1
|
Martinez-Castillo M, Ramírez-Rico G, Shibayama M, de la Garza M, Serrano-Luna J. Lactoferrin and Lysozyme Inhibit the Proteolytic Activity and Cytopathic Effect of Naegleria fowleri Enzymes. Pathogens 2024; 13:44. [PMID: 38251351 PMCID: PMC10819050 DOI: 10.3390/pathogens13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Naegleria fowleri is a ubiquitous free-living amoeba that causes primary amoebic meningoencephalitis. As a part of the innate immune response at the mucosal level, the proteins lactoferrin (Lf) and lysozyme (Lz) are secreted and eliminate various microorganisms. We demonstrate that N. fowleri survives the individual and combined effects of bovine milk Lf (bLf) and chicken egg Lz (cLz). Moreover, amoebic proliferation was not altered, even at 24 h of co-incubation with each protein. Trophozoites' ultrastructure was evaluated using transmission electron microscopy, and these proteins did not significantly alter their organelles and cytoplasmic membranes. Protease analysis using gelatin-zymograms showed that secreted proteases of N. fowleri were differentially modulated by bLf and cLz at 3, 6, 12, and 24 h. The bLf and cLz combination resulted in the inhibition of N. fowleri-secreted proteases. Additionally, the use of protease inhibitors on bLf-zymograms demonstrated that secreted cysteine proteases participate in the degradation of bLf. Nevertheless, the co-incubation of trophozoites with bLf and/or cLz reduced the cytopathic effect on the MDCK cell line. Our study suggests that bLf and cLz, alone or together, inhibited secreted proteases and reduced the cytopathic effect produced by N. fowleri; however, they do not affect the viability and proliferation of the trophozoites.
Collapse
Affiliation(s)
- Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06720, Mexico;
| | - Gerardo Ramírez-Rico
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico, Mexico City 54714, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
| |
Collapse
|
2
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
3
|
Kadri S, Nakada-Tsukui K, Watanabe N, Jeelani G, Nozaki T. PTEN differentially regulates endocytosis, migration, and proliferation in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2022; 18:e1010147. [PMID: 35500038 PMCID: PMC9122207 DOI: 10.1371/journal.ppat.1010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/20/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
PTEN is a lipid phosphatase that is highly conserved and involved in a broad range of biological processes including cytoskeletal reorganization, endocytosis, signal transduction, and cell migration in all eukaryotes. Although regulation of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] signaling via PTEN has been well established in model organisms and mammals, it remains elusive in the parasitic protist E. histolytica, which heavily relies on PtdIns phosphate(s)-dependent membrane traffic, migration, and phago- and trogocytosis for its pathogenesis. In this study, we characterized the major PTEN from E. histolytica, EhPTEN1, which shows the highest expression at the transcript level in the trophozoite stage among 6 possible PTENs, to understand the significance of PtdIns(3,4,5)P3 signaling in this parasite. Live imaging of GFP-EhPTEN1 expressing amebic trophozoites showed localization mainly in the cytosol with a higher concentration at pseudopods and the extending edge of the phago- and trogocytic cups. Furthermore, quantitative analysis of phago- and trogocytosis using a confocal image cytometer showed that overexpression of EhPTEN1 caused reduction in trogo- and phagocytosis while transcriptional gene silencing of EhPTEN1 gene caused opposite phenotypes. These data suggest that EhPTEN1 has an inhibitory role in these biological processes. Conversely, EhPTEN1 acts as a positive regulator for fluid-phase and receptor-mediated endocytosis in E. histolytica trophozoites. Moreover, we showed that EhPTEN1 was required for optimal growth and migration of this parasite. Finally, the phosphatase activity of EhPTEN1 towards PtdIns(3,4,5)P3 was demonstrated, suggesting that the biological roles of EhPTEN1 are likely linked to its catalytic function. Taken together, these results indicate that EhPTEN1 differentially regulates multiple cellular activities essential for proliferation and pathogenesis of the organism, via PtdIns(3,4,5)P3 signaling. Elucidation of biological roles of PTEN and PtdIns(3,4,5)P3 signaling at the molecular levels promotes our understanding of the pathogenesis of this parasite.
