range, mechanical index (MI) seems to become less reliable at lower frequencies. Accordingly, an improved formulation for the MI is proposed for frequencies below 500 kHz.
Collapse
Affiliation(s)
- Farzaneh Ahmadi
- School of Computer Engineering, Nanyang Technological University, N4-02b-52, Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | |
Collapse
|
33
|
Karagoz I, Kartal MK. Improving image quality of diagnostic ultrasound by using the safe use time model with the dynamic safety factor and the effect of the exposure time on the image quality. ULTRASONICS 2012; 52:93-102. [PMID: 21783221 DOI: 10.1016/j.ultras.2011.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/12/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Resolution and penetration are primary criteria for image quality of diagnostic ultrasound. In theory (and usually in practice), the maximum depth of imaging in a tissue increases as power (pressure) is increased. Alternatively, at a particular effective penetration, an increased power may be used to allow a higher ultrasound frequency for higher resolution and tissue contrast. Recently, Karagoz and Kartal proposed a safety parameter for thermal bioeffects of diagnostic ultrasound; that is, SUT (safe use time). The SUT model is constructed to determine how long one piece of tissue can be insonated safely according to a threshold exposure. Also, Karagoz and Kartal suggested that an increase in acoustic intensity beyond the current US Food and Drug Administration (FDA) limit of intensity can be theoretically possible by using SUT model while staying within the safe limit. The present study was motivated particularly by the goals of higher resolution and/or deeper penetration by using SUT model. The results presented here suggest that the safe use of higher exposure levels than currently allowed by the FDA may be possible for obtaining substantial improvements in penetration depth and/or resolution. Also, the study reveals that image quality can be functionally related to exposure time in addition to acoustic energy and frequency.
Collapse
Affiliation(s)
- Irfan Karagoz
- Department of Electrical and Electronic Engineering, Gazi University, Maltepe, Ankara 06100, Turkey.
| | | |
Collapse
|
34
|
Kowalczuk L, Boudinet M, El Sanharawi M, Touchard E, Naud MC, Saïed A, Jeanny JC, Behar-Cohen F, Laugier P. In vivo gene transfer into the ocular ciliary muscle mediated by ultrasound and microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1814-1827. [PMID: 21963032 DOI: 10.1016/j.ultrasmedbio.2011.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/17/2011] [Accepted: 07/23/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Collapse
Affiliation(s)
- Laura Kowalczuk
- Inserm U872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Browning RJ, Mulvana H, Tang M, Hajnal JV, Wells DJ, Eckersley RJ. Influence of needle gauge on in vivo ultrasound and microbubble-mediated gene transfection. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1531-1537. [PMID: 21741156 DOI: 10.1016/j.ultrasmedbio.2011.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 05/31/2023]
Abstract
Ultrasound and microbubble-mediated gene transfection are potential tools for safe, site-selective gene therapy. However, preclinical trials have demonstrated a low transfection efficiency that has hindered the progression of the technique to clinical application. In this paper it is shown that simple changes to the method of intravenous injection can lead to an increase in transfection efficiency when using 6-MHz diagnostic ultrasound and the ultrasound contrast agent, SonoVue. By using needles of progressively smaller gauge, i.e., larger internal diameter (ID), from 29 G (ID 0.184 mm) to 25 G (ID 0.31 mm), the transfection of a luciferase plasmid (pGL4.13) was significantly increased threefold in heart-targeted female CD1 mice. In vitro work indicated that the concentration and size distribution of SonoVue were affected by increasing needle gauge. These results suggest that the process of systemic delivery alters the bubble population and adversely affects transfection. This is exacerbated by using high-gauge needles. These findings demonstrate that the needle with the largest possible ID should be used for systemic delivery of microbubbles and genetic material.
Collapse
Affiliation(s)
- Richard J Browning
- Imaging Sciences Department, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Pellicer B, Herraiz S, Táboas E, Felipo V, Simon C, Pellicer A. Ultrasound bioeffects in rats: quantification of cellular damage in the fetal liver after pulsed Doppler imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2011; 37:643-648. [PMID: 20878673 DOI: 10.1002/uog.8842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To determine whether pulsed Doppler examination of the ductus venosus in rat fetuses could damage exposed tissue. METHODS On gestational day 18, the livers of a mean of approximately five fetuses per mother (n = 5.14, SD = 1.6), in a cohort of 35 pregnant female rats, were exposed individually to pulsed Doppler and these were considered the 'exposed group'. The remaining fetuses in each pregnant rat (n = 5.16, SD = 2.1) formed the 'control group'. We tested for 600, 300, 60, 20, 15, 10 and 3 s of exposure of the fetal ductus venosus and the damage was evaluated measuring a cell death index of apoptotic activity at 7 h post-exposure (n = 16). In addition, subgroups of mothers were sacrificed at 2, 4, 5, 7, 12 and 24 h post-exposure to determine when the damage appeared and disappeared and whether this depended on the exposure time. RESULTS After exposure of 20 s or more, we observed significant damage, as assessed by caspase 3 activity (a marker of apoptotic activity related to tissue damage), in all cases; after 15 s of exposure, some samples presented damage (P = 0.4); there was no damage after 10 s or 3 s of exposure (P = 0.87 and P = 0.3, respectively). There was a positive linear correlation between apoptotic index and pulsed Doppler exposure time, (Pearson's coefficient = 0.324, P < 0.01). No liver still showed significant damage at 12 or 24 h post-exposure (P > 0.05 and P > 0.4). CONCLUSIONS We observed reversible damage after pulsed Doppler imaging in an in-vivo fetal liver tissue rat model and found that longer exposure times produced more tissue damage. We established that 10 s was the maximum exposure time to ensure absence of damage to tissue in this model. It would appear sensible to recommend expert supervision of pulsed Doppler imaging and to have intervals between subsequent examinations.
