1
|
Vanderhoeven EA, Mosmann JP, Díaz A, Cuffini CG. Chlamydia in farms located in the Argentine-Brazilian-Paraguay tri-border. Braz J Microbiol 2025; 56:683-691. [PMID: 39786642 PMCID: PMC11885763 DOI: 10.1007/s42770-024-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Chlamydias are zoonotic pathogens, broadly present in several bird species and responsible for economic losses in animal production. Our study focused on assessing the prevalence of Chlamydial species posing zoonotic risks in farm animals within the highly biodiverse Argentine, Brazil, and Paraguay tri-border area, characterized by significant human interaction. We surveyed nine farms in an area and nasally swabbed a total of 62 animals, that included cattle, horses and pigs. DNA was extracted and specific PCR was performed to identify and sequenced chlamydial species. We detected Chlamydia spp. in 6.5% (4/62) of the tested animals, with all positive cases found in cattle. None of the cattle showed symptoms of respiratory disease or had been diagnosed with reproductive disorders. Specific nested PCR confirmed two samples belonged to Chlamydia pecorum and two to Chlamydia psittaci. We report for the first time Chlamydia circulation with zoonotic risk in the region. We propose that surveys in birds and wild mammals could give a better understanding to know what Chlamydial species are circulating in the wild interface. The zoonotic potential should be taking into account as farm workers and the surrounding population could be silent carriers or have respiratory diseases being underdiagnosed, and therefore should be considered in the differential diagnoses.
Collapse
Affiliation(s)
- Ezequiel A Vanderhoeven
- Instituto de Biología Subtropical, CONICET-Universidad Nacional de Misiones (UNaM), Puerto Iguazú, Misiones, Argentina.
- Asociación Civil Centro de Investigaciones del Bosque Atlántico, Misiones, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Jessica P Mosmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G Cuffini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Fernandez CM, Krockenberger MB, Crowther MS, Mella VSA, Wilmott L, Higgins DP. Genetic markers of Chlamydia pecorum virulence in ruminants support short term host-pathogen evolutionary relationships in the koala, Phascolarctos cinereus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105527. [PMID: 37977420 DOI: 10.1016/j.meegid.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
In ruminants infected with Chlamydia pecorum, shorter lengths of coding tandem repeats (CTR) within two genes, the inclusion membrane protein (incA) and Type III secretor protein (ORF663), have been previously associated with pathogenic outcomes. In other chlamydial species, the presence of a chlamydial plasmid has been linked to heightened virulence, and the plasmid is not ubiquitous in C. pecorum across the koala's range. We therefore investigated these three markers: incA, ORF663 and C. pecorum plasmid, as potential indicators of virulence in two koala populations in New South Wales with differing expression of urogenital chlamydiosis; the Liverpool Plains and one across the Southern Highlands and South-west Sydney (SHSWS). We also investigated the diversity of these loci within strains characterised by the national multi-locus sequence typing (MLST) scheme. Although CTR lengths of incA and ORF663 varied across the populations, they occurred only within previously described pathogenic ranges for ruminants. This suggests a relatively short-term host-pathogen co-evolution within koalas and limits the utility of CTR lengths for incA and ORF663 as virulence markers in the species. However, in contrast to reports of evolution of C. pecorum towards lower virulence, as indicated by longer CTR lengths in ruminants and swine, CTR lengths for ORF663 appeared to be diverging towards less common shorter CTR lengths within strains recently introduced to koalas in the Liverpool Plains. We detected the plasmid across 90% and 92% of samples in the Liverpool Plains and SHSWS respectively, limiting its utility as an indicator of virulence. It would be valuable to examine the CTR lengths of these loci across koala populations nationally. Investigation of other hypervariable loci may elucidate the evolutionary trajectory of virulence in C. pecorum induced disease in koalas. Profiling of virulent strains will be important in risk assessments for strain movement to naïve or susceptible populations through translocations and wildlife corridor construction.
Collapse
Affiliation(s)
- Cristina M Fernandez
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mark B Krockenberger
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Sydney Infectious diseases, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mathew S Crowther
- Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Valentina S A Mella
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Lachlan Wilmott
- NSW Department of Planning and Environment, Wollongong 2005, New South Wales, Australia
| | - Damien P Higgins
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia.
| |
Collapse
|
3
|
Rohner L, Marti H, Torgerson P, Hoffmann K, Jelocnik M, Borel N. Prevalence and molecular characterization of C. pecorum detected in Swiss fattening pigs. Vet Microbiol 2021; 256:109062. [PMID: 33848714 DOI: 10.1016/j.vetmic.2021.109062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Chlamydia (C.) pecorum, an obligate intracellular bacterial species commonly found in ruminants, can also occur in pigs. However, its significance as a potential porcine pathogen, or commensal, is still unclear. In a previous study (Hoffmann et al. 2015), mixed infections of C. suis and C. pecorum were detected in 14 Swiss fattening pig farms. Using these samples, we aimed to investigate the infection dynamics of C. suis and C. pecorum mixed infections in these farms. In addition, we analyzed the genetic diversity of Swiss porcine C. pecorum strains in relation to globally circulating strains. In total, 1284 conjunctival and rectal swabs from 391 pigs, collected at the beginning and end of the fattening period, were tested during the course of this study. We determined the bacterial loads of C. suis and C. pecorum using species-specific real-time PCR (qPCR) and compared these results to already existing DNA-microarray and Chlamydiaceae qPCR data. Overall, C. suis and Chlamydiaceae copy numbers decreased in the course of the fattening period, whereas C. pecorum copy numbers increased. No association was found between clinical signs (conjunctivitis, lameness and diarrhea) and the bacterial loads. Preventive antibiotic treatment at the beginning of the fattening period significantly lowered the chlamydial load and outdoor access was associated with higher loads. Proximity to the nearest ruminants correlated with increased C. pecorum loads, indicating that C. pecorum could be transmitted from ruminants to pigs. Multi-locus sequence typing (MLST) and major outer membrane protein (ompA) genotyping revealed two novel sequence types (STs) (301, 302) and seven unique ompA genotypes (1-7) that appear to form a specific clade separate from other European C. pecorum strains.
