1
|
Nateghi-Rostami M, Lipoldová M, Sohrabi Y. Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis. Front Immunol 2025; 16:1559907. [PMID: 40330482 PMCID: PMC12052738 DOI: 10.3389/fimmu.2025.1559907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Collapse
Affiliation(s)
| | - Marie Lipoldová
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Suckow MA, Bolton ID, McDowell MA. Overview and Approaches for Handling of Animal Models of Leishmaniasis. Comp Med 2024; 74:148-155. [PMID: 39107941 PMCID: PMC11267445 DOI: 10.30802/aalas-cm-24-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Iris D Bolton
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
3
|
Mohammadpour I, Hatam GR, Handjani F, Bozorg-Ghalati F, PourKamal D, Motazedian MH. Leishmania cytochrome b gene sequence polymorphisms in southern Iran: relationships with different cutaneous clinical manifestations. BMC Infect Dis 2019; 19:98. [PMID: 30696426 PMCID: PMC6352432 DOI: 10.1186/s12879-018-3667-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/28/2018] [Indexed: 01/04/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) caused by Leishmania species, is a geographically extensive disease that infects humans and animals. CL is endemic in half of the 31 provinces of Iran, with 29,201 incidence cases reported in Fars province from 2010 to 2015. CL is polymorphic and may result in lesions characterized by different clinical features. Parasite genetic diversity is proposed to be one of the factors affecting the clinical outcome and lesion characteristics in CL patients. However, there is still very limited data regarding the genetic variation of Leishmania spp. based on the sequencing of Cytochrome b (Cyt b) gene. Methods All patients originated from endemic regions in Fars province. The amplification of the Cyt b gene from isolates of 100 patients with disparate clinical forms of CL was accomplished using Nested-PCR. Sequence analysis of the amplified Cyt b was used to scrutinize the genetic variations among Leishmania isolates and connect the results with clinical pictures. The clinical demonstrations were basically of two types, typical and atypical lesions. Molecular phylogenetic tree was constructed using the Neighbor-Joining method, with species/strains from this study compared to species/strains from other geographical regions. Results Leishmania major was identified as the predominant infecting Leishmania spp. (86% of cases), with the remainder of cases being infected by Leishmania tropica. Clinical examination of patients revealed 12 different clinical CL forms. Among Leishmania samples analyzed, five distinct haplotypes were recognized: three in L. major and two in L. tropica. We found a correlation between clinical outcomes and Cyt b sequence variation of Leishmania spp. involved. Moreover, we observed a higher presence of polymorphisms in L. major compared with L. tropica. This difference may be due to the different eco-epidemiologies of both species, with L. tropica being an anthroponosis compared to L. major, which is a zoonosis. Conclusions The sequence analysis of Cyt b gene from 25 L. major and L. tropica strains demonstrated genetic variability of L. major and L. tropica causing CL in southern Iran, and a feasible connection amid the genetic heterogeneity of the parasite, geographical source and clinical appearance of the disease in human was detected.
Collapse
Affiliation(s)
- Iraj Mohammadpour
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholam Reza Hatam
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Handjani
- Molecular Dermatology Research Center, Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Department of Molecular Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daniel PourKamal
- Fajr Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep 2018; 8:17336. [PMID: 30478412 PMCID: PMC6255768 DOI: 10.1038/s41598-018-35778-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
The establishment of Leishmania infection in mammalian hosts and the subsequent manifestation of clinical symptoms require internalization into macrophages, immune evasion and parasite survival and replication. Although many of the genes involved in these processes have been described, the genetic and genomic variability associated to differences in virulence is largely unknown. Here we present the genomic variation of four Leishmania (Viannia) panamensis strains exhibiting different levels of virulence in BALB/c mice and its application to predict novel genes related to virulence. De novo DNA sequencing and assembly of the most virulent strain allowed comparative genomics analysis with sequenced L. (Viannia) panamensis and L. (Viannia) braziliensis strains, and showed important variations at intra and interspecific levels. Moreover, the mutation detection and a CNV search revealed both base and structural genomic variation within the species. Interestingly, we found differences in the copy number and protein diversity of some genes previously related to virulence. Several machine-learning approaches were applied to combine previous knowledge with features derived from genomic variation and predict a curated set of 66 novel genes related to virulence. These genes can be prioritized for validation experiments and could potentially become promising drug and immune targets for the development of novel prophylactic and therapeutic interventions.
Collapse
|
5
|
Diet-induced obesity promotes systemic inflammation and increased susceptibility to murine visceral leishmaniasis. Parasitology 2016; 143:1647-55. [DOI: 10.1017/s003118201600127x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARYObesity is the main causal factor for metabolic syndrome and chronic systemic inflammation, which impacts on immune function and increases susceptibility to pathogens. Here, we investigated the effect of obesity on the outcome of visceral leishmaniasis caused by Leishmaniasis infantum chagasi. C57BL/6 mice fed with high-sugar and butter diet (HSB) showed a significant increase in body weight, adiposity index and morphological changes in adipocyte. To investigate the consequences of obesity on the specific immunity against Leishmania, both control and HSB diet groups were infected with 107L. infantum chagasi promastigotes in the eighth-week after diet started and euthanized 4 weeks later. HSB-diet fed mice exhibited a significantly higher parasite burden in both liver and spleen compared with control- diet group. Gonadal adipocyte tissue from HSB-diet mice showed increased TNF-α, IL-6 and leptin and diminished IL-10 production compared with control. Cytokines production analysis in the spleen and liver from these animals also demonstrated higher production of IFN-γ, TNF-α, IL-6 and nitric oxide and diminished production of IL-10 and TGF-β, which correlate with inflammatory foci and the cell hyperplasia observed. Taken together, obesity can interfere with responses to pathogen-derived signals and impair the development of protective anti-Leishmania immunity.
