1
|
Moita D, Maia TG, Duarte M, Andrade CM, Albuquerque IS, Dwivedi A, Silva JC, González-Céron L, Janse CJ, Mendes AM, Prudêncio M. A genetically modified Plasmodium berghei parasite as a surrogate for whole-sporozoite vaccination against P. vivax malaria. NPJ Vaccines 2022; 7:163. [PMID: 36526627 PMCID: PMC9755804 DOI: 10.1038/s41541-022-00585-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Two malaria parasite species, Plasmodium falciparum (Pf) and P. vivax (Pv) are responsible for most of the disease burden caused by malaria. Vaccine development against this disease has focused mainly on Pf. Whole-sporozoite (WSp) vaccination, targeting pre-erythrocytic (PE) parasite stages, is a promising strategy for immunization against malaria and several PfWSp-based vaccine candidates are currently undergoing clinical evaluation. In contrast, no WSp candidates have been developed for Pv, mainly due to constraints in the production of Pv sporozoites in the laboratory. Recently, we developed a novel approach for WSp vaccination against Pf based on the use of transgenic rodent P. berghei (Pb) sporozoites expressing immunogens of this human-infective parasite. We showed that this platform can be used to deliver PE Pf antigens, eliciting both targeted humoral responses and cross-species cellular immune responses against Pf. Here we explored this WSp platform for the delivery of Pv antigens. As the Pv circumsporozoite protein (CSP) is a leading vaccine candidate antigen, we generated a transgenic Pb parasite, PbviVac, that, in addition to its endogenous PbCSP, expresses PvCSP under the control of a strictly PE promoter. Immunofluorescence microscopy analyses confirmed that both the PbCSP and the PvCSP antigens are expressed in PbviVac sporozoites and liver stages and that PbviVac sporozoite infectivity of hepatic cells is similar to that of its wild-type Pb counterpart. Immunization of mice with PbviVac sporozoites elicits the production of anti-PvCSP antibodies that efficiently recognize and bind to Pv sporozoites. Our results warrant further development and evaluation of PbviVac as a surrogate for WSp vaccination against Pv malaria.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Duarte
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Carolina M Andrade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lilia González-Céron
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Genetic Diversity of Circumsporozoite Surface Protein of Plasmodium vivax from the Central Highlands, Vietnam. Pathogens 2022; 11:pathogens11101158. [PMID: 36297215 PMCID: PMC9611680 DOI: 10.3390/pathogens11101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
The circumsporozoite surface protein of Plasmodium vivax (PvCSP) plays a critical role in parasite biology. It has been extensively studied as a leading vivax-malaria-vaccine candidate. In this study, the genetic polymorphism and natural selection of pvcsp in P. vivax isolates collected from the Central Highlands, Vietnam were analyzed to understand the genetic structure of the parasite circulating in the endemic area and to provide baseline information for effective vaccine development based on the protein. Only two major alleles, VK210 and VK247, were detected in Vietnamese pvcsp, with VK247 being the predominant one. The N-terminal and C-terminal regions of Vietnamese VK210 and VK247 variants showed a low genetic diversity. Amino acid substitutions, insertions of a single amino acid or octapeptide (ANKKAEDA in VK210 and ANKKAGDA in VK247), and tetrapeptide repeat motifs (GGNA) were the main factors generating genetic diversity in the two regions of the Vietnamese VK210 and VK247 variants. Interestingly, these two regions of Vietnamese pvcsp displayed a unique natural selection pressure distinct from global pvcsp, particularly with the neighboring Southeast Asian pvcsp population. Meanwhile, the central repeat region (CRR) in both the VK210 and VK247 variants showed a high degree of polymorphic characters, caused by varying numbers, types, and combinations of peptide repeat motifs (PRMs) in Vietnamese pvcsp. Highly complicated polymorphic patterns of the CRR were also detected in global pvcsp. These results expand our understanding of the genetic structure of Vietnamese pvcsp and the population dynamics of P. vivax in the Central Highlands, Vietnam.
