1
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
2
|
Guo T, Tian S, Xin H, Du J, Cao X, Feng B, He Y, He Y, Wang D, Zhang B, Liu Z, Yan J, Shen L, Di Y, Chen Y, Jin Q, Pan S, Kioumourtzoglou MA, Gao L, Gao X. Impact of fine particulate matter on latent tuberculosis infection and active tuberculosis in older adults: a population-based multicentre cohort study. Emerg Microbes Infect 2024; 13:2302852. [PMID: 38240283 PMCID: PMC10826784 DOI: 10.1080/22221751.2024.2302852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Evidence showed that air pollution was associated with an increased risk of tuberculosis (TB). This study aimed to study the impact of long-term exposure to ambient particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) on the acquisition of LTBI and on the risk of subsequent active disease development among rural older adults from a multicentre cohort, which have not yet been investigated to date. A total of 4790 older adults were included in a population-based, multicentre, prospective cohort study (LATENTTB-NSTM) from 2013 to 2018. The level of long-term exposure to PM2.5 for each participant was assessed by aggregating satellite-based estimates. Logistic regression and time-varying Cox proportional hazards models with province-level random intercepts were employed to assess associations of long-term exposures to PM2.5 with the risk of LTBI and subsequent development of active TB, respectively. Out of 4790 participants, 3284 were LTBI-free at baseline, among whom 2806 completed the one-year follow-up and 127 developed newly identified LTBI. No significant associations were identified between PM2.5 and the risk of LTBI. And among 1506 participants with LTBI at baseline, 30 active TB cases were recorded during the 5-year follow-up. Particularly, an increment of 5 μg/m3 in 2-year moving averaged PM2.5 was associated with a 50.6% increased risk of active TB (HR = 1.506, 95% CI: 1.161-1.955). Long-term air pollution might be a neglected risk factor for active TB development from LTBI, especially for those living in developing or less-developed areas where the air quality is poor.
Collapse
Affiliation(s)
- Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sifan Tian
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yongpeng He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, People’s Republic of China
| | - Bin Zhang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, People’s Republic of China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, People’s Republic of China
| | - Jiaoxia Yan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, People’s Republic of China
| | - Lingyu Shen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuanzhi Di
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yanxiao Chen
- College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, People’s Republic of China
| | | | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, People’s Republic of China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
3
|
Farhana A, Alsrhani A, Ejaz H, Alruwaili M, Alameen AAM, Manni E, Rasheed Z, Khan YS. Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1891. [PMID: 39597076 PMCID: PMC11596928 DOI: 10.3390/medicina60111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Background and Objective: ATP-binding cassette (ABC) transporters are prominent drug targets due to their highly efficient trafficking capabilities and their significant physiological and clinical roles. Gaining insight into their biophysical and biomechanistic properties is crucial to maximize their pharmacological potential. Materials and Methods: In this study, we present the biochemical and biophysical characterization, and phylogenetic analysis of the domains of Mycobacterium tuberculosis (M. tuberculosis) ABC transporters: the exporter Rv1348 (IrtA) and the importer system Rv1349-Rv2895c (IrtB-Rv2895c), both involved in siderophore-mediated iron uptake. Results: Our findings reveal that the substrate-binding domain (SBD) of IrtA functions as an active monomer, while Rv2895c, which facilitates the uptake of siderophore-bound iron, exists in a dynamic equilibrium between dimeric and monomeric forms. Furthermore, ATP binding induces the dimerization of the ATPase domains in both IrtA (ATPase I) and IrtB (ATPaseII), but only the ATPase domain of IrtA (ATPase I) is active independently. We also analyzed the stability of substrate binding to the domains of the two transporters across varying temperature and pH ranges, revealing significant shifts in their activity under different conditions. Our study highlights the conformational changes that accompany substrate interaction with the transporter domains, providing insights into the fundamental mechanism required for the translocation of siderophore to the extracytoplasmic milieu by IrtB and, subsequently, import of their ferrated forms by the IrtB-Rv2895c complex. Phylogenetic analyses based on ATPase domains reveal that IrtA shares features with both archaeal and eukaryotic transporters, while IrtB is unique to mycobacterial species. Conclusions: Together, these findings provide valuable insights, which could accelerate the development of intervention strategies for this critical pathway pivotal in the progression of M. tuberculosis infection.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Ayman A. M. Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Hail, Hail 55476, Hail, Saudi Arabia
