1
|
Rudenko O, Engelstädter J, Barnes AC. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104435. [PMID: 32569744 DOI: 10.1016/j.meegid.2020.104435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Pathogens continuously adapt to changing host environments where variation in their virulence and antigenicity is critical to their long-term evolutionary success. The emergence of novel variants is accelerated in microbial mutator strains (mutators) deficient in DNA repair genes, most often from mismatch repair and oxidized-guanine repair systems (MMR and OG respectively). Bacterial MMR/OG mutants are abundant in clinical samples and show increased adaptive potential in experimental infection models, yet the role of mutators in the epidemiology and evolution of infectious disease is not well understood. Here we investigated the role of mutation rate dynamics in the evolution of a broad host range pathogen, Streptococcus iniae, using a set of 80 strains isolated globally over 40 years. We have resolved phylogenetic relationships using non-recombinant core genome variants, measured in vivo mutation rates by fluctuation analysis, identified variation in major MMR/OG genes and their regulatory regions, and phenotyped the major traits determining virulence in streptococci. We found that both mutation rate and MMR/OG genotype are remarkably conserved within phylogenetic clades but significantly differ between major phylogenetic lineages. Further, variation in MMR/OG loci correlates with occurrence of atypical virulence-associated phenotypes, infection in atypical hosts (mammals), and atypical (osseous) tissue of a vaccinated primary host. These findings suggest that mutators are likely to facilitate adaptations preceding major diversification events and may promote emergence of variation permitting colonization of a novel host tissue, novel host taxa (host jumps), and immune-escape in the vaccinated host.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Liu D, Albergante L, Newman TJ, Horn D. Faster growth with shorter antigens can explain a VSG hierarchy during African trypanosome infections: a feint attack by parasites. Sci Rep 2018; 8:10922. [PMID: 30026531 PMCID: PMC6053454 DOI: 10.1038/s41598-018-29296-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 11/22/2022] Open
Abstract
The parasitic African trypanosome, Trypanosoma brucei, evades the adaptive host immune response by a process of antigenic variation that involves the clonal switching of variant surface glycoproteins (VSGs). The VSGs that come to dominate in vivo during an infection are not entirely random, but display a hierarchical order. How this arises is not fully understood. Combining available genetic data with mathematical modelling, we report a VSG-length-dependent hierarchical timing of clonal VSG dominance in a mouse model, consistent with an inverse correlation between VSG length and trypanosome growth-rate. Our analyses indicate that, among parasites switching to new VSGs, those expressing shorter VSGs preferentially accumulate to a detectable level that is sufficient to trigger a targeted immune response. This may be due to the increased metabolic cost of producing longer VSGs. Subsequent elimination of faster-growing parasites then allows slower-growing parasites with longer VSGs to accumulate. This interaction between the host and parasite is able to explain the temporal distribution of VSGs observed in vivo. Thus, our findings reveal a length-dependent hierarchy that operates during T. brucei infection. This represents a 'feint attack' diversion tactic utilised by these persistent parasites to out-maneuver the host adaptive immune system.
Collapse
Affiliation(s)
- Dianbo Liu
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA.
| | - Luca Albergante
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institut Curie, PLS Research University, Mines Paris Tech, Inserm U900, F-75005, Paris, France
| | - T J Newman
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Solaravus, PO Box 29476, Cupar, KY15 9AS, UK
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
3
|
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, Fish D, Diuk-Wasser MA. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017; 10:64. [PMID: 28166814 PMCID: PMC5292797 DOI: 10.1186/s13071-016-1964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. Methods In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Results Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. Conclusions This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1964-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Julia Brown
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Ching-I Huang
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Germany
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Durland Fish
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis. PLoS One 2016; 11:e0149894. [PMID: 26906226 PMCID: PMC4764335 DOI: 10.1371/journal.pone.0149894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests.
Collapse
|
5
|
Jacquet M, Durand J, Rais O, Voordouw MJ. Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen,Borrelia afzelii. Environ Microbiol 2015; 18:833-45. [DOI: 10.1111/1462-2920.13065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/20/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| |
Collapse
|
6
|
Foley J. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens. Comput Struct Biotechnol J 2015; 13:407-16. [PMID: 26288700 PMCID: PMC4534519 DOI: 10.1016/j.csbj.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 12/29/2022] Open
Abstract
Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.