Collapse
|
3
|
Naz S, Ahmad S, Abbasi SW, Ismail S, Waseem S, Tahir Ul Qamar M, Almatroudi A, Ali Z. Identification of immunodominant epitopes in allelic variants VK210 and VK247 of Plasmodium Vivax Circumsporozoite immunogen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105120. [PMID: 34655808 DOI: 10.1016/j.meegid.2021.105120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax-induced malaria is among the leading causes of morbidity and mortality in sub-tropical and tropical regions and infect 2.85 billion people globally. The continual rise and propagation of resistance against anti-malarial drugs is a prerequisite to develop a potent vaccine candidate for Plasmodium vivax (P. vivax). Circumsporozoite protein (CSP) is an important immunogen of malaria parasite that has the conserved CSP structure as an immune dominant B-cell epitope. In current study, we focused on designing multi-epitope vaccines (MEVs) using various immunoinformatics tools against Pakistani based allelic variants VK210 and VK247 of P. vivax CSP (PvCSP) gene. Antigenicity, allergic potential and physicochemical parameters of both PvCSP variants were assessed for the designed MEVs and they were within acceptable range suitable for post experimental investigations. The three-dimensional structures of both MEVs have been predicted ab initio, optimized, and validated by using different online servers. The both MEVs candidates were stable and free from aggregation-prone regions. The stability of both MEVs had been improved by a disulfide engineering approach. To estimate the binding energy and stability of the MEVs, molecular docking simulation and binding free energy calculations with TLR-4 immune receptor have been conducted. The docking score of PvCSP210 and PvCSP247 for TLR-4 was -6.34 kJ/mol and - 2.3 kJ/mol, respectively. For PvCSP210-TLR4 system, mean RMSD was 4.96 Å while PvCSP247-TLR4 system, average RMSD was 4.49 Å. The binding free energy of PvCSP210-TLR4 complex and PvCSP247-TLR4 complex was -50.49/-117.15 kcal/mol (MMGBSA/MMPSA) and -52.94/-96.26 kcal/mol (MMGBSA/MMPSA), respectively. The expression of both MEVs produced in Escherichia coli K12 expression system by in silico cloning was significant. Immune simulation revealed that the proposed MEVs induce strong humoral and cellular immunological responses, in addition to significant production of interleukins and cytokines. In conclusions, we believed that the MEVs proposed in current research, using combine approach of immunoinformatics, structural biology and biophysical approaches, could induce protective and effective immune responses against P. vivax and the experimental validation of our findings could contribute to the development of potential malaria vaccine.
Collapse
Affiliation(s)
- Shumaila Naz
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan.
| | - Saba Ismail
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Shahid Waseem
- Alpha Genomics (Pvt) Ltd., Plot 4-C, Danyal Plaza, Block A, Main Main PWD Rd, Sector A PWD Society, Islamabad
| | | | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Zain Ali
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
4
|
Bibi Z, Fatima A, Rani R, Maqbool A, Khan S, Naz S, Waseem S. Genetic characterization of Plasmodium vivax isolates from Pakistan using circumsporozoite protein (pvcsp) and merozoite surface protein-1 (pvmsp-1) genes as genetic markers. Malar J 2021; 20:112. [PMID: 33632220 PMCID: PMC7908770 DOI: 10.1186/s12936-021-03654-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/16/2021] [Indexed: 03/06/2023] Open
Abstract
Background Plasmodium vivax contributes to over 70% malaria burden in Pakistan, but limited data exists on various aspects including genetic diversity of the parasite as compared to other parts of the world. Since the information about the genetic diversity of P. vivax assists to understand the population dynamics of the parasite, the current study was designed to understand population divergence of P. vivax in Pakistan using circumsporozoite protein (pvcsp) and merozoite surface protein-1 (pvmsp-1) genes as molecular markers. Methods The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates, followed by DNA sequencing of 35 and 30, respectively. Genetic diversity and polymorphism were analysed using ChromasPro, ClustalW, MEGA7, DnaSP v.5 and WebLogo programs. Results The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates and resulting the PCR products of 1100 bp for pvcsp and ~ 400 bp for pvmsp-1 genes, respectively. In the central-repeat region (CRR) of pvcsp gene, sequences comprised of four variable repeats of PRMs, out of which GDRADGQPA (PRM1), GDRAAGQPA (PRM2) were more extensively dispersed among the P. vivax isolates. Partial sequences (~ 400 bp) of block 2 of pvmsp-1 gene depicted high level of diversity. Conclusion The results revealed the polymorphism and genetic diversity especially at the CRR of pvcsp and block 2 of pvmsp-1 genes, respectively. The base-line data presented here warrants future studies to investigate more into the genetic diversity of P. vivax with large sample size from across the country for better understanding of population dynamics of P. vivax that will help to control malaria at individual and community level.