Collapse
Affiliation(s)
- Lea Rohner
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland.
| | - Paul Torgerson
- Section of Veterinary Epidemiology, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Karolin Hoffmann
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, 4556, Queensland, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
4
|
Struthers JD, Lim A, Ferguson S, Lee JK, Chako C, Okwumabua O, Cuneo M, Valle AMD, Brower A. Meningoencephalitis, Vasculitis, and Abortions Caused by Chlamydia pecorum in a Herd of Cattle. Vet Pathol 2021; 58:549-557. [PMID: 33590807 DOI: 10.1177/0300985820985288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cow dairy (n = 2000) in close proximity to a sheep flock had third-trimester abortions and fatalities in cows and calves over a 14-month period. Eighteen of 33 aborted fetuses (55%) had multifocal random suppurative or mononuclear meningoencephalitis with vasculitis. Seventeen of these affected fetuses had intracytoplasmic bacteria in endothelial cells, and 1 fetus with pericarditis had similar bacteria within mesothelial cells or macrophages. Immunohistochemistry for Chlamydia spp. or polymerase chain reaction (PCR) for Chlamydia pecorum or both, performed on brain or pooled tissue, were positive in all 14 tested fetuses that had meningoencephalitis and in 4/4 calves and in 3/4 tested cows that had meningoencephalitis and thrombotic vasculitis. In 1 calf and 11/11 fetuses, C. pecorum PCR amplicon sequences were 100% homologous to published C. pecorum sequences. Enzootic chlamydiosis due to C. pecorum was the identified cause of the late term abortions and the vasculitis and meningoencephalitis in fetuses, calves, and cows. C. pecorum, an uncommon bovine abortogenic agent, is a differential diagnosis in late-term aborted fetuses with meningoencephalitis, vasculitis, and polyserositis.
Collapse
Affiliation(s)
| | - Ailam Lim
- Wisconsin Veterinary Diagnostic Laboratory, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Robbins A, Hanger J, Jelocnik M, Quigley BL, Timms P. Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes. Sci Rep 2020; 10:15013. [PMID: 32929174 PMCID: PMC7490398 DOI: 10.1038/s41598-020-72050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.
Collapse
Affiliation(s)
- Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
6
|
Wedrowicz F, Mosse J, Wright W, Hogan FE. Using non-invasive sampling methods to determine the prevalence and distribution of Chlamydia pecorum and koala retrovirus in a remnant koala population with conservation importance. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr17184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Pathogenic infections are an important consideration for the conservation of native species, but obtaining such data from wild populations can be expensive and difficult. Two pathogens have been implicated in the decline of some koala (Phascolarctos cinereus) populations: urogenital infection with Chlamydia pecorum and koala retrovirus subgroup A (KoRV-A). Pathogen data for a wild koala population of conservation importance in South Gippsland, Victoria are essentially absent. Aims This study uses non-invasive sampling of koala scats to provide prevalence and genotype data for C. pecorum and KoRV-A in the South Gippsland koala population, and compares pathogen prevalence between wild koalas and koalas in rescue shelters. Methods C. pecorum and KoRV-A provirus were detected by PCR of DNA isolated from scats collected in the field. Pathogen genetic variation was investigated using DNA sequencing of the C. pecorum ompA and KoRV-A env genes. Key results C. pecorum and KoRV-A were detected in 61% and 27% of wild South Gippsland individuals tested, respectively. KoRV-A infection tended to be higher in shelter koalas compared with wild koalas. In contrast with other Victorian koala populations sampled, greater pathogen diversity was present in South Gippsland. Conclusions In the South Gippsland koala population, C. pecorum is widespread and common whereas KoRV appears less prevalent than previously thought. Further work exploring the dynamics of these pathogens in South Gippsland koalas is warranted and may help inform future conservation strategies for this important population. Implications Non-invasive genetic sampling from scats is a powerful method for obtaining data regarding pathogen prevalence and diversity in wildlife. The use of non-invasive methods for the study of pathogens may help fill research gaps in a way that would be difficult or expensive to achieve using traditional methods.
