1
|
Blašković M, Blašković D, Hangyasi DB, Peloza OC, Tomas M, Čandrlić M, Rider P, Mang B, Kačarević ŽP, Trajkovski B. Evaluation between Biodegradable Magnesium Metal GBR Membrane and Bovine Graft with or without Hyaluronate. MEMBRANES 2023; 13:691. [PMID: 37623752 PMCID: PMC10456676 DOI: 10.3390/membranes13080691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Bone substitutes and barrier membranes are widely used in dental regeneration procedures. New materials are constantly being developed to provide the most optimal surgical outcomes. One of these developments is the addition of hyaluronate (HA) to the bovine bone graft, which has beneficial wound healing and handling properties. However, an acidic environment that is potentially produced by the HA is known to increase the degradation of magnesium metal. The aim of this study was to evaluate the potential risk for the addition of HA to the bovine bone graft on the degradation rate and hence the efficacy of a new biodegradable magnesium metal GBR membrane. pH and conductivity measurements were made in vitro for samples placed in phosphate-buffered solutions. These in vitro tests showed that the combination of the bovine graft with HA resulted in an alkaline environment for the concentrations that were used. The combination was also tested in a clinical setting. The use of the magnesium metal membrane in combination with the tested grafting materials achieved successful treatment in these patients and no adverse effects were observed in vivo for regenerative treatments with or without HA. Magnesium based biodegradable GBR membranes can be safely used in combination with bovine graft with or without hyaluronate.
Collapse
Affiliation(s)
- Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešimirova 40/42, 51000 Rijeka, Croatia;
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia;
| | - Dorotea Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia;
| | | | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (M.T.); (M.Č.)
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (M.T.); (M.Č.)
| | - Patrick Rider
- Botiss Biomaterials, Ullsteinstrasse 108, 12109 Berlin, Germany; (P.R.); (B.M.)
| | - Berit Mang
- Botiss Biomaterials, Ullsteinstrasse 108, 12109 Berlin, Germany; (P.R.); (B.M.)
| | - Željka Perić Kačarević
- Department of Anatomy, Embriology, Pathology and Pathohistology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | | |
Collapse
|
2
|
Radwan-Pragłowska J, Janus Ł, Galek T, Szajna E, Sierakowska A, Łysiak K, Tupaj M, Bogdał D. Evaluation of Physiochemical and Biological Properties of Biofunctionalized Mg-Based Implants Obtained via Large-Scale PEO Process for Dentistry Applications. J Funct Biomater 2023; 14:338. [PMID: 37504833 PMCID: PMC10381468 DOI: 10.3390/jfb14070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
An increasing number of tooth replacement procedures ending with implant failure generates a great need for the delivery of novel biomedical solutions with appropriate mechanical characteristics that would mimic natural tissue and undergo biodegradation. This phenomenon constitutes a significant difficulty for scientists, since currently applied biomaterials dedicated for this purpose are based on stainless steel, Ti, and Ti and CoCr alloys. One of the most promising raw materials is magnesium, which has been proven to promote bone regeneration and accelerate the tissue healing process. Nevertheless, its high reactivity with body fluid components is associated with fast and difficult-to-control biocorrosion, which strongly limits the application of Mg implants as medical devices. The achievement of appropriate functionality, both physiochemical and biological, to enable the commercial use of Mg biomaterials is possible only after their superficial modification. Therefore, the obtainment of uniform, reproducible coatings increasing resistance to the aqueous environment of the human body combined with a nanostructured surface that enhances implant-cell behaviors is an extremely important issue. Herein, we present a successful strategy for the modification of Mg implants via the PEO process, resulting in the obtainment of biomaterials with lower corrosion rates and superior biological properties, such as the promotion of extracellular matrix formation and a positive impact on the proliferation of MG-63 cells. The implants were investigated regarding their chemical composition using the FT-IR and XRD methods, which revealed that MgO layer formation, as well as the incorporation of electrolyte components such as fluorine and silica, were responsible for the increased microhardness of the samples. An extensive study of the biomaterials' morphology confirmed that successful surface modification led to a microporous structure suitable for the attachment and proliferation of cells. The three-layer nature of the newly-formed coatings, typical for PEO modification, was confirmed via cross-section analysis. A biocorrosion and biodegradation study proved that applied modification increased their resistance to body fluids. The cell culture study performed herein confirmed that the correct adjustment of modification parameters results in a lack of cytotoxicity of the magnesium implants, cell proliferation enhancement, and improvement in extracellular matrix formation.