Collapse
Affiliation(s)
- Samia Kadri
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Wada A, Umeki Y, Annoura T, Saito-Nakano Y. In Vitro and In Vivo Antiamebic Activity of Iron-Targeting Polypyridine Compounds against Enteric Protozoan Parasite Entamoeba histolytica. ACS Infect Dis 2022; 8:457-462. [PMID: 35090116 DOI: 10.1021/acsinfecdis.1c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The infectious protozoan parasite Entamoeba histolytica is responsible for amebiasis causing colitis and liver abscesses, which is an epidemic in developing countries. To develop a drug discovery strategy targeting the iron source required for the proliferation of E. histolytica, an untapped chemical group consisting of low-molecular-weight compounds with metal-binding affinity was investigated. Electrochemically neutral polypyridine compounds, PHN-R2, that showed specific Fe(II)-binding affinity and growth inhibitory ability against E. histolytica were identified. Furthermore, the iron-dependent IC50 values of PHN-R2 and the spectrometric analytical data of their iron complexes clarified the relationship between the antiamebic activity and the iron-targeting specificity. Notably, when PHN-H2 was administrated to E. histolytica-infected hamsters as an animal model of amebiasis, it exhibited a prominent therapeutic efficacy to completely cure liver abscesses without serious side effects. Deciphering the antiamebic activity of iron-targeting compounds in vitro and in vivo provides valuable insights into the development of a next-generation drug against amebiasis.
Collapse
Affiliation(s)
- Akira Wada
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuko Umeki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
5
|
Hepcidin Protects Yellow Catfish ( Pelteobagrus fulvidraco) against Aeromonas veronii-Induced Ascites Disease by Regulating Iron Metabolism. Antibiotics (Basel) 2021; 10:antibiotics10070848. [PMID: 34356769 PMCID: PMC8300743 DOI: 10.3390/antibiotics10070848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Aeromonas veronii (A. veronii) is one of the main pathogens causing bacterial diseases in aquaculture. Although previous studies have shown that hepcidin as an antimicrobial peptide can promote fish resistance to pathogenic bacterial infections, but the mechanisms remain unclear. Here, we expressed and purified recombinant yellow catfish (Pelteobagrus fulvidraco) hepcidin protein (rPfHep). rPfHep can up-regulate the expression of ferritin and enhance the antibacterial activity in primary hepatocytes of yellow catfish. We employed berberine hydrochloride (BBR) and Fursultiamine (FSL) as agonists and antagonists for hepcidin, respectively. The results indicated that agonist BBR can inhibit the proliferation of pathogenic bacteria, and the antagonist FSL shows the opposite effect. After gavage administration, rPfHep and the agonist BBR can enhance the accumulation of iron in liver, which may hinder the iron transport and limit the amount of iron available to pathogenic bacteria. Moreover, rPfHep and the agonist BBR can also reduce the mortality rate, bacterial load and histological lesions in yellow catfish infected with A. veronii. Therefore, hepcidin is an important mediator of iron metabolism, and it can be used as a candidate target for prevent bacterial infections in yellow catfish. Hepcidin and BBR have potential application value in preventing anti-bacterial infection.
Collapse
|
6
|
Reyes-López M, Piña-Vázquez C, Pérez-Salazar E, de la Garza M. Endocytosis, signal transduction and proteolytic cleaving of human holotransferrin in Entamoeba histolytica. Int J Parasitol 2020; 50:959-967. [PMID: 32822678 DOI: 10.1016/j.ijpara.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
Abstract
Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.
Collapse
Affiliation(s)
- Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico.
| |
Collapse
|
7
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
8
|
Díaz-Godínez C, González-Galindo X, Meza-Menchaca T, Bobes RJ, de la Garza M, León-Sicairos N, Laclette JP, Carrero JC. Synthetic bovine lactoferrin peptide Lfampin kills Entamoeba histolytica trophozoites by necrosis and resolves amoebic intracecal infection in mice. Biosci Rep 2019; 39:BSR20180850. [PMID: 30429239 PMCID: PMC6328891 DOI: 10.1042/bsr20180850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Amoebiasis caused by the protozoan parasite Entamoeba histolytica remains a public health problem in developing countries, making the identification of new anti-amoebic compounds a continuing priority. Previously, we have shown that lactoferrin (Lf) and several Lf-derived peptides exhibit in vitro anti-amoebic activity independently of their iron-binding activity. Here, we evaluated the amoebicidal effect of synthetic Lf-derived peptides Lfcin-B, Lfcin 17-30, and Lfampin, analyzed the mechanism of death induced by the peptides and determined their therapeutic effects on murine intestinal amoebiasis. MTT assays in trophozoite cultures of E. histolytica exposed to each peptide (1-1000 μM) showed that Lfampin is far more amoebicidal than Lfcins. Lfampin killed 80% of trophozoites at doses higher than 100 μM in 24 h, and FACs analysis using Annexin V/propidium iodide showed that death occurred mainly by necrosis. In contrast, Lfcin-B and Lfcin 17-30 appeared to have no significant effect on amoebic viability. FACs and confocal microscopy analysis using FITC-labeled peptides showed that all three peptides are internalized by the amoeba mainly using receptor (PI3K signaling) and actin-dependent pathways but independent of clathrin. Docking studies identified cholesterol in the amoeba's plasma membrane as a possible target of Lfampin. Oral treatment of intracecally infected mice with the abovementioned peptides at 10 mg/kg for 4 days showed that Lfampin resolved 100% of the cases of intestinal amoebiasis, whereas Lfcin 17-30 and Lfcin-B were effective in resolving infection in 80 and 70% of cases, respectively. These data show that although synthetic bovine Lf-derived peptides exhibit varying amoebicidal potentials in vitro, they do resolve murine intestinal amoebiasis efficiently, suggesting that they may be useful as a therapeutic treatment.