Collapse
|
7
|
Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks. BMC Vet Res 2016; 12:193. [PMID: 27608808 PMCID: PMC5017062 DOI: 10.1186/s12917-016-0832-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Arthritis is an economically significant disease in lambs and is usually the result of a bacterial infection. One of the known agents of this disease is Chlamydia pecorum, a globally recognised livestock pathogen associated with several diseases in sheep, cattle and other hosts. Relatively little published information is available on the clinical, diagnostic and pathologic features of C. pecorum arthritis in sheep, hindering efforts to enhance our understanding of this economically significant disease. In this case series, a combination of standard diagnostic testing used routinely by veterinarians, such as the Chlamydia complement fixation text (CFT), veterinary clinical examinations, and additional screening via C. pecorum specific qPCR was used to describe putative chlamydial infections in five sheep flocks with suspected ovine arthritis. Case presentation Five separate cases involving multiple lambs (aged six to ten months) of different breeds with suspected C. pecorum arthritis are presented. In two of the five cases, arthritic lambs exhibited marked depression and lethargy. Arthritis with concurrent conjunctivitis was present in four out of five lamb flocks examined. Chlamydia CFT demonstrated medium to high positive antibody titres in all flocks examined. C. pecorum shedding was evident at multiple sites including the conjunctiva, rectum and vagina, as determined via qPCR. Two of the five flocks received antimicrobials and all flocks recovered uneventfully regardless of treatment. Conclusion This case series highlights the features a field veterinarian may encounter in cases of suspected ovine chlamydial arthritis. Our analysis suggests a presumptive diagnosis of chlamydial arthritis in lambs can be made when there is evidence of joint stiffness with or without synovial effusion and elevated chlamydia antibody titres. C. pecorum-specific qPCR was found to be a useful ancillary diagnostic tool, detecting Chlamydia positivity in low or negative CFT titre animals. Variables such as symptom duration relative to sampling, sheep breed and farm management practices were all factors recorded that paint a complex epidemiological and diagnostic picture for this disease. These case studies serve to provide a platform for further research to improve diagnostic testing and new treatment and control strategies for C. pecorum infections in sheep.
Collapse
|
8
|
A non-invasive tool for assessing pathogen prevalence in koala (Phascolarctos cinereus) populations: detection of Chlamydia pecorum and koala retrovirus (KoRV) DNA in genetic material sourced from scats. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0574-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Legione AR, Patterson JLS, Whiteley PL, Amery-Gale J, Lynch M, Haynes L, Gilkerson JR, Polkinghorne A, Devlin JM, Sansom FM. Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection. J Med Microbiol 2016; 65:420-428. [PMID: 26932792 DOI: 10.1099/jmm.0.000241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pecorum infection is a threat to the health of free-ranging koalas (Phascolarctos cinereus) in Australia. Utilizing an extensive sample archive we determined the prevalence of C. pecorum in koalas within six regions of Victoria, Australia. The ompA genotypes of the detected C. pecorum were characterized to better understand the epidemiology of this pathogen in Victorian koalas. Despite many studies in northern Australia (i.e. Queensland and New South Wales), prior Chlamydia studies in Victorian koalas are limited. We detected C. pecorum in 125/820 (15 %) urogenital swabs, but in only one ocular swab. Nucleotide sequencing of the molecular marker C. pecorum ompA revealed that the majority (90/114) of C. pecorum samples typed were genotype B. This genotype has not been reported in northern koalas. In general, Chlamydia infection in Victorian koalas is associated with milder clinical signs compared with infection in koalas in northern populations. Although disease pathogenesis is likely to be multifactorial, the high prevalence of genotype B in Victoria may suggest it is less pathogenic. All but three koalas had C. pecorum genotypes unique to southern koala populations (i.e. Victoria and South Australia). These included a novel C. pecorum ompA genotype and two genotypes associated with livestock. Regression analysis determined that significant factors for the presence of C. pecorum infection were sex and geographical location. The presence of 'wet bottom' in males and the presence of reproductive tract pathology in females were significantly associated with C. pecorum infection, suggesting variation in clinical disease manifestations between sexes.
Collapse
Affiliation(s)
- Alistair R Legione
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Jade L S Patterson
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Veterinary Department, Melbourne Zoo,Parkville, Victoria,Australia
| | - Pam L Whiteley
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Wildlife Health Surveillance Victoria, The University of Melbourne,Werribee, Victoria,Australia
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Australian Wildlife Health Centre, Healesville Sanctuary, Healesville,Victoria,Australia
| | - Michael Lynch
- Veterinary Department, Melbourne Zoo,Parkville, Victoria,Australia
| | - Leesa Haynes
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Werribee, Victoria,Australia
| | - James R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs,Queensland,Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Fiona M Sansom
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| |
Collapse
|
10
|
Walker E, Lee EJ, Timms P, Polkinghorne A. Chlamydia pecorum infections in sheep and cattle: A common and under-recognised infectious disease with significant impact on animal health. Vet J 2015; 206:252-60. [PMID: 26586214 DOI: 10.1016/j.tvjl.2015.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
There is a growing recognition that infections of livestock by the obligate intracellular bacterium, Chlamydia pecorum, are more widespread than was previously thought. A range of diseases have been associated with this pathogen, with the most important manifestations including infectious arthritis, infertility, enteritis, reduced growth rates, mastitis, and pneumonia. C. pecorum infections have also been associated with sub-clinical disease, highlighting our lack of knowledge about its true economic impact on livestock producers. Diagnosis of C. pecorum infection is based on clinical findings, serology and histopathology, which are not necessarily implemented in subclinical or early stages of infection, thus potentially contributing to under-diagnosis and under-reporting of infections associated with this bacterium. Recent molecular epidemiology studies have revealed that C. pecorum is genetically diverse and that there may be an association between certain strains and disease in sheep and cattle. Antimicrobial treatment of affected animals has questionable efficacy, justifying development of chlamydia vaccines for livestock. This review summarises current knowledge of the prevalence and impact of C. pecorum infections in sheep and cattle and provides an update on attempts to improve detection, management and treatment of infections by this important obligate intracellular pathogen.