Collapse
Affiliation(s)
- Janet Foley
- 1320 Tupper Hall, Veterinary Medicine and Epidemiology, UC Davis, Davis, CA 95616, United States
| |
Collapse
|
7
|
Abstract
Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to identify biofilms.
Collapse
Affiliation(s)
- Kapil Jhajharia
- Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Melaka Manipal Medical College, Melaka, Malaysia
| | - Abhishek Parolia
- Department of Restorative Dentistry, Faculty of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - K Vikram Shetty
- Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Melaka Manipal Medical College, Melaka, Malaysia
| | - Lata Kiran Mehta
- Department of Pedodontics and Preventive Dentistry, P. D. M. Dental College and Research Institute, Jhajjar, Haryana, India
| |
Collapse
|
8
|
Hauton C, Hudspith M, Gunton L. Future prospects for prophylactic immune stimulation in crustacean aquaculture - the need for improved metadata to address immune system complexity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:360-368. [PMID: 24796867 DOI: 10.1016/j.dci.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Future expansion of the crustacean aquaculture industry will be required to ensure global food security. However, this expansion must ensure: (a) that natural resources (including habitat use and fish meal) are sustainably exploited, (b) that the socio-economic development of producing nations is safeguarded, and (c) that the challenge presented by crustacean diseases is adequately met. Conventionally, the problem of disease in crustacean aquaculture has been addressed through prophylactic administration of stimulants, additives or probiotics. However, these approaches have been questioned both experimentally and philosophically. In this review, we argue that real progress in the field of crustacean immune stimulants has now slowed, with only incremental advances now being made. We further contend that an overt focus on the immune effector response has been misguided. In light of the wealth of new data reporting immune system complexity, a more refined approach is necessary - one that must consider the important role played by pattern recognition proteins. In support of this more refined approach, there is now a much greater requirement for the reporting of essential metadata. We propose a broad series of recommendations regarding the 'Minimum Information required to support a Stimulant Assessment experiment' (MISA guidelines) to foster new progression within the field.
Collapse
Affiliation(s)
- Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK.
| | - Meggie Hudspith
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK
| | - Laetitia Gunton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK
| |
Collapse
|
9
|
Garg A, Nagpal A, Shetty S, Kumar S, Singh KK, Garg A. Comparison of Time Required by D-RaCe, R-Endo and Mtwo Instruments for Retreatment: An in vitro Study. J Clin Diagn Res 2015; 9:ZC47-9. [PMID: 25859525 PMCID: PMC4378807 DOI: 10.7860/jcdr/2015/11100.5596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 01/06/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION To evaluate and compare the amount of time required by three rotary NiTi instruments in removing gutta-percha from root canal during retreatment with hand file as control. MATERIALS AND METHODS Eighty human mandibular premolars with single straight root canals were prepared and obturated by cold lateral condensation with gutta-percha and AH Plus sealer. After two weeks, the 80 teeth were divided into one control group and 3 retreatment groups (n = 20 each). Gutta-percha was removed using H-files, the D-RaCe, or the Mtwo or the R-Endo retreatment systems. Retreatment time was calculated using stopwatch. RESULTS D-RaCe and Mtwo required significantly less time than R-Endo and hand file. Hand file took maximum time, which was significantly slower than all groups. However, D-RaCe and Mtwo retreatment time was statistically insignificant. CONCLUSION D-RaCe and Mtwo remove gutta-percha faster than R-Endo and Hand files.