Collapse
Affiliation(s)
- César Díaz-Godínez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México, D.F., México
| | - Ximena González-Galindo
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México, D.F., México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana, Calle Médicos y Odontólogos S/N., Col. Unidad del Bosque, 91010, Xalapa, Veracruz, México
| | - Raúl J Bobes
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México, D.F., México
| | - Mireya de la Garza
- Department of Cellular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 México, D.F., México
| | - Nidia León-Sicairos
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos Culiacán, 80246, Sinaloa, México
- Departamento f Research, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan, 80200, Sinaloa, México
| | - Juan P Laclette
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México, D.F., México
| | - Julio C Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México, D.F., México
| |
Collapse
|
9
|
Gastelum-Martínez A, León-Sicairos C, Plata-Guzmán L, Soto-Castro L, León-Sicairos N, de la Garza M. Iron-modulated virulence factors of Entamoeba histolytica. Future Microbiol 2018; 13:1329-1341. [PMID: 30238768 DOI: 10.2217/fmb-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is a human parasite that causes amoebiasis, a disease that affects the colon and liver and is prevalent worldwide. This protozoan requires a high concentration of iron to survive and reproduce. Iron modulates the expression of parasite virulence factors, including hemoglobinases, hemoglobin-binding proteins and cysteine proteases, as well as proteins related to the amoebic cytoskeleton. This review summarizes the virulence factors that are affected by iron, resulting in upregulation or downregulation of E. histolytica genes. This review also discusses the functionality of iron in the mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Aurora Gastelum-Martínez
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Laura Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Liliana Soto-Castro
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Nidia León-Sicairos
- CIASaP Facultad de Medicina. Universidad Autónoma de Sinaloa. Cedros y Sauces Frac. Fresnos. Culiacán 80246, Sinaloa, México; Departamento de Investigación, Hospital Pediátrico de Sinaloa. Boulevard Constitución S/N, Col. Jorge Almada, Culiacán 80200, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco 07360, CdMx, Mexico
| |
Collapse
|
10
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
11
|
Verma K, Saito-Nakano Y, Nozaki T, Datta S. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles. Cell Microbiol 2015; 17:1779-96. [PMID: 26096601 DOI: 10.1111/cmi.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| |
Collapse
|
12
|
Martínez-Castillo M, Ramírez-Rico G, Serrano-Luna J, Shibayama M. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416712. [PMID: 26090408 PMCID: PMC4450812 DOI: 10.1155/2015/416712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Gerardo Ramírez-Rico
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
- Faculty of Professional Studies, Autonomous University of Mexico, Campus Cuautitlán, Km 2.5 Carretera Cuautitlán-Teoloyucan, 54714 Cuautitlán Izcalli, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, 07360 Mexico City, Mexico
| |
Collapse
|
13
|
Perdomo D, Aït-Ammar N, Syan S, Sachse M, Jhingan GD, Guillén N. Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica. J Proteomics 2015; 112:125-40. [DOI: 10.1016/j.jprot.2014.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
14
|
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol 2014; 6:3182-98. [PMID: 25381665 PMCID: PMC4986447 DOI: 10.1093/gbe/evu247] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host-parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans.