| |
Collapse
|
4
|
Kumar A, Kumar R, Boradia VM, Malhotra H, Kumar A, Seth S, Garg P, Karthikeyan S, Raje M, Iyengar Raje C. Stoichiometry of ligand binding and role of C-terminal lysines in Mycobacterium tuberculosis and human GAPDH multifunctionality. FEBS J 2024. [PMID: 39436721 DOI: 10.1111/febs.17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH; EC1.2.1.12) has several functions in Mycobacterium tuberculosis (Mtb) and the human host. Apart from its role in glycolysis, it serves both as a cell surface and a secreted receptor for plasmin(ogen) (Plg/Plm), transferrin (Tf), and lactoferrin (Lf). Plg sequestration by Mtb GAPDH facilitates bacterial adhesion and tissue invasion, while an equivalent interaction with host GAPDH regulates immune cell migration. In both, host and microbe, internalization of Tf/Lf-GAPDH complexes serves as a route for iron acquisition. To date, the structure of Mtb GAPDH or the residues involved in these moonlighting interactions have not been identified. This study provides the first known X-ray crystal structure of Mtb GAPDH. Through further mutagenesis and functional assays, we found that the C-terminal lysines of Mtb and human GAPDH affect enzyme activity and ligand binding. We also establish the stoichiometry of Plg, Tf and Lf interactions with the GAPDH tetramer. Lastly, molecular simulation studies reveal the interactions of the C-terminal lysine residues.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Sweden
| | - Vishant Mahendra Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | | | - Adarsh Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sriraj Seth
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
5
|
Guo T, Shen F, Xin H, Du J, Cao X, Feng B, He Y, Shen L, Di Y, Chen Y, Li Z, Jin Q, Li H, Zhang C, Gao L. Association of Fine Particulate Matter and Residential Greenness With Risk of Pulmonary Tuberculosis Retreatment: Population-Based Retrospective Study. JMIR Public Health Surveill 2024; 10:e50244. [PMID: 39140280 PMCID: PMC11337066 DOI: 10.2196/50244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 08/15/2024] Open
Abstract
Background The evidence on the association of fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) with pulmonary tuberculosis (PTB) retreatment is limited. There are no data on whether greenness exposure protects air pollution-related PTB retreatment in patients with prior PTB. Objective In a population-based retrospective study, we aimed to investigate the influence of PM2.5 and residential greenness on the risk of PTB retreatment. Methods A total of 26,482 patients with incident PTB, registered in a mandatory web-based reporting system between 2012 and 2019 in Zhengzhou, China, were included in the analysis. The exposure to PM2.5 was assessed based on the China High Air Pollutants dataset, and the level of greenness was estimated using the Normalized Difference Vegetation Index (NDVI) values. The associations of PTB retreatment with exposure to PM2.5 and greenness were evaluated, respectively, considering the local socioeconomic level indicated by the nighttime light index. Results Among the 26,482 patients (mean age 46.86, SD 19.52 years) with a median follow-up time of 1523 days per patient, 1542 (5.82%) PTB retreatments were observed between 2012 and 2019. Exposure to PM2.5 was observed to be significantly associated with the increased risk of PTB retreatment in fully adjusted models with a hazard ratio of 1.97 (95% CI 1.34-2.83) per 10 μg/m3 increase in PM2.5. Patients living in the regions with relatively high quartiles of NDVI values had a 45% lower risk of PTB retreatment than those living in the regions with the lowest quartile for the 500 m buffers (hazard ratio 0.55, 95% CI 0.40-0.77). Such a protective effect of residential greenness was more pronounced among patients living in lower nighttime light areas. The strength of the association between PM2.5 exposure and the risk of PTB retreatment was attenuated by greenness. No significant association was observed between NDVI and the incidence of drug resistance. Conclusions Long-term exposure to PM2.5 might be a risk factor for PTB retreatment, while an increased level of residential greenness was found to be associated with reduced risks of PTB retreatment. Our results suggest strengthening the control of ambient air pollution and improving residential greenness may contribute to the reduction of PTB retreatment.