Collapse
Affiliation(s)
- Evelyn Walker
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Central West Local Land Services, Dubbo, NSW, Australia
| | - Effie J Lee
- State Veterinary Diagnostic Laboratory, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Peter Timms
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
11
|
Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:539-52. [PMID: 25761461 DOI: 10.1128/cvi.00102-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens.
Collapse
|
12
|
Recombinant outer membrane protein A induces a protective immune response against Escherichia coli infection in mice. Appl Microbiol Biotechnol 2015; 99:5451-60. [PMID: 25567514 DOI: 10.1007/s00253-014-6339-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/19/2023]
Abstract
Pathogenic Escherichia coli (E. coli) is an important infectious Gram-negative bacterium causing millions of death every year. Outer membrane protein A (OmpA) has been suggested as a potential vaccine candidate for conferring protection against bacterial infection. In this study, a universal vaccine candidate for E. coli infection was developed and evaluated. Bioinformatics analysis revealed the OmpA protein from E. coli shares 96~100%, 90~94%, and 45% identity with Shigella, Salmonella, and Pseudomonas strains, respectively. The ompA gene was cloned from the genomic DNA of E. coli, and then the OmpA protein was expressed in BL21 (DE3) using the auto-induction method. The recombinant OmpA (rOmpA) protein had an average molecular weight of 36 kDa with the purity of 93.5%. Immunological analysis indicated that the titers of anti-rOmpA sera against rOmpA and whole cells were 1:642,000 and 1:140,000, respectively. Moreover, rOmpA not only conferred a high level of immunogenicity to protect mice against the challenge of E. coli, but also generated cross-protection against Shigella and Salmonella. The anti-rOmpA sera could enhance the phagocytic activity of neutrophils against E. coli. The survive ratios of mice immunized with rOmpA and PBS were 50% and 20% after 48 h post-challenge, indicating mice were protected from E. coli infection after immunization with rOmpA. All these results clearly indicate that rOmpA may be a promising candidate for the development of a subunit vaccine to prevent E. coli infection.
Collapse
|
13
|
Merdja SE, Khaled H, Aaziz R, Vorimore F, Bertin C, Dahmani A, Bouyoucef A, Laroucau K. Detection and genotyping of Chlamydia species responsible for reproductive disorders in Algerian small ruminants. Trop Anim Health Prod 2014; 47:437-43. [PMID: 25503075 DOI: 10.1007/s11250-014-0743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022]
Abstract
Chlamydiosis in small ruminants is a zoonotic disease mainly related to Chlamydia abortus. This bacterium is responsible for abortions and reproductive disorders in sheep and goats. Stillbirth and infertility, leading to important economic losses, are also associated with this pathology. In Algeria, abortion cases are frequently reported by veterinarians but, except for brucellosis which is a notifiable disease in this country, abortive diseases are in general poorly studied. In order to detect and genotype Chlamydia species in small ruminants in different areas of Algeria, a study was conducted on samples collected from females (164 blood samples and 199 vaginal swabs) between October 2011 and March 2013. Serum samples were tested with a C. abortus-specific indirect ELISA test. Fourteen samples (8.5 %), from six farms (6/20, 30 %) were tested positive. Vaginal swabs were analysed with a real-time PCR targeting all Chlamydiaceae spp. Thirty samples (15 %) were diagnosed positive in 16 farms (16/25, 64 %). Positive samples were all re-tested with a C. abortus- and a C. pecorum-specific real-time PCR. Finally, 13/30 (43.3 %) and 6/30 (20 %) were identified as C. abortus and C. pecorum, respectively. Enough concentrated C. abortus samples were genotyped by multi-loci variable number of tandem repeat (VNTR) analysis (MLVA), and all were related to the genotype [2] group which mainly includes French C. abortus isolates. C. pecorum-positive samples were genotyped by multi-locus sequence typing (MLST). Interestingly, two of them were successfully genotyped and showed identical MLST sequences to VB2, AB10, E58 and SBE, a group which includes C. pecorum isolates considered as highly pathogenic. These findings suggest a possible role of C. abortus and C. pecorum strains in the aetiology of abortion in Algerian small ruminants.
Collapse
Affiliation(s)
- Salah-Eddine Merdja
- Institute of Veterinary Science, University of Blida, 09000, Blida, Algeria,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Evaluation of the relationship between Chlamydia pecorum sequence types and disease using a species-specific multi-locus sequence typing scheme (MLST). Vet Microbiol 2014; 174:214-22. [PMID: 25223647 DOI: 10.1016/j.vetmic.2014.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Chlamydia pecorum is globally associated with several ovine diseases including keratoconjunctivitis and polyarthritis. The exact relationship between the variety of C. pecorum strains reported and the diseases described in sheep remains unclear, challenging efforts to accurately diagnose and manage infected flocks. In the present study, we applied C. pecorum multi-locus sequence typing (MLST) to C. pecorum positive samples collected from sympatric flocks of Australian sheep presenting with conjunctivitis, conjunctivitis with polyarthritis, or polyarthritis only and with no clinical disease (NCD) in order to elucidate the exact relationships between the infecting strains and the range of diseases. Using Bayesian phylogenetic and cluster analyses on 62 C. pecorum positive ocular, vaginal and rectal swab samples from sheep presenting with a range of diseases and in a comparison to C. pecorum sequence types (STs) from other hosts, one ST (ST 23) was recognised as a globally distributed strain associated with ovine and bovine diseases such as polyarthritis and encephalomyelitis. A second ST (ST 69) presently only described in Australian animals, was detected in association with ovine as well as koala chlamydial infections. The majority of vaginal and rectal C. pecorum STs from animals with NCD and/or anatomical sites with no clinical signs of disease in diseased animals, clustered together in a separate group, by both analyses. Furthermore, 8/13 detected STs were novel. This study provides a platform for strain selection for further research into the pathogenic potential of C. pecorum in animals and highlights targets for potential strain-specific diagnostic test development.