Collapse
Affiliation(s)
- Akansha Garg
- Post graduate Student, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Ajay Nagpal
- Reader, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Shashit Shetty
- Professor and Head, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Assistant Professor, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Kamal Krishan Singh
- Post Graduate Student, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Amit Garg
- Reader, Department of Conservative Dentistry & Endodontics, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
11
|
Artzy-Randrup Y, Rorick MM, Day K, Chen D, Dobson AP, Pascual M. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. eLife 2012; 1:e00093. [PMID: 23251784 PMCID: PMC3524794 DOI: 10.7554/elife.00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/04/2012] [Indexed: 11/21/2022] Open
Abstract
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI:http://dx.doi.org/10.7554/eLife.00093.001 Malaria is an infectious disease that is estimated to kill more than half a million people every year, mostly young children in Africa. It is spread by mosquitos that are infected with Plasmodium parasites that attack red blood cells in the human body. Plasmodium falciparum, the species that is responsible for most of these deaths, causes malaria by entering red blood cells and releasing antigens that travel to the surface of the cells, where they change the adhesion properties. This causes the infected red blood cells to accumulate in small blood vessels, surface capillaries or the brain, which can have severe consequences for the person infected. P. falciparum is particularly dangerous because of its ability to vary the antigens displayed on the cell surface: this process, known as antigenic variation, helps to maintain infections for extended periods of time by allowing the antigens to stay one step ahead of the immune system (a process known as immune escape). The origins of antigenic variation lie in the fact that each P. falciparum genome has a repertoire of between 50 and 60 var genes that code for the variability of a major antigen that is responsible for immune escape in malaria. Molecular sequencing has shown that local parasite populations contain thousands of different types of var genes: hence, meiotic recombination in the mosquito can create a vast number of combinations of var repertoires. Artzy-Randrup et al. have developed a computational model of this highly diverse and complex system to address the following question: is a local pathogen population composed of largely random and ephemeral repertoires of these genes, or is it structured into independently circulating strains? Their model goes beyond previous models by including interactions within the local host population that arise as a result of indirect competition between different strains of the pathogen for available hosts: this competition is influenced by the history of infection and, therefore, by the patterns of immunity within the host population. Previous models included within-host processes but not these higher, local population-level interactions. The model simulates the dynamics of all the unique combinations of var genes in a population of hosts, and shows that even with high rates of reproduction, the parasite population self-organizes into a limited number of coexisting strains: the distinct var repertoires of these strains only weakly overlap, suggesting that the immune response of the host population has been partitioned into distinct niches. By investigating genetic variation at both antigenic sites and regions of the genome that do not code for antigens, Artzy-Randrup et al. suggest that immune selection—the selection imposed on var repertoires by the build up of specific immunity at the population level—plays a central role in structuring parasite diversity. The new model should lead to a better understanding of the epidemiology of Plasmodium and other pathogens that work in similar ways, including Trypanosoma brucei (sleeping sickness), Borellia burgdorferi (Lyme disease) and Giardia lamblia (gastroenteritis), and help with global efforts to eliminate malaria and other diseases. DOI:http://dx.doi.org/10.7554/eLife.00093.002
Collapse
Affiliation(s)
- Yael Artzy-Randrup
- Department of Ecology and Evolutionary Biology , Howard Hughes Medical Institute and the University of Michigan , Ann Arbor , United States
| | | | | | | | | | | |
Collapse
|
12
|
Symmetry Breaking in a Model of Antigenic Variation with Immune Delay. Bull Math Biol 2012; 74:2488-509. [DOI: 10.1007/s11538-012-9763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 07/27/2012] [Indexed: 11/25/2022]
|
13
|
Abstract