Collapse
Affiliation(s)
- Zainab Bibi
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Anam Fatima
- Department of Medicine, Polyclinic Hospital, Islamabad, Pakistan
| | - Rehana Rani
- Department of Life Sciences, Abasyn University, Islamabad, Pakistan
| | - Ayesha Maqbool
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Samea Khan
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Shahid Waseem
- Alpha Genomics (Pvt) Ltd, Islamabad, Pakistan. .,ABO SCIENTIFIC, Dhamial Road, Rawalpindi, Pakistan.
| |
Collapse
|
5
|
Almeida-de-Oliveira NK, de Abreu-Fernandes R, Lima-Cury L, de Lavigne AR, de Pina-Costa A, Perce-da-Silva DDS, Catanho M, Rossi AD, Brasil P, Tadeu Daniel-Ribeiro C, Ferreira-da-Cruz MDF. Balancing selection and high genetic diversity of Plasmodium vivax circumsporozoite central region in parasites from Brazilian Amazon and Rio de Janeiro Atlantic Forest. PLoS One 2020; 15:e0241426. [PMID: 33166298 PMCID: PMC7652573 DOI: 10.1371/journal.pone.0241426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/14/2020] [Indexed: 11/19/2022] Open
Abstract
Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium species. Knowledge about their genetic diversity can help predict vaccine efficacy and the spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 isolates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a variable number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes (168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype network revealed similar distances among the BA and AF regions. The linkage disequilibrium indicates that recombination does not seem to be acting in diversity, reinforcing natural selection's role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism frequencies could be indicators of balancing selection. Although malaria in BA and AF have distinct vector species and different host immune pressures, consistent genetic signature was found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and the Th3R epitope remained conserved in all studied regions. We conclude that, although the uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.
Collapse
Affiliation(s)
- Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Lidiane Lima-Cury
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Aline Rosa de Lavigne
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, Rio de Janeiro, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, IOC, Fiocruz, Rio de Janeiro, Brazil
| | - Atila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Võ TC, Lê HG, Kang JM, Moe M, Naw H, Myint MK, Lee J, Sohn WM, Kim TS, Na BK. Genetic polymorphism and natural selection of circumsporozoite protein in Myanmar Plasmodium vivax. Malar J 2020; 19:303. [PMID: 32883283 PMCID: PMC7650223 DOI: 10.1186/s12936-020-03366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Background Circumsporozoite surface protein (CSP) of malaria parasites has been recognized as one of the leading vaccine candidates. Clinical trials of vaccines for vivax malaria incorporating Plasmodium vivax CSP (PvCSP) have demonstrated their effectiveness in preventing malaria, at least in part. However, genetic diversity of pvcsp in the natural population remains a major concern. Methods A total of 171 blood samples collected from patients infected with Plasmodium vivax in Myanmar were analysed in this study. The pvcsp was amplified by polymerase chain reaction, followed by cloning and sequencing. Polymorphic characteristics and natural selection of pvcsp population in Myanmar were analysed using DNASTAR, MEGA6 and DnaSP programs. The polymorphic pattern and natural selection of publicly accessible global pvcsp sequences were also comparatively analysed. Results Myanmar pvcsp sequences were divided into two subtypes VK210 and VK247 comprising 143 and 28 sequences, respectively. The VK210 subtypes showed higher levels of genetic diversity and polymorphism than the VK247 subtypes. The N-terminal non-repeat region of pvcsp displayed limited genetic variations in the global population. Different patterns of octapeptide insertion (ANKKAEDA in VK210 and ANKKAGDA in VK247) and tetrapeptide repeat motif (GGNA) were identified in the C-terminal region of global pvcsp population. Meanwhile, the central repeat region (CRR) of Myanmar and global pvcsp, both in VK210 and VK247 variants, was highly polymorphic. The high level of genetic diversity in the CRR has been attributed to the different numbers, types and combinations of peptide repeat motifs (PRMs). Interestingly, 27 and 5 novel PRMs were found in Myanmar VK210 and VK247 variants, respectively. Conclusion Comparative analysis of the global pvcsp population suggests a complex genetic profile of pvcsp in the global population. These results widen understanding of the genetic make-up of pvcsp in the global P. vivax population and provide valuable information for the development of a vaccine based on PvCSP.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Mya Moe
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
7
|
ETEMADI S, NATEGHPOUR M, MOTEVALLI HAGHI A, ESLAMI H, MOHEBALI M, SETAYESH N, FARIVAR L, TEIMOURI A. Genotyping and Phylogenetic Analysis of Plasmodium vivax Circumsporozoite Protein ( PvCSP) Gene of Clinical Isolates in South-Eastern Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:981-988. [PMID: 32953687 PMCID: PMC7475636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circumsporozoite protein (CSP) is one of the most important surface sporozoite antigens in malaria, recently considered as a candidate for vaccination. Considering the importance of CSP, this study was conducted to investigate the polymorphism and genetic diversity of Plasmodium vivax Circumsporozoite Protein (Pvcsp) in the southeastern region of Iran during 2015-2016. METHODS To investigate polymorphism and genetic diversity, 20 blood samples were collected from patients with P. vivax, then DNA was extracted and amplified using partial sequence of CSP gene. Polymerase chain reaction (PCR) products were sequenced and compared to sequences from genomic databases using BLAST. Genetic evaluation and phylogenic analysis were performed using MEGA7 and DnaSP5 software's on 38 sequences include 20 sequences of our study and 18 sequences of Gene Bank. RESULTS Eleven isolates were VK210 genotype and 9 isolates contained VK247. The result of variable segregation nucleotide site indicated that the differentiation of sequences in CSP were 25.67% in our 20 samples which are less than the 38 samples with a value of 26.67%. Comparing the ratio of dN/dS regions in the CSP gene indicates that the CSP varies more synonymously and amino acid has lower variation. Out of 38 samples, 35 unique haplotypes were identified based on 1042 nucleotide sequences in CSP, showing a variation percentage of 99.4%. CONCLUSION The Tajima D analyses showed that CSP gene in P. vivax had a positive number in the total analyzed sequences, which means that the P. vivax mutations are in order to select positive evolution.