Collapse
|
15
|
Bachmann NL, Fraser TA, Bertelli C, Jelocnik M, Gillett A, Funnell O, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum. BMC Genomics 2014; 15:667. [PMID: 25106440 PMCID: PMC4137089 DOI: 10.1186/1471-2164-15-667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. RESULTS Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. CONCLUSIONS The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs 4558, Queensland, Australia.
| |
Collapse
|
16
|
Zhang J, Kong Y, Ruan Z, Huang J, Song T, Song J, Jiang Y, Yu Y, Xie X. Correlation between Ureaplasma subgroup 2 and genitourinary tract disease outcomes revealed by an expanded multilocus sequence typing (eMLST) scheme. PLoS One 2014; 9:e104347. [PMID: 25093900 PMCID: PMC4122457 DOI: 10.1371/journal.pone.0104347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
The multilocus sequence typing (MLST) scheme of Ureaplasma based on four housekeeping genes (ftsH, rpL22, valS, and thrS) was described in our previous study; here we introduced an expanded MLST (eMLST) scheme with improved discriminatory power, which was developed by adding two putative virulence genes (ureG and mba-np1) to the original MLST scheme. To evaluate the discriminatory power of eMLST, a total of 14 reference strains of Ureaplasma serovars and 269 clinical strains (134 isolated from symptomatic patients and 135 obtained from asymptomatic persons) were investigated. Our study confirmed that all 14 serotype strains could successfully be differentiated into 14 eMLST STs (eSTs), while some of them could not even be differentiated by the MLST, and a total of 136 eSTs were identified among the clinical isolates we investigated. In addition, phylogenetic analysis indicated that two genetically significantly distant clusters (cluster I and II) were revealed and most clinical isolates were located in cluster I. These findings were in accordance with and further support for the concept of two well-known genetic lineages (Ureaplasma parvum and Ureaplasma urealyticum) in our previous study. Interestingly, although both clusters were associated with clinical manifestation, the sub-group 2 of cluster II had pronounced and adverse effect on patients and might be a potential risk factor for clinical outcomes. In conclusion, the eMLST scheme offers investigators a highly discriminative typing tool that is capable for precise epidemiological investigations and clinical relevance of Ureaplasma.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi Ruan
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tiejun Song
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjuan Song
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
17
|
Host adaptation of Chlamydia pecorum towards low virulence evident in co-evolution of the ompA, incA, and ORF663 Loci. PLoS One 2014; 9:e103615. [PMID: 25084532 PMCID: PMC4118914 DOI: 10.1371/journal.pone.0103615] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
Chlamydia (C.) pecorum, an obligate intracellular bacterium, may cause severe diseases in ruminants, swine and koalas, although asymptomatic infections are the norm. Recently, we identified genetic polymorphisms in the ompA, incA and ORF663 genes that potentially differentiate between high-virulence C. pecorum isolates from diseased animals and low-virulence isolates from asymptomatic animals. Here, we expand these findings by including additional ruminant, swine, and koala strains. Coding tandem repeats (CTRs) at the incA locus encoded a variable number of repeats of APA or AGA amino acid motifs. Addition of any non-APA/AGA repeat motif, such as APEVPA, APAVPA, APE, or APAPE, associated with low virulence (P<10−4), as did a high number of amino acids in all incA CTRs (P = 0.0028). In ORF663, high numbers of 15-mer CTRs correlated with low virulence (P = 0.0001). Correction for ompA phylogram position in ORF663 and incA abolished the correlation between genetic changes and virulence, demonstrating co-evolution of ompA, incA, and ORF663 towards low virulence. Pairwise divergence of ompA, incA, and ORF663 among isolates from healthy animals was significantly higher than among strains isolated from diseased animals (P≤10−5), confirming the longer evolutionary path traversed by low-virulence strains. All three markers combined identified 43 unique strains and 4 pairs of identical strains among all 57 isolates tested, demonstrating the suitability of these markers for epidemiological investigations.
Collapse
|
18
|
Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 2014; 22:464-72. [PMID: 24882432 DOI: 10.1016/j.tim.2014.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chlamydiaceae are obligate intracellular pathogens that have successfully evolved to colonize a diverse range of hosts. There are currently 11 described species of Chlamydia, most of which have a significant impact on the health of humans or animals. Expanding chlamydial genome sequence information has revolutionized our understanding of chlamydial biology, including aspects of their unique lifecycle, host-pathogen interactions, and genetic differences between Chlamydia strains associated with different host and tissue tropisms. This review summarizes the major highlights of chlamydial genomics and reflects on the considerable impact these have had on understanding the biology of chlamydial pathogens and the changing nature of genomics tools in the 'post-genomics' era.