Collapse
Affiliation(s)
- Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fengmin Huo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuchun Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jinyong Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jinmei Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meng Wang
- Tianjin Biochip Corporation, Tianjin, People's Republic of China
| | - Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Identification of phosphatidylcholine transfer protein-like in the parasite Entamoeba histolytica. Biochimie 2014; 107 Pt B:223-34. [PMID: 25223890 DOI: 10.1016/j.biochi.2014.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022]
Abstract
Caveolin is the protein marker of caveola-mediated endocytosis. Previously, we demonstrated by immunoblotting and immunofluorescence that an anti-chick embryo caveolin-1 monoclonal antibody (mAb) recognizes a protein in amoeba extracts. Nevertheless, the caveolin-1 gene is absent in the Entamoeba histolytica genome database. In this work, the goal was to isolate, identify and characterize the protein that cross-reacts with chick embryo caveolin-1. We identified the protein using a proteomic approach, and the complete gene was cloned and sequenced. The identified protein, E. histolytica phosphatidylcholine transfer protein-like (EhPCTP-L), is a member of the StAR-related lipid transfer (START) protein superfamily. The human homolog binds and transfers phosphatidylcholine (PC) and phosphatidylethanolamine (PE) between model membranes in vitro; however, the physiological role of PCTP-L remains elusive. Studies in silico showed that EhPCTP-L has a central START domain and also contains a C-terminal intrinsically disordered region. The anti-rEhPCTP-L antibody demonstrated that EhPCTP-L is found in the plasma membrane and cytosol, which is in agreement with previous reports on the human counterpart. This result points to the plasma membrane as one possible target membrane for EhPCTP-L. Furthermore, assays using filipin and nystatin showed down regulation of EhPCTP-L, in an apparently cholesterol-independent way. Interestingly, EhPCTP-L binds primarily to anionic phospholipids phosphatidylserine (PS) and phosphatidic acid (PA), while its mammalian counterpart HsPCTP-L binds neutral phospholipids PC and PE. The present study provides information that helps reveal the possible function and regulation of PCTP-L expression in the primitive eukaryotic parasite E. histolytica.
Collapse
|
16
|
Hernández-Cuevas NA, Weber C, Hon CC, Guillen N. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism. PLoS One 2014; 9:e107102. [PMID: 25210888 PMCID: PMC4161402 DOI: 10.1371/journal.pone.0107102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023] Open
Abstract
Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.
Collapse
Affiliation(s)
| | - Christian Weber
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| |
Collapse
|
17
|
Hiller C, Nissen A, Benítez D, Comini MA, Krauth-Siegel RL. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage. PLoS Pathog 2014; 10:e1004075. [PMID: 24722489 PMCID: PMC3983053 DOI: 10.1371/journal.ppat.1004075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/02/2014] [Indexed: 01/23/2023] Open
Abstract
African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px)-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I–II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I–II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective stage of T. brucei. The respective knockout of the cytosolic px I–II in the procyclic insect form resulted in cells that were fully viable in Trolox-free medium. In many cell types, mitochondria are the main source of intracellular reactive oxygen species but iron-induced oxidative lysosomal damage has been described as well. African trypanosomes are the causative agents of human sleeping sickness and the cattle disease Nagana. The parasites are obligate extracellular pathogens that multiply in the bloodstream and body fluids of their mammalian hosts and as procyclic forms in their insect vector, the tsetse fly. Bloodstream Trypanosoma brucei in which the genes for cytosolic lipid hydroperoxide-detoxifying peroxidases have been knocked out undergo an extremely rapid membrane peroxidation and lyse within less than two hours when they are cultured without an exogenous antioxidant. Here we show that the primary site of intracellular damage is the single terminal lysosome of the parasites. Disintegration of the lysosome clearly precedes damage of the mitochondrion and parasite death. Iron, acquired by the endocytosis of iron-loaded host transferrin, induces cell lysis. Contrary to the cytosolic enzymes, the respective mitochondrial peroxidase is dispensable for both in vitro proliferation and mouse infectivity. This is the first report demonstrating that cytosolic thiol peroxidases are responsible for protecting the lysosome of a cell.