Collapse
Affiliation(s)
- Soudabeh ETEMADI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Department of Parasitology and Mycology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi NATEGHPOUR
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Afsaneh MOTEVALLI HAGHI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid ESLAMI
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi MOHEBALI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda SETAYESH
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila FARIVAR
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref TEIMOURI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bharti PK, Bansal D, Mohapatra PK, Mahanta J, Sultan AA. Exploration of genetic diversity of Plasmodium vivax circumsporozoite protein (Pvcsp) and Plasmodium vivax sexual stage antigen (Pvs25) among North Indian isolates. Malar J 2019; 18:308. [PMID: 31492135 PMCID: PMC6731556 DOI: 10.1186/s12936-019-2939-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the important vector-borne diseases with high fatality rates in tropical countries. The pattern of emergence and spread of novel antigenic variants, leading to escape of vaccine-induced immunity might be factors responsible for severe malaria. A high level of polymorphism has been reported among malarial antigens which are under selection pressure imposed by host immunity. There are limited reports available on comparative stage-specific genetic diversity among Plasmodium vivax candidate genes in complicated vivax malaria. The present study was planned to study genetic diversity (Pvcsp and Pvs25) among complicated and uncomplicated P. vivax isolates. METHODS Pvcsp and Pvs2-specific PCRs and DNA sequencing were performed on P. vivax PCR positive samples. Genetic diversity was analysed using appropriate software. RESULTS The present study was carried out on 143 P. vivax clinical isolates, collected from Postgraduate Institute of Medical Education and Research, Chandigarh. Among the classic and variant types of Pvcsp, the VK210 (99%; 115/116) was found to be predominant in both complicated and uncomplicated group isolates. Out of the various peptide repeat motifs (PRMs) observed, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) was the most widely distributed among the P. vivax isolates. Whereas among the Pvs25 isolates, 100% of double mutants (E97Q/I130T) in both the complicated (45/45) as well as in the uncomplicated (81/81) group was observed. CONCLUSION An analysis of genetic variability enables an understanding of the role of genetic variants in severe vivax malaria.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Nagpur Road, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar.,Ministry of Public Health, Doha, Qatar
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
9
|
Pratt-Riccio LR, Baptista BDO, Torres VR, Bianco-Junior C, Perce-Da-Silva DDS, Riccio EKP, Lima-Junior JDC, Totino PRR, Cassiano GC, Storti-Melo LM, Machado RLD, de Oliveira-Ferreira J, Banic DM, Carvalho LJDM, Daniel-Ribeiro CT. Chloroquine and mefloquine resistance profiles are not related to the circumsporozoite protein (CSP) VK210 subtypes in field isolates of Plasmodium vivax from Manaus, Brazilian Amazon. Mem Inst Oswaldo Cruz 2019; 114:e190054. [PMID: 31411308 PMCID: PMC6690721 DOI: 10.1590/0074-02760190054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.