Collapse
Affiliation(s)
- Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|
19
|
Molecular and pathological insights into Chlamydia pecorum-associated sporadic bovine encephalomyelitis (SBE) in Western Australia. BMC Vet Res 2014; 10:121. [PMID: 24884687 PMCID: PMC4064815 DOI: 10.1186/1746-6148-10-121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022] Open
Abstract
Background Despite its global recognition as a ruminant pathogen, cases of Chlamydia pecorum infection in Australian livestock are poorly documented. In this report, a C. pecorum specific Multi Locus Sequence Analysis scheme was used to characterise the C. pecorum strains implicated in two cases of sporadic bovine encephalomyelitis confirmed by necropsy, histopathology and immunohistochemistry. This report provides the first molecular evidence for the presence of mixed infections of C. pecorum strains in Australian cattle. Case presentation Affected animals were two markedly depressed, dehydrated and blind calves, 12 and 16 weeks old. The calves were euthanized and necropsied. In one calf, a severe fibrinous polyserositis was noted with excess joint fluid in all joints whereas in the other, no significant lesions were seen. No gross abnormalities were noted in the brain of either calf. Histopathological lesions seen in both calves included: multifocal, severe, subacute meningoencephalitis with vasculitis, fibrinocellular thrombosis and malacia; diffuse, mild, acute interstitial pneumonia; and diffuse, subacute epicarditis, severe in the calf with gross serositis. Immunohistochemical labelling of chlamydial antigen in brain, spleen and lung from the two affected calves and brain from two archived cases, localised the antigen to the cytoplasm of endothelium, mesothelium and macrophages. C. pecorum specific qPCR, showed dissemination of the pathogen to multiple organs. Phylogenetic comparisons with other C. pecorum bovine strains from Australia, Europe and the USA revealed the presence of two genetically distinct sequence types (ST). The predominant ST detected in the brain, heart, lung and liver of both calves was identical to the C. pecorum ST previously described in cases of SBE. A second ST detected in an ileal tissue sample from one of the calves, clustered with previously typed faecal bovine isolates. Conclusion This report provides the first data to suggest that identical C. pecorum STs may be associated with SBE in geographically separated countries and that these may be distinct from those found in the gastrointestinal tract. This report provides a platform for further investigations into SBE and for understanding the genetic relationships that exist between C. pecorum strains detected in association with other infectious diseases in livestock.
Collapse
|
20
|
Abstract
Over the course of the past several decades, rapid advancements in molecular technologies have revolutionized the practice of public health microbiology, and have fundamentally changed the nature, accuracy, and timeliness of laboratory data for outbreak investigation and response. Whole-genome sequencing, in particular, is becoming an increasingly feasible and cost-effective approach for near real-time high-resolution strain typing, genomic characterization, and comparative analyses. This review discusses the current state of the art in bacterial strain typing for outbreak investigation and infectious disease surveillance, and the impact of emerging genomic technologies on the field of public health microbiology.
Collapse
Affiliation(s)
- Duncan MacCannell
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, MS-C12, Atlanta, GA 30333, USA.
| |
Collapse
|
21
|
Sait M, Livingstone M, Clark EM, Wheelhouse N, Spalding L, Markey B, Magnino S, Lainson FA, Myers GSA, Longbottom D. Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics 2014; 15:23. [PMID: 24417976 PMCID: PMC3932018 DOI: 10.1186/1471-2164-15-23] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022] Open
Abstract
Background Chlamydia pecorum is the causative agent of a number of acute diseases, but most often causes persistent, subclinical infection in ruminants, swine and birds. In this study, the genome sequences of three C. pecorum strains isolated from the faeces of a sheep with inapparent enteric infection (strain W73), from the synovial fluid of a sheep with polyarthritis (strain P787) and from a cervical swab taken from a cow with metritis (strain PV3056/3) were determined using Illumina/Solexa and Roche 454 genome sequencing. Results Gene order and synteny was almost identical between C. pecorum strains and C. psittaci. Differences between C. pecorum and other chlamydiae occurred at a number of loci, including the plasticity zone, which contained a MAC/perforin domain protein, two copies of a >3400 amino acid putative cytotoxin gene and four (PV3056/3) or five (P787 and W73) genes encoding phospholipase D. Chlamydia pecorum contains an almost intact tryptophan biosynthesis operon encoding trpABCDFR and has the ability to sequester kynurenine from its host, however it lacks the genes folA, folKP and folB required for folate metabolism found in other chlamydiae. A total of 15 polymorphic membrane proteins were identified, belonging to six pmp families. Strains possess an intact type III secretion system composed of 18 structural genes and accessory proteins, however a number of putative inc effector proteins widely distributed in chlamydiae are absent from C. pecorum. Two genes encoding the hypothetical protein ORF663 and IncA contain variable numbers of repeat sequences that could be associated with persistence of infection. Conclusions Genome sequencing of three C. pecorum strains, originating from animals with different disease manifestations, has identified differences in ORF663 and pseudogene content between strains and has identified genes and metabolic traits that may influence intracellular survival, pathogenicity and evasion of the host immune system. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-23) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| |
Collapse
|
22
|
Kollipara A, Polkinghorne A, Wan C, Kanyoka P, Hanger J, Loader J, Callaghan J, Bell A, Ellis W, Fitzgibbon S, Melzer A, Beagley K, Timms P. Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet Microbiol 2013; 167:513-22. [DOI: 10.1016/j.vetmic.2013.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022]
|
23
|
Multilocus sequence analysis provides insights into molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle, and koalas. J Clin Microbiol 2013; 51:2625-32. [PMID: 23740730 DOI: 10.1128/jcm.00992-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.