Collapse
Affiliation(s)
- Corinna Hiller
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Amrei Nissen
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A. Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
18
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
19
|
Sánchez-Cruz C, López-Casamichana M, Cruz-Castañeda A, de Jesús Olivares-Trejo J. Transferrin regulates mRNA levels of a gene involved in iron utilization in Entamoeba histolytica. Mol Biol Rep 2011; 39:4545-51. [PMID: 21947947 DOI: 10.1007/s11033-011-1244-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica is a human pathogen, which can survive using haemoglobin (Hb) as only iron supply. Two probable haemophores (Ehhmbp26 and Ehhmbp45) are involved in iron acquisition in this parasite. However, mechanisms related to their transcriptional regulation have not been studied yet. In the present work, transcriptional profiles of both genes were evaluated in trophozoites cultures grown with different iron sources. ehhmbp26 gene was repressed totally by free iron, whereas ehhmbp45 gene showed clearly detectable mRNA levels. Expression profiles for both genes were significantly increased under iron privation condition. Interestingly, ehhmbp26 transcript was highly expressed by Holo-transferrin presence. This induction appears to be independent of direct contact between these proteins, because, in vitro assays evidenced that Ehhmbp26 protein was unable to bind this metalloprotein. Besides, in silico analysis of promoter nucleotide sequences of ehhmbp26 and ehhmbp45 genes revealed some distinctive core promoter elements described in E. histolytica and T-rich regions. Taking altogether these data suggest in E. histolytica dissimilar transcriptional mechanisms involved on iron acquisition control the expression of these genes, and they are unlike to those previously described for instance: in bacteria. Our findings evidenced this pathogen regulates the expression of ehhmbp26 and ehhmbp45 genes depending on the available iron supply, always ensuring the success of its infective process.
Collapse
Affiliation(s)
- Cristhian Sánchez-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290 C.P. 03100, México, D.F., México
| | | | | | | |
Collapse
|
20
|
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PLoS One 2011; 6:e19135. [PMID: 21552483 PMCID: PMC3084294 DOI: 10.1371/journal.pone.0019135] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022] Open
Abstract
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Heron BT, Sateriale A, Teixeira JE, Huston CD. Evidence for a novel Entamoeba histolytica lectin activity that recognises carbohydrates present on ovalbumin. Int J Parasitol 2011; 41:137-44. [PMID: 20807536 PMCID: PMC3003744 DOI: 10.1016/j.ijpara.2010.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica, an intestinal amoeba that causes dysentery and liver abscesses, acquires nutrients by engulfing bacteria in the colonic lumen and phagocytoses apoptotic cells during tissue invasion. In preliminary studies to identify ligands that stimulate amoebic phagocytosis, we used ovalbumin immobilized on latex particles as a potential negative control protein. Surprisingly, ovalbumin strongly stimulated E. histolytica particle uptake. Experiments using highly purified ovalbumin confirmed the specificity of this finding. The mechanism of particle uptake was actin-dependent, and the Entamoeba phagosome marker amoebapore A localised to ovalbumin-bead containing vacuoles. The most well described amoebic receptor is a Gal/GalNAc-specific lectin, but d-galactose had no effect on ovalbumin-stimulated phagocytosis. Ovalbumin has a single N-glycosylation site (Asn(292)) and is modified with oligomannose and hybrid-type oligosaccharides. We used both trifluoromethanesulfonic acid and N-glycanase to deglycosylate ovalbumin and tested the effect. Both methods substantially reduced the stimulatory effect of ovalbumin. Biotinylated ovalbumin bound the surface of fixed E. histolytica trophozoites saturably; furthermore, denatured ovalbumin and native ovalbumin both specifically inhibited ovalbumin-biotin binding, but deglycosylated ovalbumin had no effect. Collectively, these data suggest that E. histolytica has a previously unrecognised surface lectin activity that binds to carbohydrates on ovalbumin and stimulates phagocytosis.
Collapse
Affiliation(s)
- Bradley T. Heron
- Cell and Molecular Biology Program, University of Vermont College of Medicine, Burlington, Vermont 05405, U.S.A
| | - Adam Sateriale
- Cell and Molecular Biology Program, University of Vermont College of Medicine, Burlington, Vermont 05405, U.S.A
| | - Jose E. Teixeira
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405, U.S.A
| | - Christopher D. Huston
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405, U.S.A
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont 05405, U.S.A
| |
Collapse
|
22
|
Reyes-López M, Bermúdez-Cruz RM, Avila EE, de la Garza M. Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology (Reading) 2011; 157:209-219. [DOI: 10.1099/mic.0.040063-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.
Collapse
Affiliation(s)
- Magda Reyes-López
- Programa de Doctorado en Ciencias Biológicas de la Universidad Autónoma Metropolitana, Apdo Postal 23-181, México, DF 04960, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| | - Eva E. Avila
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Colonia Noria Alta, Guanajuato, Gto, 36000, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| |
Collapse
|
23
|
Rekhi B, Ramadwar M, Shukla P. Cytomorphological spectrum of amoebic liver abscess in an uncommon case, clinically masquerading as malignancy. Diagn Cytopathol 2010; 39:827-9. [PMID: 20949476 DOI: 10.1002/dc.21524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/30/2010] [Indexed: 01/21/2023]
Affiliation(s)
- Bharat Rekhi
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, India.
| | | | | |
Collapse
|