Collapse
Affiliation(s)
- Lilian Rose Pratt-Riccio
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Bárbara de Oliveira Baptista
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Vanessa Rodrigues Torres
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Cesare Bianco-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Daiana de Souza Perce-Da-Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Evelyn Kety Pratt Riccio
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Josué da Costa Lima-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Paulo Renato Rivas Totino
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Gustavo Capatti Cassiano
- Universidade de Campinas, Departamento de Genética, Evolução e Bioagentes, Laboratório de Doenças Tropicais, Campinas, SP, Brasil
| | - Luciane Moreno Storti-Melo
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Aracaju, SE, Brasil
| | - Ricardo Luiz Dantas Machado
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brasil
| | - Joseli de Oliveira-Ferreira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Dalma Maria Banic
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Clínica, Rio de Janeiro, RJ, Brasil
| | - Leonardo José de Moura Carvalho
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Abstract
BACKGROUND Plasmodium vivax remains a potential cause of morbidity and mortality for people living where it is endemic. Understanding the regional genetic diversity of P. vivax is valuable for studying population dynamics and tracing the origins of parasites. The Plasmodium vivax circumsporozoite gene (PvCSP) is highly polymorphic and has been used previously as a marker in P. vivax population studies. The aim of this study is to investigate the genetic diversity of the PvCSP, to provide more genetic polymorphism data for further studies on P. vivax population structure, and tracking of the origin of clinical cases. METHODS Nested PCR and DNA sequencing of the PvCSP were performed to obtain nucleotide sequences of P. vivax isolates collected from Zhejiang province, China, between 2006 and 2014. To investigate the genetic diversity of PvCSP, the nucleotide sequences and amino acid sequences of the PvCSP were analyzed using DNAstar, Mega software and the phylogenetic tree constructed. The relatedness between the polymorphism and infection source were also analyzed using the SPSS software. RESULTS The 66 P. vivax isolates collected from Zhejiang province were either indigenous cases or cases imported from different regions of the world. All 66 P. vivax isolates belonged to the VK210 variant. Fourteen different Peptide Repeat Motifs (PRMs) were detected in the Central Repeat Region (CRR) of PvCSP, among which, two PRMs of GDRADGQPA and GDRAAGQPA were widely distributed in all isolates. Several polymorphic characteristics of the VK210 variant were observed, including the insertion sequence of 12 peptides, the frequency of the GGNA repeat, the frequency of the PRMs repeat in CRR, and the frequency of the PRM of GNGAGGQAA repeat, which were indicative for tracking the parasite. CONCLUSION This study presents abundant genetic diversity in the PvCSP marker among P. vivax strains around the world. The genetic data are valuable to expand the polymorphism information on P. vivax, which could be helpful for further study on population dynamics and tracking the origin of P. vivax.
Collapse
|
11
|
Population genetics structure of Plasmodium vivax circumsporozoite protein during the elimination process in low and unstable malaria transmission areas, southeast of Iran. Acta Trop 2016; 160:23-34. [PMID: 27102931 DOI: 10.1016/j.actatropica.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 11/20/2022]
Abstract
In Iran, the prevalence of Plasmodium falciparum and Plasmodium vivax has dropped after a national malaria elimination program was launched. To estimate the likelihood of success and to measure the outcome of malaria intervention tools during elimination programs (2008-2012), the population genetic surveys of Iranian P. vivax isolates (n=60) were carried out using the CSP genetic marker. The results were compared with a similar work that was carried out during a control phase (2000-2003) in the same study areas. Based on PCR-RFLP analysis, 49 (81.67%) of 60 studied samples were VK210 and 11 (18.33%) were VK247 with no mixed genotypes. However, 10.97% of P. vivax isolates of control phase harbored the mixed genotypes. Sequencing analysis of 50 pvcsp gene showed 14 distinct haplotypes, of which 11 and 3 were VK210 and VK247 types, respectively. However, during the control phase, 19 distinct subtypes (11 VK210 and 8 VK247) were reported. Also, 7 of 11 VK210 and the VK247F subtypes were new, and 3 out of 7 new VK210 and VK247F were isolated from the patients with Pakistani nationality. The lower nucleotide diversity per site (π=0.02017±0.00436 and π=0.04525±0.00255) and haplotype diversity (Hd=0.513±0.093 and Hd=0.691±0.128) as well as lower In/Del haplotype [Hd(i)=0.243 and 0] and nucleotide diversity [π(i)=0.00078 and 0] were recorded for VK210 and VK247of the elimination samples, respectively. In conclusion, the comparison of PRMs and RATs in CRR along with the polymorphism analysis of the sequence lengths, SNPs, and In/Del polymorphisms in all analyzed samples showed lower genetic diversity for PvCSP in the elimination samples. Also, although there is a turnover of P. vivax parasite genotypes in the study areas, reduction in genetic diversity and transmission was detected due to scaling-up of the intervention tools during an elimination program in Iran. This notable challenge of the elimination program must be taken into account and controlled by active surveillance for limiting both reintroductions of new allelic forms as well as the spread of drug-resistant parasite to prevent any disease outbreaks.