Explaining the contribution of host and pathogen factors in driving infection dynamics is a major ambition in parasitology. There is increasing recognition that analyses based on single summary measures of an infection (e.g., peak parasitaemia) do not adequately capture infection dynamics and so, the appropriate use of statistical techniques to analyse dynamics is necessary to understand infections and, ultimately, control parasites. However, the complexities of within-host environments mean that tracking and analysing pathogen dynamics within infections and among hosts poses considerable statistical challenges. Simple statistical models make assumptions that will rarely be satisfied in data collected on host and parasite parameters. In particular, model residuals (unexplained variance in the data) should not be correlated in time or space. Here we demonstrate how failure to account for such correlations can result in incorrect biological inference from statistical analysis. We then show how mixed effects models can be used as a powerful tool to analyse such repeated measures data in the hope that this will encourage better statistical practices in parasitology.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh, School of Biological Sciences, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Blyuss KB. The effects of symmetry on the dynamics of antigenic variation. J Math Biol 2012; 66:115-37. [DOI: 10.1007/s00285-012-0508-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/15/2012] [Indexed: 11/24/2022]
|
15
|
Efficacy of ProTaper Retreatment System in Root Canals Obturated with Gutta-Percha Using Two Different Sealers and GuttaFlow. Int J Dent 2011; 2011:676128. [PMID: 22114598 PMCID: PMC3202099 DOI: 10.1155/2011/676128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022] Open
Abstract
Objective. To compare the efficacy of ProTaper retreatment files in removing three different obturating materials. Study Design. Forty-five human, single-rooted premolars were divided into three experimental groups. Group 1 was obturated with gutta-percha and AH Plus sealer, Group 2 was obturated with gutta-percha and zinc oxide eugenol sealer, and Group 3 was obturated with GuttaFlow. Retreatment was done using the ProTaper universal rotary retreatment files. Root halves were visualized using magnifying loops at 3X magnification and optical stereomicroscope at 10X magnification. Images were analyzed using AutoCAD 2004 software to calculate area of the remaining debris in the canal. For statistical analysis were used variance test and ANOVA. Results. Total debris/canal area ratio between the three groups showed a statistically significant difference (P < 0.001). Conclusion. ProTaper retreatment system did not produce completely clean canals in any of the groups. However, it had the best efficacy towards removing silicon based obturating material GuttaFlow.
Collapse
|
16
|
MacGregor P, Savill NJ, Hall D, Matthews KR. Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe 2011; 9:310-8. [PMID: 21501830 PMCID: PMC3094754 DOI: 10.1016/j.chom.2011.03.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/25/2011] [Accepted: 03/18/2011] [Indexed: 11/26/2022]
Abstract
Sleeping sickness is characterized by waves of the extracellular parasite Trypanosoma brucei in host blood, with infections continuing for months or years until inevitable host death. These waves reflect the dynamic conflict between the outgrowth of a succession of parasite antigenic variants and their control by the host immune system. Although a contributor to these dynamics is the density-dependent differentiation from proliferative “slender forms” to transmissible “stumpy forms,” an absence of markers discriminating stumpy forms has prevented accurate parameterization of this component. Here, we exploit the stumpy-specific PAD1 marker, which functionally defines transmission competence, to quantitatively monitor stumpy formation during chronic infections. This allows reconstruction of the temporal events early in infection. Mathematical modeling of these data describes the parameters controlling trypanosome within-host dynamics and provides strong support for a quorum-sensing-like mechanism. Our data reveal the dominance of transmission stages throughout infection, a consequence being austere use of the parasite's antigen repertoire.
Collapse
Affiliation(s)
- Paula MacGregor
- Centre for Immunity, Infection, and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
17
|
Narayanan LL, Vaishnavi C. Endodontic microbiology. J Conserv Dent 2011; 13:233-9. [PMID: 21217951 PMCID: PMC3010028 DOI: 10.4103/0972-0707.73386] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/05/2010] [Accepted: 09/06/2010] [Indexed: 11/04/2022] Open
Abstract
Root canal therapy has been practiced ever since 1928 and the success rate has tremendously increased over the years owing to various advancements in the field. One main reason is the complete understanding of the microbiology involved in the endodontic pathology. This has helped us to modify the conventional treatment plans and effectively combat the microorganisms. Now, studies are aiming to explore the characteristics of the "most" resistant organism and the methods to eliminate them. This article gives an insight of the microbiology involved in endodontic pathology and discusses its role in our treatment procedure. Information from original reviews listed in PubMed, published from 1995 to 2010, has been mainly included in this review.