Collapse
Affiliation(s)
- B Pellicer
- Departamento Ginecología y Obstetricia, Hospital General Universitario, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Ferreri SL, Talish R, Trandafir T, Qin YX. Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia. Bone 2011; 48:1095-102. [PMID: 21241838 PMCID: PMC3078942 DOI: 10.1016/j.bone.2011.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/18/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four 16-week-old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) control, OVX+5mW/cm(2) ultrasound (US), OVX+30mW/cm(2) US and OVX+100mW/cm(2) US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gel-coupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5MHz sine waves repeating at 1kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm(2), was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV (+33%) compared to OVX controls for the 100mW/cm(2) treated group. SMI and Tb.N showed significant improvements compared with OVX for the 100mW/cm(2) treated group and Tb.Th was significantly improved in the 30 and 100mW/cm(2) treated groups. Improvements in bone's microstructural characteristics with 100mW/cm(2) US treatment translated into improved load bearing characteristics, including a significant 42% increase in apparent level elastic modulus compared to OVX controls. Significant improvement of trabecular mechanical strength was also observed in the treated animals, e.g., principal compressive stress (represent bone's ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm(2) US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that localized ultrasound treatment, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss.
Collapse
Affiliation(s)
- Suzanne L. Ferreri
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
| | | | | | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
- Corresponding author: Yi-Xian Qin, Ph.D., Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 215, Stony Brook, NY 11794-5281,
| |
Collapse
|
38
|
Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1379-94. [PMID: 20800165 DOI: 10.1016/j.ultrasmedbio.2010.05.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 05/04/2023]
Abstract
Radiation force is a universal phenomenon in any wave motion, electromagnetic or acoustic. Although acoustic and electromagnetic waves are both characterized by time variation of basic quantities, they are also both capable of exerting a steady force called radiation force. In 1902, Lord Rayleigh published his classic work on the radiation force of sound, introducing the concept of acoustic radiation pressure, and some years later, further fundamental contributions to the radiation force phenomenon were made by L. Brillouin and P. Langevin. Many of the studies discussing radiation force published before 1990 were related to techniques for measuring acoustic power of therapeutic devices; also, radiation force was one of the factors considered in the search for noncavitational, nonthermal mechanisms of ultrasonic bioeffects. A major surge in various biomedical applications of acoustic radiation force started in the 1990s and continues today. Numerous new applications emerged including manipulation of cells in suspension, increasing the sensitivity of biosensors and immunochemical tests, assessing viscoelastic properties of fluids and biological tissues, elasticity imaging, monitoring ablation of lesions during ablation therapy, targeted drug and gene delivery, molecular imaging and acoustical tweezers. We briefly present in this review the major milestones in the history of radiation force and its biomedical applications. In discussing the physical basis of radiation force and its applications, we present basic equations describing the relationship of radiation stress with parameters of acoustical fields and with the induced motion in the biological media. Momentum and force associated with a plane-traveling wave, equations for nonlinear and nonsteady-state acoustic streams, radiation stress tensor for solids and biological tissues and radiation force acting on particles and microbubbles are considered.
Collapse
|
39
|
Abstract
The main mechanisms by which ultrasound can induce biological effects as it passes through the body are thermal and mechanical in nature. The mechanical effects are primarily related to the presence of gas, whether drawn out of solution by the negative going ultrasound pressure wave (acoustic cavitation), a naturally occurring gas body (such as lung alveoli), or deliberately introduced into the blood stream to increase imaging contrast (microbubble contrast agents). Observed biological effects are discussed in the context of these mechanisms and their relevance to ultrasound safety is discussed.
Collapse
Affiliation(s)
- G ter Haar
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK,
| |
Collapse
|
40
|
Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 2009; 47:893-900. [DOI: 10.1007/s11517-009-0507-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
|