Collapse
|
12
|
Kibria MG, Elahi R, Mohon AN, Khan WA, Haque R, Alam MS. Genetic diversity of Plasmodium vivax in clinical isolates from Bangladesh. Malar J 2015; 14:267. [PMID: 26159168 PMCID: PMC4498513 DOI: 10.1186/s12936-015-0790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
Background Plasmodium vivax is the second most prevalent human malaria parasite in Bangladesh; however, there are no data of its genetic diversity. Several molecular markers are available where Pvcsp, Pvmsp 1 and Pvmsp 3α are most commonly used for P. vivax genotyping studies. The aim of the study was to investigate the population structure of P. vivax in Bangladesh. Methods A total of 102 P. vivax-positive blood samples were collected from different malaria-endemic areas in Bangladesh and subsequently analysed for those three genotyping markers. Nested PCR was performed for diagnosis and genotyping analysis followed by PCR–RFLP to detect genetic diversity using Pvcsp, Pvmsp 1 and Pvmsp 3α markers. Results Analysis of Pvcsp showed that the VK210 repeat type was highly prevalent (64.7%, 66/102) compared to VK247 (35.3%, 36/102), although the prevalence of VK247 was higher than other Southeast Asian countries. Analysis of these three genes revealed a diverse, circulating population of P. vivax where a total of ten, 56 and 35 distinct genotypes were detected for Pvcsp, Pvmsp 1 and Pvmsp 3α, respectively. Conclusion This genotyping observation of P. vivax is the first report from Bangladesh and will provide valuable information for establishing the genotyping methods and circulating genetic variants of these three markers available in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Rubayet Elahi
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh. .,Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Abu Naser Mohon
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh. .,Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N1N4, Canada.
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| |
Collapse
|
13
|
Talha AA, Pirahmadi S, Mehrizi AA, Djadid ND, Nour BYM, Zakeri S. Molecular genetic analysis of Plasmodium vivax isolates from Eastern and Central Sudan using pvcsp and pvmsp-3α genes as molecular markers. INFECTION GENETICS AND EVOLUTION 2015; 32:12-22. [PMID: 25721363 DOI: 10.1016/j.meegid.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Abstract
In Sudan, Plasmodium vivax accounts for approximately 5-10% of malaria cases. This study was carried out to determine the genetic diversity of P. vivax population from Sudan by analyzing the polymorphism of P. vivax csp (pvcsp) and pvmsp-3α genes. Blood samples (n=76) were taken from suspected malaria cases from 2012-2013 in three health centers of Eastern and Central Sudan. Parasite detection was performed by microscopy and molecular techniques, and genotyping of both genes was performed by PCR-RFLP followed by DNA sequence for only pvcsp gene (n=30). Based on microscopy analysis, 76 (%100) patients were infected with P. vivax, whereas nested-PCR results showed that 86.8% (n=66), 3.9% (n=3), and 3.9% (n=3) of tested samples had P. vivax as well as Plasmodium falciparum mono- and mixed infections, respectively. Four out of 76 samples had no results in molecular diagnosis. All sequenced samples were found to be of VK210 (100%) genotype with six distinct amino acid haplotypes, and 210A (66.7%) was the most prevalent haplotype. The Sudanese isolates displayed variations in the peptide repeat motifs (PRMs) ranging from 17 to 19 with GDRADGQPA (PRM1), GDRAAGQPA (PRM2) and DDRAAGQPA (PRM3). Also, 54 polymorphic sites with 56 mutations were found in repeat and post-repeat regions of the pvcsp and the overall nucleotide diversity (π) was 0.02149±0.00539. A negative value of dN-dS (-0.0344) was found that suggested a significant purifying selection of Sudanese pvcsp, (Z test, P<0.05). Regarding pvmsp-3α, three types were detected: types A (94.6%, 52/55), type C (3.6%, 2/55), and type B (1.8%, 1/55). No multiclonal infections were detected, and RFLP analysis identified 13 (Hha I, A1-A11, B1, and C1) and 16 (Alu I, A1-A14, B1, and C1) distinct allelic forms. In conclusion, genetic investigation among Sudanese P. vivax isolates indicated that this antigen showed limited antigenic diversity.