Collapse
Affiliation(s)
- Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Tomasz Galek
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Ernest Szajna
- WEA Techlab Sp. z o. o., Perla 10, 41-301 Dabrowa Gornicza, Poland
| | - Aleksandra Sierakowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Karol Łysiak
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Mirosław Tupaj
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| |
Collapse
|
3
|
Mathew A, Hassan HW, Korostynska O, Westad F, Mota-Silva E, Menichetti L, Mirtaheri P. In Vivo Analysis of a Biodegradable Magnesium Alloy Implant in an Animal Model Using Near-Infrared Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:3063. [PMID: 36991774 PMCID: PMC10057053 DOI: 10.3390/s23063063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Biodegradable magnesium-based implants offer mechanical properties similar to natural bone, making them advantageous over nonbiodegradable metallic implants. However, monitoring the interaction between magnesium and tissue over time without interference is difficult. A noninvasive method, optical near-infrared spectroscopy, can be used to monitor tissue's functional and structural properties. In this paper, we collected optical data from an in vitro cell culture medium and in vivo studies using a specialized optical probe. Spectroscopic data were acquired over two weeks to study the combined effect of biodegradable Mg-based implant disks on the cell culture medium in vivo. Principal component analysis (PCA) was used for data analysis. In the in vivo study, we evaluated the feasibility of using the near-infrared (NIR) spectra to understand physiological events in response to magnesium alloy implantation at specific time points (Day 0, 3, 7, and 14) after surgery. Our results show that the optical probe can detect variations in vivo from biological tissues of rats with biodegradable magnesium alloy "WE43" implants, and the analysis identified a trend in the optical data over two weeks. The primary challenge of in vivo data analysis is the complexity of the implant interaction near the interface with the biological medium.
Collapse
Affiliation(s)
- Anna Mathew
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
| | - Hafiz Wajahat Hassan
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
| | - Olga Korostynska
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
| | - Frank Westad
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Eduarda Mota-Silva
- Institute of Clinical Physiology, National Research Council (IFC-CNR), San Cataldo Research Area, 56124 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (IFC-CNR), San Cataldo Research Area, 56124 Pisa, Italy
| | - Peyman Mirtaheri
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
4
|
Influence of Polyols on the In Vitro Biodegradation and Bioactivity of 58S Bioactive Sol-Gel Coatings on AZ31B Magnesium Alloys. Polymers (Basel) 2023; 15:polym15051273. [PMID: 36904514 PMCID: PMC10007392 DOI: 10.3390/polym15051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The mechanical qualities of AZ31B magnesium alloys make them a promising material for biodegradable metallic implants. However, rapid degradation limits the application of these alloys. In the present study, 58S bioactive glasses were synthesized using the sol-gel method and several polyols such as glycerol, ethylene glycol, and polyethylene glycol, were used to improve the sol stability and to control the degradation of AZ31B. The synthesized bioactive sols were dip-coated onto AZ31B substrates and then, characterized by various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical techniques (potentiodynamic and electrochemical impedance spectroscopy), among them. FTIR analysis confirmed the formation of a silica, calcium, and phosphate system and the XRD the amorphous nature of the 58S bioactive coatings obtained by sol-gel. The contact angle measurements confirmed that all the coatings were hydrophilic. The biodegradability response under physiological conditions (Hank's solution) was investigated for all the 58S bioactive glass coatings, observing a different behaviour depending on the polyols incorporated. Thus, for 58S PEG coating, an efficient control of the release of H2 gas was observed, and showing a pH control between 7.6 and 7.8 during all the tests. A marked apatite precipitation was also observed on the surface of the 58S PEG coating after the immersion test. Thus, the 58S PEG sol-gel coating is considered a promising alternative for biodegradable magnesium alloy-based medical implants.