Collapse
|
24
|
Poudel A, Elsasser TH, Rahman KS, Chowdhury EU, Kaltenboeck B. Asymptomatic endemic Chlamydia pecorum infections reduce growth rates in calves by up to 48 percent. PLoS One 2012; 7:e44961. [PMID: 23024776 PMCID: PMC3443228 DOI: 10.1371/journal.pone.0044961] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/10/2012] [Indexed: 11/18/2022] Open
Abstract
Intracellular Chlamydia (C.) bacteria cause in cattle some acute but rare diseases such as abortion, sporadic bovine encephalomyelitis, kerato-conjunctivitis, pneumonia, enteritis and polyarthritis. More frequent, essentially ubiquitous worldwide, are low-level, asymptomatic chlamydial infections in cattle. We investigated the impact of these naturally acquired infections in a cohort of 51 female Holstein and Jersey calves from birth to 15 weeks of age. In biweekly sampling, we measured blood/plasma markers of health and infection and analyzed their association with clinical appearance and growth in dependence of chlamydial infection intensity as determined by mucosal chlamydial burden or contemporaneous anti-chlamydial plasma IgM. Chlamydia 23S rRNA gene PCR and ompA genotyping identified only C. pecorum (strains 1710S, Maeda, and novel strain Smith3v8) in conjunctival and vaginal swabs. All calves acquired the infection but remained clinically asymptomatic. High chlamydial infection associated with reduction of body weight gains by up to 48% and increased conjunctival reddening (P<10−4). Simultaneously decreased plasma albumin and increased globulin (P<10−4) suggested liver injury by inflammatory mediators as mechanisms for the growth inhibition. This was confirmed by the reduction of plasma insulin like growth factor-1 at high chlamydial infection intensity (P<10−4). High anti-C. pecorum IgM associated eight weeks later with 66% increased growth (P = 0.027), indicating a potential for immune protection from C. pecorum-mediated growth depression. The worldwide prevalence of chlamydiae in livestock and their high susceptibility to common feed-additive antibiotics suggests the possibility that suppression of chlamydial infections may be a major contributor to the growth promoting effect of feed-additive antibiotics.
Collapse
Affiliation(s)
- Anil Poudel
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Theodore H. Elsasser
- Bovine Functional Genomics Laboratory, United States Department of Agriculture - Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Kh. Shamsur Rahman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Erfan U. Chowdhury
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zocevic A, Vorimore F, Marhold C, Horvatek D, Wang D, Slavec B, Prentza Z, Stavianis G, Prukner-Radovcic E, Dovc A, Siarkou VI, Laroucau K. Molecular characterization of atypical Chlamydia and evidence of their dissemination in different European and Asian chicken flocks by specific real-time PCR. Environ Microbiol 2012; 14:2212-22. [DOI: 10.1111/j.1462-2920.2012.02800.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Parker JK, Havird JC, De La Fuente L. Differentiation of Xylella fastidiosa strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E). Appl Environ Microbiol 2012; 78:1385-96. [PMID: 22194287 PMCID: PMC3294468 DOI: 10.1128/aem.06679-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/13/2011] [Indexed: 11/20/2022] Open
Abstract
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Collapse
Affiliation(s)
- Jennifer K. Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Justin C. Havird
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
27
|
Higgins DP, Beninati T, Meek M, Irish J, Griffith JE. Within-population diversity of koala Chlamydophila pecorum at ompA VD1-VD3 and the ORF663 hypothetical gene. Vet Microbiol 2011; 156:353-8. [PMID: 22118784 DOI: 10.1016/j.vetmic.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022]
Abstract
Infection of koalas by Chlamydophila pecorum is very common and causes significant morbidity, infertility and mortality. Fundamental to management of the disease is an understanding of the importance of multi-serotype infection or pathogen virulence in pathogenesis; these may need consideration in plans involving koala movement, vaccination, or disease risk assessment. Here we describe diversity of ompA VD1-3, and ORF663 hypothetical gene tandem repeat regions, in a single population of koalas with diverse disease outcomes. We PCR amplified and sequenced 72 partial ompA segments and amplified 25 tandem repeat segments (ORF663 hypothetical gene) from C. pecorum obtained from 62 koalas. Although several ompA genotypes were identified nationally, only one ompA genotype existed within the population studied, indicating that severe chlamydial disease occurs commonly in free-ranging koalas in the absence of infection by multiple MOMP serotypes of C. pecorum. In contrast, variation in tandem repeats within the ORF663 hypothetical gene was very high, approaching the entire range reported for pathogenic and non-pathogenic C. pecorum of European ruminants; providing an impetus for further investigation of this as a potential virulence trait.
Collapse
Affiliation(s)
- D P Higgins
- Faculty of Veterinary Science, B14, University of Sydney, Australia.
| | | | | | | | | |
Collapse
|
28
|
Genome sequence of the obligate intracellular animal pathogen Chlamydia pecorum E58. J Bacteriol 2011; 193:3690. [PMID: 21571992 DOI: 10.1128/jb.00454-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pecorum is an obligate intracellular bacterial pathogen that causes diverse disease in a wide variety of economically important mammals. We report the finished complete genome sequence of C. pecorum E58, the type strain for the species.