Collapse
Affiliation(s)
- Albadawi Abdelbagi Talha
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, P.O. Box 20, Wad Medani, Sudan; Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan
| | - Sekineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Bakri Y M Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, P.O. Box 20, Wad Medani, Sudan; Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
14
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
15
|
Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl Trop Dis 2014; 8:e2796. [PMID: 24743266 PMCID: PMC3990511 DOI: 10.1371/journal.pntd.0002796] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/05/2014] [Indexed: 02/04/2023] Open
|
16
|
Pacheco MA, Cranfield M, Cameron K, Escalante AA. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar J 2013; 12:328. [PMID: 24044371 PMCID: PMC3848613 DOI: 10.1186/1475-2875-12-328] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/13/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. METHODS Here, the remainders of 74 blood samples collected as part of the chimpanzees' routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. RESULTS/CONCLUSIONS Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum.Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species.An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region. Msp2 and var2CSA, however, show extended recent polymorphism in P. falciparum that likely originated after the P. reichenowi-P. falciparum split. The accumulation of such diversity may indicate adaptation to the human host. These examples support the notion that comparative approaches among P. falciparum and its related species will be of great value in understanding the evolution of proteins that are important in parasite invasion of the human red blood cell, as well as those involved in malaria pathogenesis.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | | | | | | |
Collapse
|
17
|
González-Cerón L, Martinez-Barnetche J, Montero-Solís C, Santillán F, Soto AM, Rodríguez MH, Espinosa BJ, Chávez OA. Molecular epidemiology of Plasmodium vivax in Latin America: polymorphism and evolutionary relationships of the circumsporozoite gene. Malar J 2013; 12:243. [PMID: 23855807 PMCID: PMC3729580 DOI: 10.1186/1475-2875-12-243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023] Open
Abstract
Background The origins and dispersal of Plasmodium vivax to its current worldwide distribution remains controversial. Although progress on P. vivax genetics and genomics has been achieved worldwide, information concerning New World parasites remains fragmented and largely incomplete. More information on the genetic diversity in Latin America (LA) is needed to better explain current patterns of parasite dispersion and evolution. Methods Plasmodium vivax circumsporozoite protein gene polymorphism was investigated using polymerase chain reaction amplification and restriction fragment length polymorphism (PCR-RFLP), and Sanger sequencing in isolates from the Pacific Ocean coast of Mexico, Nicaragua, and Peru. In conjunction with worldwide sequences retrieved from the Genbank, mismatch distribution analysis of central repeat region (CRR), frequency estimation of unique repeat types and phylogenetic analysis of the 3′ terminal region, were performed to obtain an integrative view of the genetic relationships between regional and worldwide isolates. Results Four RFLP subtypes, vk210a, b, c and d were identified in Southern Mexico and three subtypes vk210a, e and f in Nicaragua. The nucleotide sequences showed that Mexican vk210a and all Nicaraguan isolates were similar to other American parasites. In contrast, vk210b, c and d were less frequent, had a domain ANKKAEDA in their carboxyl end and clustered with Asian isolates. All vk247 isolates from Mexico and Peru had identical RFLP pattern. Their nucleotide sequences showed two copies of GGQAAGGNAANKKAGDAGA at the carboxyl end. Differences in mismatch distribution parameters of the CRR separate vk247 from most vk210 isolates. While vk247 isolates display a homogeneous pattern with no geographical clustering, vk210 isolates display a heterogeneous geographically clustered pattern which clearly separates LA from non-American isolates, except vk210b, c and d from Southern Mexico. Conclusions The presence of vk210a in Mexico and vk210e, f and g in Nicaragua are consistent with other previously reported LA isolates and reflect their circulation throughout the continent. The vk210b, c and d are novel genotypes in LA. Their genetic relationships and low variability within these vk210 and/or within the vk247 parasites in Southern Mexico suggest its recent introduction and/or recent expansion to this region. The global analysis of P. vivax csp suggests this parasite introduction to the region and likely LA by different independent events.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dias S, Wickramarachchi T, Sahabandu I, Escalante AA, Udagama PV. Population genetic structure of the Plasmodium vivax circumsporozoite protein (Pvcsp) in Sri Lanka. Gene 2013; 518:381-7. [PMID: 23333606 DOI: 10.1016/j.gene.2013.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Molecular methods elucidate evolutionary and ecological processes in parasites, where interaction between hosts and parasites enlighten the evolution of parasite lifestyles and host defenses. Population genetics of Plasmodium vivax parasites accurately describe transmission dynamics of the parasites and evaluation of malaria control measures. As a first generation vaccine candidate against malaria, the Circumsporozoite Protein (CSP) has demonstrated significant potential in P. falciparum. Extensive polymorphism hinders the development of a potent malaria vaccine. Hence, the genetic diversity of Pvcsp was investigated for the first time in 60 Sri Lankan clinical isolates by obtaining the nucleotide sequence of the central repeat (CR) domain and examining the polymorphism of the peptide repeat motifs (PRMs), the genetic diversity indices and phylogenetic relationships. PCR amplicons determined size polymorphism of 610, 700 and 710 bp in Pvcsp of Sri Lanka where all amino acid sequences obtained were of the VK210 variant, consisting variable repeats of 4 different PRMs. The two most abundant PRMs of the CR domain, GDRADGQPA and GDRAAGQPA consisted ~2-4 repeats, while GNRAAGQPA was unique to the island. Though, different nucleotide sequences termed repeat allotypes (RATs) were observed for each PRM, these were synonymous contributing to a less polymorphic CR domain. The genetic diversity of Pvcsp in Sri Lanka was due to the number of repetitive peptide repeat motifs, point mutations, and intragenic recombination. The 19 amino acid haplotypes defined were exclusive to Sri Lanka, whereas the 194 Pvcsp sequences of global isolates generated 57 more distinct a.a. haplotypes of the VK210 variant. Strikingly, the CR domain of both VK210 and VK247 variants was under purifying selection interpreting the scarcity of CSP non-synonymous polymorphisms. Insights to the distribution of RATs in the CR region with geographic clustering of the P. vivax VK210 variant were revealed. The cladogram reiterated this unique geographic clustering of local (VK210) and global isolates (VK210 and VK247), which was further validated by the elevated fixation index values of the VK210 variant.