Collapse
Affiliation(s)
- L Lakshmi Narayanan
- Department of Conservative Dentistry & Endodontics, SRM Kattankulathur Dental College & Hospital, SRM University, Chennai, India
| | | |
Collapse
|
18
|
Kumamoto CA, Pierce JV. Immunosensing during colonization by Candida albicans: does it take a village to colonize the intestine? Trends Microbiol 2011; 19:263-7. [PMID: 21354799 DOI: 10.1016/j.tim.2011.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
Abstract
Candida albicans, an opportunistic fungal pathogen and a component of the normal flora of the gastrointestinal tract, is a frequent colonizer of humans. Is C. albicans capable of sensing the immune status of its host, a process we term immunosensing, and, if so, how? C. albicans causes serious disease only in immunocompromised hosts and therefore the ability to immunosense would be advantageous to an organism. We propose a speculative model whereby, during colonization, C. albicans produces phenotypic variants that vary in relative concentration depending on host status. One variant is optimized for persistence as a commensal, whereas the other variant has higher capacity to initiate pathogenic interactions. When the ratio of the two variants changes, the pathogenic potential of the population changes. The critical element of this model is that the C. albicans colonizing population is not uniform but is composed of subpopulations of phenotypic variants that are advantageous under different host conditions.
Collapse
Affiliation(s)
- Carol A Kumamoto
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
19
|
Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine 2009; 28:415-21. [PMID: 19837093 DOI: 10.1016/j.vaccine.2009.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/22/2022]
|
20
|
Buckee CO, Bull PC, Gupta S. Inferring malaria parasite population structure from serological networks. Proc Biol Sci 2009; 276:477-85. [PMID: 18826933 PMCID: PMC2581777 DOI: 10.1098/rspb.2008.1122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The malaria parasite Plasmodium falciparum is characterized by high levels of genetic diversity at antigenic loci involved in virulence and immune evasion. Knowledge of the population structure and dynamics of these genes is important for designing control programmes and understanding the acquisition of immunity to malaria; however, high rates of homologous and non-homologous recombination as well as complex patterns of expression within hosts have hindered attempts to elucidate these structures experimentally. Here, we analyse serological data from Kenya using a novel network technique to deconstruct the relationships between patients' immune responses to different parasite isolates. We show that particular population structures and expression patterns produce distinctive signatures within serological networks of parasite recognition, which can be used to discriminate between competing hypotheses regarding the organization of these genes. Our analysis suggests that different levels of immune selection occur within different groups of the same multigene family leading to mixed population structures.
Collapse
Affiliation(s)
- Caroline O Buckee
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
21
|
Restif O, Wolfe DN, Goebel EM, Bjornstad ON, Harvill ET. Of mice and men: asymmetric interactions between Bordetella pathogen species. Parasitology 2008; 135:1517-29. [PMID: 18261255 DOI: 10.1017/s0031182008000279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a recent experiment, we found that mice previously infected with Bordetella pertussis were not protected against a later infection with Bordetella parapertussis, while primary infection with B. parapertussis conferred cross-protection. This challenges the common assumption made in most mathematical models for pathogenic strain dynamics that cross-immunity between strains is symmetric. Here we investigate the potential consequences of this pattern on the circulation of the two pathogens in human populations. To match the empirical dominance of B. pertussis, we made the additional assumption that B. parapertussis pays a cost in terms of reduced fitness. We begin by exploring the range of parameter values that allow the coexistence of the two pathogens, with or without vaccination. We then track the dynamics of the system following the introduction of anti-pertussis vaccination. Our results suggest that (1) in order for B. pertussis to be more prevalent than B. parapertussis, the former must have a strong competitive advantage, possibly in the form of higher infectivity, and (2) because of asymmetric cross-immunity, the introduction of anti-pertussis vaccination should have little effect on the absolute prevalence of B. parapertussis. We discuss the evidence supporting these predictions, and the potential relevance of this model for other pathogens.