Collapse
|
5
|
Hassan HW, Mota-Silva E, Grasso V, Riehakainen L, Jose J, Menichetti L, Mirtaheri P. Near-Infrared Spectroscopy for the In Vivo Monitoring of Biodegradable Implants in Rats. SENSORS (BASEL, SWITZERLAND) 2023; 23:2297. [PMID: 36850894 PMCID: PMC9964707 DOI: 10.3390/s23042297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg) alloys possess unique properties that make them ideal for use as biodegradable implants in clinical applications. However, reports on the in vivo assessment of these alloys are insufficient. Thus, monitoring the degradation of Mg and its alloys in vivo is challenging due to the dynamic process of implant degradation and tissue regeneration. Most current works focus on structural remodeling, but functional assessment is crucial in providing information about physiological changes in tissues, which can be used as an early indicator of healing. Here, we report continuous wave near-infrared spectroscopy (CW NIRS), a non-invasive technique that is potentially helpful in assessing the implant-tissue dynamic interface in a rodent model. The purpose of this study was to investigate the effects on hemoglobin changes and tissue oxygen saturation (StO2) after the implantation of Mg-alloy (WE43) and titanium (Ti) implants in rats' femurs using a multiwavelength optical probe. Additionally, the effect of changes in the skin on these parameters was evaluated. Lastly, combining NIRS with photoacoustic (PA) imaging provides a more reliable assessment of tissue parameters, which is further correlated with principal component analysis.
Collapse
Affiliation(s)
- Hafiz Wajahat Hassan
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Eduarda Mota-Silva
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 56124 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Valeria Grasso
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, D-24143 Kiel, Germany
| | - Leon Riehakainen
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 56124 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Jithin Jose
- FUJIFILM VisualSonics, 1114 AB Amsterdam, The Netherlands
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 56124 Pisa, Italy
| | - Peyman Mirtaheri
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
6
|
Hassan HW, Rahmati M, Barrantes A, Haugen HJ, Mirtaheri P. In Vitro Monitoring of Magnesium-Based Implants Degradation by Surface Analysis and Optical Spectroscopy. Int J Mol Sci 2022; 23:6099. [PMID: 35682779 PMCID: PMC9181122 DOI: 10.3390/ijms23116099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023] Open
Abstract
Magnesium (Mg)-based degradable alloys have attracted substantial attention for tissue engineering applications due to their biodegradability and potential for avoiding secondary removal surgeries. However, insufficient data in the existing literature regarding Mg's corrosion and gas formation after implantation have delayed its wide clinical application. Since the surface properties of degradable materials constantly change after contact with body fluid, monitoring the behaviour of Mg in phantoms or buffer solutions could provide some information about its physicochemical surface changes over time. Through surface analysis and spectroscopic analysis, we aimed to investigate the structural and functional properties of degradable disks. Since bubble formation may lead to inflammation and change pH, monitoring components related to acidosis near the cells is essential. To study the bubble formation in cell culture media, we used a newly developed Mg alloy (based on Mg, zinc, and calcium), pure Mg, and commercially available grade 2 Titanium (Ti) disks in Dulbecco's Modified Eagle Medium (DMEM) solution to observe their behaviour over ten days of immersion. Using surface analysis and the information from near-infrared spectroscopy (NIRS), we concluded on the conditions associated with the medical risks of Mg alloy disintegration. NIRS is used to investigate the degradation behaviour of Mg-based disks in the cell culture media, which is correlated with the surface analysis where possible.
Collapse
Affiliation(s)
- Hafiz Wajahat Hassan
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway;
| | - Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Alejandro Barrantes
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Peyman Mirtaheri
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway;
| |
Collapse
|