Collapse
Affiliation(s)
- Sajani Dias
- Department of Zoology, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | | | | | | | | |
Collapse
|
19
|
Brito CFAD, Ferreira MU. Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:12-26. [PMID: 21881753 DOI: 10.1590/s0074-02762011000900003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 11/22/2022] Open
Abstract
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.
Collapse
|
20
|
Henry-Halldin CN, Sepe D, Susapu M, McNamara DT, Bockarie M, King CL, Zimmerman PA. High-throughput molecular diagnosis of circumsporozoite variants VK210 and VK247 detects complex Plasmodium vivax infections in malaria endemic populations in Papua New Guinea. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2011; 11:391-8. [PMID: 21147267 PMCID: PMC3728899 DOI: 10.1016/j.meegid.2010.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 10/11/2010] [Accepted: 11/24/2010] [Indexed: 12/01/2022]
Abstract
Malaria is endemic in lowland and coastal regions of Papua New Guinea (PNG), and is caused by Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. Infection by P. vivax is attributed to distinct strains, VK210 and VK247, which differ in the sequence of the circumsporozoite protein (pvcsp). Here, based upon sequence polymorphisms in pvcsp, we developed a post-PCR ligation detection reaction-fluorescent microsphere assay (LDR-FMA) to distinguish these P. vivax strains. This diagnostic assay was designed to detect the presence of both VK210 and VK247 P. vivax strains simultaneously in a high-throughput 96-well format. Using this assay, we analyzed human blood samples from the Wosera (n=703) and Mugil (n=986) regions to evaluate the prevalence of these P. vivax strains. VK210 and VK247 strains were found in both study sites. In the Wosera, single infections with VK210 strain were observed to be most common (41.7%), followed by mixed-strain (36.8%) and VK247 single-strain infections (21.5%). Similarly, in Mugil, VK210 single-strain infections were most common (51.6%), followed by mixed-strain (34.4%) and VK247 single-strain infections (14%). These results suggest that the distribution of P. vivax infections was similar between the two study sites. Interestingly, we observed a non-random distribution of these two P. vivax strains, as mixed-strain infections were significantly more prevalent than expected in both study sites (Wosera and Mugil χ(2)p-value<0.001). Additionally, DNA sequence analysis of a subset of P. vivax infections showed that no individual pvcsp alleles were shared between the two study sites. Overall, our results illustrate that PNG malaria-endemic regions harbor a complex mixture of P. vivax strains, and emphasize the importance of malaria control strategies that would be effective against a highly diverse parasite population.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Child
- Child, Preschool
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- Genetic Variation
- Genotype
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Infant
- Malaria, Vivax/diagnosis
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Middle Aged
- Papua New Guinea/epidemiology
- Plasmodium vivax/classification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- Polymerase Chain Reaction
- Polymorphism, Single Nucleotide
- Prevalence
- Protozoan Proteins/analysis
- Protozoan Proteins/genetics
- Sequence Analysis, DNA
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Cara N. Henry-Halldin
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, Room 4-125, 2103 Cornell Rd., Cleveland, OH 44106, United States
| | - Daphne Sepe
- Papua New Guinea Institute of Medical Research, PO Box 378, Madang, Madang 511, Papua New Guinea
| | - Melinda Susapu
- Papua New Guinea Institute of Medical Research, PO Box 378, Madang, Madang 511, Papua New Guinea
| | - David T. McNamara
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, Room 4-125, 2103 Cornell Rd., Cleveland, OH 44106, United States
| | - Moses Bockarie
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, Room 4-125, 2103 Cornell Rd., Cleveland, OH 44106, United States
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, Room 4-125, 2103 Cornell Rd., Cleveland, OH 44106, United States
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, Room 4-125, 2103 Cornell Rd., Cleveland, OH 44106, United States
| |
Collapse
|