Collapse
Affiliation(s)
- O Restif
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | | | | | | | | |
Collapse
|
22
|
Berditsch M, Afonin S, Ulrich AS. The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 2007; 73:6620-8. [PMID: 17720841 PMCID: PMC2075075 DOI: 10.1128/aem.00881-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotype instability of bacterial strains can cause significant problems in biotechnological applications, since industrially useful properties may be lost. Here we report such degenerative dissociation for Aneurinibacillus migulanus (formerly known as Bacillus brevis) an established producer of the antimicrobial peptide gramicidin S (GS). Phenotypic variations within and between various strains maintained in different culture collections are demonstrated. The type strain, ATCC 9999, consists of six colony morphology variants, R, RC, RP, RT, SC, and SP, which were isolated and characterized as pure cultures. Correlations between colony morphology, growth, GS production, spore formation, and resistance to their own antimicrobial peptide were established in this study. We found the original R form to be the best producer, followed by RC, RP, and RT, while SC and SP yielded no GS at all. Currently available ATCC 9999(T) contains only 2% of the original R producer and is dominated by the newly described phenotypes RC and RP. No original R form is detected in the nominally equivalent strain DSM 2895(T) (=ATCC 9999(T)), which grows only as SC and SP phenotypes and has thus completely lost its value as a peptide producer. Two other strains from the same collection, DSM 5668 and DSM 5759, contain the unproductive SC variant and the GS-producing RC form, respectively. We describe the growth and maintenance conditions that stabilize certain colony phenotypes and reduce the degree of degenerative dissociation, thus providing a recommendation for how to revert the nonproducing smooth phenotypes to the valuable GS-producing rough ones.
Collapse
Affiliation(s)
- Marina Berditsch
- University of Karlsruhe (TH), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
23
|
Palmer GH, Brayton KA. Gene conversion is a convergent strategy for pathogen antigenic variation. Trends Parasitol 2007; 23:408-13. [PMID: 17662656 DOI: 10.1016/j.pt.2007.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/22/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Recent studies on three unrelated vector-borne pathogens, Anaplasma marginale, Borrelia hermsii and Trypanosoma brucei, illustrate the central importance of gene conversion as a mechanism for antigenic variation, which results in subsequent evasion of the immune response and persistence in the reservoir host. The combination of genome sequence data and in vivo studies tracking variant emergence not only provides insight into the genetic mechanisms for variant generation and hierarchy in variant expression but also highlights gaps in our knowledge regarding variant capacity and usage in vivo.
Collapse
Affiliation(s)
- Guy H Palmer
- Programs in Vector-borne Diseases and Genomics, Washington State University, Pullman, WA 99164-7040, USA.
| | | |
Collapse
|
24
|
Lythgoe KA, Morrison LJ, Read AF, Barry JD. Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc Natl Acad Sci U S A 2007; 104:8095-100. [PMID: 17463092 PMCID: PMC1876577 DOI: 10.1073/pnas.0606206104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Indexed: 11/18/2022] Open
Abstract
Pathogens often persist during infection because of antigenic variation in which they evade immunity by switching between distinct surface antigen variants. A central question is how ordered appearance of variants, an important determinant of chronicity, is achieved. Theories suggest that it results directly from a complex pattern of transition connectivity between variants or indirectly from effects such as immune cross-reactivity or differential variant growth rates. Using a mathematical model based only on known infection variables, we show that order in trypanosome infections can be explained more parsimoniously by a simpler combination of two key parasite-intrinsic factors: differential activation rates of parasite variant surface glycoprotein (VSG) genes and density-dependent parasite differentiation. The model outcomes concur with empirical evidence that several variants are expressed simultaneously and that parasitaemia peaks correlate with VSG genes within distinct activation probability groups. Our findings provide a possible explanation for the enormity of the recently sequenced VSG silent archive and have important implications for field transmission.