Collapse
|
6
|
Loeuillet C, Bañuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit Vectors 2016; 9:144. [PMID: 26969511 PMCID: PMC4788862 DOI: 10.1186/s13071-016-1413-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases.
Collapse
Affiliation(s)
- Corinne Loeuillet
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Mallorie Hide
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Darabi S, Khaze V, Riazi-Rad F, Darabi H, Bahrami F, Ajdary S, Alimohammadian MH. Leishmania major strains isolated from distinct endemic areas show diverse cytokine mRNA expression levels in C57BL/6 mice: Toward selecting an ideal strain for the vaccine studies. Cytokine 2015; 76:303-308. [PMID: 26072430 DOI: 10.1016/j.cyto.2015.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022]
Abstract
Leishmania major, the causative agent of zoonotic cutaneous leishmaniasis shows heterogeneity and diverse clinical manifestations in different areas of infection and experimental models. Such polymorphism may cause difficulties in selection of reliable strains for development of prophylaxes. Hence, the aim of this study was to identify an ideal strain of L. major, capable of inducing protective and long-lasting Th1 responses in an animal model that mimics the human response to L. major infection. The isolates were from patients residing in 4 endemic areas of L. major in Iran, namely Damghan (north), Kashan (center), Dehloran (west) and Shiraz (south) which their heterogeneity had been previously confirmed in BALB/c mice. In this study, the same isolates as well as the Iranian reference strain of L. major were inoculated to C57BL/6 mice to evaluate their pathogenicity and changes in expression of key cytokine genes from lymph nodes of the mice in different time points, in order to evaluate their ability to control leishmaniasis by development of Th1 responses. Our results showed the lowest and highest parasite burden in lymph nodes of mice infected with all strains at weeks 3 and 8 post-infection, respectively. However, the Damghan strain (DA39) showed comparatively lower number of viable parasite than other strains at week 8 post-infection. Furthermore, DA39 showed higher expression of Ifng and Il12 mRNA at week 8 post-infection while the ratio of its Ifng/Il4 mRNA expressions was higher than other strains. In conclusion, DA39 among the studied strains appears to induce strong and lasting Th1 cytokine gene expressions with minimum virulence, making it a suitable candidate strain for vaccine studies in leishmaniasis.
Collapse
Affiliation(s)
- Sima Darabi
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | - Vahid Khaze
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | - Farhad Riazi-Rad
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | - Haiedeh Darabi
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | - Fariborz Bahrami
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | - Soheila Ajdary
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran 13169-43551, Iran
| | | |
Collapse
|
8
|
Tuladhar R, Oghumu S, Dong R, Peterson A, Sharpe AH, Satoskar AR. Ox40L-Ox40 pathway plays distinct roles in regulating Th2 responses but does not determine outcome of cutaneous leishmaniasis caused by Leishmania mexicana and Leishmania major. Exp Parasitol 2014; 148:49-55. [PMID: 25447125 DOI: 10.1016/j.exppara.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Abstract
Ox40 ligand (Ox40L)-Ox40 pathway has been shown to enhance Th2 responses and play a role in pathogenesis of cutaneous leishmaniasis (CL) caused by Leishmania major. Using Ox40l(-/-) BALB/c mice we analyzed the role of this pathway in determining the outcome to CL caused by L. mexicana and compared to L. major. Contrary to our expectations, Ox40l(-/-) mice were highly susceptible to both L. major (LV39) and L. mexicana (M379) and developed large non-healing lesions containing parasites comparable to Ox40l(+/+) BALB/c mice. Interestingly, upon in vitro stimulation with Leishmania antigen (LmAg), the lymph node cells from L. major infected Ox40l(-/-) mice produced significantly less IL-4 and IL-10 compared to Ox40l(+/+) mice. L. mexicana infected Ox40l(-/-) and Ox40l(+/+) mice did not show any difference in the production of IL-4 and IL-10. No difference was noted in the amount of Th1 cytokines IFN-ү and IL-12 produced by Ox40l(-/-) and Ox40l(+/+) mice infected with either parasite. These results indicate that the Ox40L-Ox40 pathway promotes Th2 bias only in L. major infection but not L. mexicana infection and this pathway is not critical for susceptibility to CL.