Collapse
|
29
|
Marsh J, Kollipara A, Timms P, Polkinghorne A. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus). BMC Microbiol 2011; 11:77. [PMID: 21496349 PMCID: PMC3101125 DOI: 10.1186/1471-2180-11-77] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/18/2011] [Indexed: 01/16/2023] Open
Abstract
Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.
Collapse
Affiliation(s)
- James Marsh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
30
|
Winkelmann N, Jaekel U, Meyer C, Serrano W, Rachel R, Rosselló-Mora R, Harder J. Determination of the diversity of Rhodopirellula isolates from European seas by multilocus sequence analysis. Appl Environ Microbiol 2010; 76:776-85. [PMID: 19948850 PMCID: PMC2813027 DOI: 10.1128/aem.01525-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/19/2009] [Indexed: 11/20/2022] Open
Abstract
In the biogeography of microorganisms, the habitat size of an attached-living bacterium has never been investigated. We approached this theme with a multilocus sequence analysis (MLSA) study of new strains of Rhodopirellula sp., an attached-living planctomycete. The development of an MLSA for Rhodopirellula baltica enabled the characterization of the genetic diversity at the species level, beyond the resolution of the 16S rRNA gene. The alleles of the nine housekeeping genes acsA, guaA, trpE, purH, glpF, fumC, icd, glyA, and mdh indicated the presence of 13 genetically defined operational taxonomic units (OTUs) in our culture collection. The MLSA-based OTUs coincided with the taxonomic units defined by DNA-DNA hybridization experiments. BOX-PCR supported the MLSA-based differentiation of two closely related OTUs. This study established a taxon-area relationship of cultivable Rhodopirellula species. In European seas, three closely related species covered the Baltic Sea and the eastern North Sea, the North Atlantic region, and the southern North Sea to the Mediterranean. The last had regional genotypes, as revealed by BOX-PCR. This suggests a limited habitat size of attached-living Rhodopirellula species.
Collapse
Affiliation(s)
- Nadine Winkelmann
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Ulrike Jaekel
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Carolin Meyer
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Wilbert Serrano
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Reinhard Rachel
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Ramon Rosselló-Mora
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany, Center for EM (NWF III, Institute for Anatomy), University of Regensburg, D-93053 Regensburg, Germany, Department for Marine Microbiology, UFT, University of Bremen, D-28359 Bremen, Germany, Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07190 Esporles, Illes Balears, Spain
| |
Collapse
|
31
|
Mohamad KY, Rodolakis A. Recent advances in the understanding of Chlamydophila pecorum infections, sixteen years after it was named as the fourth species of the Chlamydiaceae family. Vet Res 2009; 41:27. [PMID: 19995513 PMCID: PMC2820232 DOI: 10.1051/vetres/2009075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/08/2009] [Indexed: 12/26/2022] Open
Abstract
Chlamydophila pecorum found in the intestine and vaginal mucus of asymptomatic ruminants has also been associated with different pathological conditions in ruminants, swine and koalas. Some endangered species such as water buffalos and bandicoots have also been found to be infected by C. pecorum. The persistence of C. pecorum strains in the intestine and vaginal mucus of ruminants could cause long-term sub-clinical infection affecting the animal’s health. C. pecorum strains present many genetic and antigenic variations, but coding tandem repeats have recently been found in some C. pecorum genes, allowing C. pecorum strains isolated from sick animals to be differentiated from those isolated from asymptomatic animals. This review provides an update on C. pecorum infections in different animal hosts and the implications for animal health. The taxonomy, typing and genetic aspects of C. pecorum are also reviewed.
Collapse
Affiliation(s)
- Khalil Yousef Mohamad
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, F-37380 Nouzilly (Tours), France
| | | |
Collapse
|
32
|
Mohamad KY, Rekiki A, Berri M, Rodolakis A. Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of Chlamydophila pecorum. Vet Microbiol 2009; 143:424-8. [PMID: 19969431 DOI: 10.1016/j.vetmic.2009.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Chlamydophila pecorum strains are commonly found in the intestine and vaginal mucus of asymptomatic ruminants and may therefore induce a positive serological response when the animals are tested for C. abortus. They have also been associated with different pathological diseases in ruminants, swine and koala. The aim of this study was to identify specific C. pecorum immunodominant antigens which could be used in ELISA tests allowing to distinguish between animals infected with C. pecorum and those infected with other chlamydial species. A gene encoding 35-kDa inclusion membrane protein incA of C. pecorum was isolated by immunoscreening of the C. pecorum DNA library using ovine anti-C. pecorum antibodies. The recombinant IncA protein did not react with a murine serum directed against C. abortus but did react with a specific monoclonal antibody of C. pecorum and toward several ovine serum samples obtained after experimental infection with different C. pecorum strains. This protein could be a good candidate for specific diagnosis of C. pecorum infection.
Collapse
Affiliation(s)
- Khalil Yousef Mohamad
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, F-37380 Nouzilly (Tours), France
| | | | | | | |
Collapse
|
33
|
Zoonotic potential of Chlamydophila. Vet Microbiol 2009; 140:382-91. [PMID: 19345022 DOI: 10.1016/j.vetmic.2009.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/23/2009] [Accepted: 03/02/2009] [Indexed: 11/24/2022]
Abstract
The purpose of this article is to present the diseases induced in humans and animals by the different species of Chlamydophila, after providing an overview on the history of these infectious agents and their taxonomy. The route of transmission and the available methods for prevention and control in the different animal species are reviewed.
Collapse
|