Collapse
Affiliation(s)
- Katrina A. Lythgoe
- *Institutes of Evolution, Immunology, and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; and
| | - Liam J. Morrison
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Andrew F. Read
- *Institutes of Evolution, Immunology, and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; and
| | - J. David Barry
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
25
|
Abstract
Tick-borne relapsing fever (RF) and Lyme disease (LD) are spirochetal infections of humans caused by different Borrelia species in endemic areas throughout the world. Our laboratory is studying the response of mammalian hosts to borrelia infection in RF and LD. For this, we use mice and non-human primates infected with B. burgdorferi sensu stricto strain N40 (N40) and the Oz1 strain of Borrelia turicatae (Bt), agents of LD and RF in North America, respectively. Our results have revealed that outbred non-human primates are significantly less susceptible than outbred mice to persistent infection with N40. In contrast, the majority of mice inoculated with the RF agent B. turicatae clear the infection, with the notable exception of residual brain or blood infection in up to 25% of cases. Little if any tissue injury occurs in immunocompetent animals with either LD or RF. In contrast, impairment of specific antibody production results in significant tissue injury, most notably in the heart, in both LD and RF. The inflammatory infiltrate is rich in plasma cells, activated macrophages and T cells, and there is significant deposition of antibody and complement, including membrane attack complex, in inflamed tissues and spirochetes. Significant loss of cardiomyocytes with apoptosis and caspase activation was observed in the heart of immunosuppressed non-human primates infected with N40 and in B cell-deficient mice infected with B. turicatae. Unlike the heart, the brain of B cell-deficient mice infected with B. turicatae showed prominent microglial activation but no detectable tissue injury. Tissues from immunosuppressed non-human primates infected with N40 produce large amounts of immunoglobulin and the B cell chemokine CXCL13, both of which significantly correlate with the spirochetal load. We conclude that the main response of mammalian hosts in LD and RF is the production of specific antibody to clear the infection. Failure of this response leads to persistent infection, which can lead to tissue injury, most notably in the heart.
Collapse
Affiliation(s)
- Diego Cadavid
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
26
|
Forgber M, Basu R, Roychoudhury K, Theinert S, Roy S, Sundar S, Walden P. Mapping the antigenicity of the parasites in Leishmania donovani infection by proteome serology. PLoS One 2006; 1:e40. [PMID: 17183669 PMCID: PMC1762392 DOI: 10.1371/journal.pone.0000040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/12/2006] [Indexed: 11/21/2022] Open
Abstract
Background Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. Methodology/Principle Findings Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. Conclusions/Significance Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibody Specificity
- Antigens, Protozoan/genetics
- Antigens, Protozoan/isolation & purification
- Blotting, Western
- Child
- Electrophoresis, Gel, Two-Dimensional
- Epitope Mapping
- Female
- Humans
- India
- Leishmania donovani/genetics
- Leishmania donovani/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Male
- Middle Aged
- Molecular Sequence Data
- Proteome
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Young Adult
Collapse
Affiliation(s)
- Michael Forgber
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
| | - Rajatava Basu
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Kaushik Roychoudhury
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Stephan Theinert
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
| | - Syamal Roy
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Shyam Sundar
- Kala-Azar Medical Research Center, Banaras Hindu UniversityVaranasi, Uttar Pradesh, India
| | - Peter Walden
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Barbour AG, Dai Q, Restrepo BI, Stoenner HG, Frank SA. Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci U S A 2006; 103:18290-5. [PMID: 17101971 PMCID: PMC1635980 DOI: 10.1073/pnas.0605302103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Indexed: 11/18/2022] Open
Abstract
The vector-borne bacterium Borrelia hermsii, a relapsing fever agent, switches gene expression of a surface protein between different antigenic variants, thereby causing sequential waves of immune escape within hosts and increasing the likelihood of transmission. Analogous programmed systems of antigenic variation occur in African trypanosomes and Plasmodium falciparum. In these examples, switch rates to individual variants differ over a wide range. We studied how B. hermsii determines switch rates in two experimental infections: one where variants were identified by specific antisera and one based on identification by DNA sequence. Unexpressed loci of variant antigens copy into a single expression site at rates determined by extragenic features of silent loci rather than similarity between coding sequences of variants at silent sites and the single expression site. Two elements, in particular, determine switch rates. One set of elements overlaps the 5' ends of the expressed gene and the silent loci; greater sequence identity between elements was associated with a higher switch rate. The second set of elements flanks the expression site on the 3' side and occurs at variable distances downstream from silent loci; the nearer an element to a silent locus, the greater the switch rate of that locus into the expression site. In combination, these two features of the genome provide a simple mechanism to modulate switch rate whereby silent loci form a hierarchy of switch rates into the expression site. Although the switching hierarchy causes changes in individual cells that are stochastic, ordering of variants within hosts is semipredictable.
Collapse
Affiliation(s)
- Alan G Barbour
- Department of Microbiology, University of California, Irvine, CA 92697-4028, USA.
| | | | | | | | | |
Collapse
|