Collapse
Affiliation(s)
- Rashmi Tuladhar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Steve Oghumu
- Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - Ran Dong
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Allison Peterson
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Arlene H Sharpe
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States; Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
9
|
Rafiee A, Riazi-Rad F, Darabi H, Khaze V, Javadian S, Ajdary S, Bahrami F, Alimohammadian MH. Ferroportin-encapsulated nanoparticles reduce infection and improve immunity in mice infected with Leishmania major. Int J Pharm 2014; 466:375-81. [PMID: 24657288 DOI: 10.1016/j.ijpharm.2014.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Inoculation of inbred mice by Leishmania major results in two different patterns. C57BL/6 mice display resistance against L. major but BALB/c mice show susceptibility to L. major with visceral infection, anemia and death. In this study, the effects of treatment of L. major-infected BALB/c mice with a ferroportin (Fpn)-encoding construct via nanoparticles were evaluated. A fragment encoding Fpn, a major regulator of iron homeostasis, was amplified and sub-cloned to a GFP expression vector to express Fpn-EGFP protein. This construct was incorporated in nanoparticles of alginate/chitosan polymers and orally administered to L. major-infected BALB/c mice. Blood hematocrit and iron, footpad size, parasite load and concentration of IFNG, IL4 and IL10 by ELISA were measured in the treated and untreated mice. The results indicated that the treated mice had significantly higher hematocrit and iron levels while exhibited significantly lower footpad size and parasite load measurements. Moreover, lower levels of IL4 and IL10 and higher ratios of IFNG/IL4 or IFNG/IL10 were shown in the treated, compared to the untreated mice. In conclusion, treating BALB/c mice infected with L. major with encapsulated Fpn-encoding construct in alginate/chitosan nanoparticles were shown to reduce the infection and improve anemia and immunity in the animal model of leishmaniasis.
Collapse
Affiliation(s)
- Aras Rafiee
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran; Marine Biology Department, Sciences & Research Branch, Islamic Azad University, Hesarak, Iran
| | | | - Haiedeh Darabi
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khaze
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
10
|
Asadpour A, Riazi-Rad F, Khaze V, Ajdary S, Alimohammadian MH. Distinct strains of Leishmania major induce different cytokine mRNA expression in draining lymph node of BALB/c mice. Parasite Immunol 2013; 35:42-50. [PMID: 23106526 DOI: 10.1111/pim.12018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/15/2012] [Indexed: 11/26/2022]
Abstract
Four genotypically distinct strains of L. major collected from persons residing in different endemic areas of cutaneous leishmaniasis in Iran were evaluated in BALB/c mice. Parasite virulence was evaluated by measuring the parasite burden in the lymph nodes. Immunogenicity of the strains was assessed by analysis of cytokines mRNA expression levels in popliteal lymph nodes of the mice in early (3, 16, 40 h) and late (week 1, W3, W5 and W8) time periods after infection. The expression of cytokines mRNA, namely Ifng, Il2,Il4,Il10 and Il12, was quantitated by real-time PCR. The lowest and the highest parasite loads were induced by Damghan (2·15 × 10⁷) and Shiraz (9·59 × 10⁹) strains, respectively. Moreover, Damghan strain elicited higher expression levels of Ifng and Il2 mRNA and the highest ratio of Ifng/Il4 mRNA expression compared with the other strains at 40 h and 8 weeks post-infection. The results indicate that the inoculation of BALB/c mice with different strains induced high diversity in parasite burden and cytokines gene expression. Amongst the four strains, Damghan strain showed the lowest parasite load and the highest tendency to induce expression of Th1 cytokines gene and might be considered as a safe and immunogenic strain.
Collapse
Affiliation(s)
- A Asadpour
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
11
|
Mahmoudzadeh-Niknam H, Ajdary S, Riazi-Rad F, Mirzadegan E, Rezaeian A, Khaze V, Djadid ND, Alimohammadian MH. Molecular epidemiology of cutaneous leishmaniasis and heterogeneity ofLeishmania majorstrains in Iran. Trop Med Int Health 2012; 17:1335-44. [PMID: 22947226 DOI: 10.1111/j.1365-3156.2012.03078.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Mahmoudzadeh-Niknam
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bañuls AL, Bastien P, Pomares C, Arevalo J, Fisa R, Hide M. Clinical pleiomorphism in human leishmaniases, with special mention of asymptomatic infection. Clin Microbiol Infect 2012; 17:1451-61. [PMID: 21933304 DOI: 10.1111/j.1469-0691.2011.03640.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review gives an update of current knowledge on the clinical pleiomorphism of Leishmania, with a special emphasis on the case of asymptomatic carriage. The first part describes the numerous unusual expressions of the disease that occur besides the classic (visceral, cutaneous, and mucocutaneous) forms of leishmaniases. The second part deals with progress in the understanding of disease outcome in humans, and the possible future approaches to improve our knowledge in the field. The third part highlights the role of the too often neglected asymptomatic carrier compartment. This group could be key to understanding infraspecific differences in virulence and pathogenicity of the parasite, as well as identifying the genetic determinants involved in the expression of the disease.
Collapse
Affiliation(s)
- A L Bañuls
- UMR MIVEGEC (IRD 224-CNRS 5290-Université Montpellier, France.
| | | | | | | | | | | |
Collapse
|