Collapse
Affiliation(s)
- Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Shen
- Department of Tuberculosis Prevention and Control, The Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingyu Shen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanzhi Di
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanxiao Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zihan Li
- Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongzhi Li
- Department of Tuberculosis Prevention and Control, The Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Chunming Zhang
- Department of Tuberculosis Prevention and Control, The Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
7
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
8
|
Pereira MMR, de Oliveira FM, da Costa AC, Junqueira-Kipnis AP, Kipnis A. Ferritin from Mycobacterium abscessus is involved in resistance to antibiotics and oxidative stress. Appl Microbiol Biotechnol 2023; 107:2577-2595. [PMID: 36862179 DOI: 10.1007/s00253-023-12420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) is a rapidly growing Mycobacterium belonging to the M. abscessus complex that is often associated with lung and soft tissue infection outbreaks. Mycma is resistant to many antimicrobials, including those used for treating tuberculosis. Therefore, Mycma infections are difficult to treat and may lead to high infectious complication rates. Iron is essential for bacterial growth and establishment of infection. During infection, the host reduces iron concentrations as a defense mechanism. To counteract the host-induced iron deficiency, Mycma produces siderophores to capture iron. Mycma has two ferritins (encoded by mycma_0076 and mycma_0077) modulated by different iron concentrations, which allow the survival of this pathogen during iron scarcity. In this study, we constructed knockout (Mycma 0076KO) and complemented (Mycma 0076KOc) gene strains for mycma_0076 to understand the function of 0076 ferritin. Deletion of mycma_0076 in Mycma led to the transition in colony morphology from smooth to rough, alteration of the glycopeptidolipids spectra, increased permeability of the envelope, reduction in biofilm formation, increased susceptibility to antimicrobials and hydrogen peroxide-induced oxidative stress, and decreased internalization by macrophages. This study shows that Mycma_0076 ferritin in Mycma is involved in resistance to oxidative stress and antimicrobials, and alteration of cell envelope architecture. KEY POINTS: • Deletion of the mycma_0076 gene altered colony morphology to rough; • Mycma 0076KO changed GPL profile; • Absence of Mycma_0076 ferritin results in increased susceptibility to antimicrobials and oxidative stress in Mycma. Legend: a In wild-type M. abscessus subsp. massiliense strain, iron is captured from the environment by carboxymycobactins and mycobactins (1). Iron-dependent regulator (IdeR) proteins bind to ferrous iron (Fe+2) in the bacterial cytoplasm leading to the activation of the IdeR-Fe+2 complex (2). The activated complex binds to the promoter regions of iron-dependent genes, called iron box, which in turn help in the recruitment of RNA polymerase to promote transcription of genes such as mycma_0076 and mycma_0077 ferritin genes (3). Mycma_0076 and Mycma_0077 ferritins bind to excess iron in the medium and promote Fe2+ oxidation into ferric iron (Fe3+) and store iron molecules to be released under iron scarcity conditions. (4) Genes related to biosynthesis and transport of glycopeptidolipids (GPL) are expressed normally and the cell envelope is composed of different GPL species (colored squares represented on the cell surface (GPLs). Consequently, WT Mycma present smooth colony phenotype (5). b In Mycma 0076KO strain, the lack of ferritin 0076 causes overexpression of mycma_0077 (6), but does not restore wild-type iron homeostasis and thus may result in free intracellular iron, even in the presence of miniferritins (MaDps). The excess iron potentiates oxidative stress (7) by generating hydroxyl radicals through Fenton Reaction. During this process, through an unknown mechanism, that could involve Lsr2 (8), the expression of GPL synthesis locus is regulated positively and/or negatively, resulting in alteration of GPL composition in the membrane (as represented by different colors of squares on the cell surface), resulting in a rough colony phenotype (9). The changes of GPL can increase cell wall permeability, contributing to antimicrobial susceptibility (10).
Collapse
Affiliation(s)
- Maria Micaella Rodrigues Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
| | - Fábio Muniz de Oliveira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN, USA
| | | | | | - André Kipnis
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Mass Spectrometry-Based Proteomic and Metabolomic Profiling of Serum Samples for Discovery and Validation of Tuberculosis Diagnostic Biomarker Signature. Int J Mol Sci 2022; 23:ijms232213733. [PMID: 36430211 PMCID: PMC9694769 DOI: 10.3390/ijms232213733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups—healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.
Collapse
|
10
|
Kathamuthu GR, Rajamanickam A, Sridhar R, Baskaran D, Babu S. Strongyloidiasis stercoralis coinfection is associated with altered iron status biomarkers in tuberculous lymphadenitis. Front Immunol 2022; 13:999614. [PMID: 36341407 PMCID: PMC9632344 DOI: 10.3389/fimmu.2022.999614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Soil-transmitted helminth [mainly Strongyloidiasis stercoralis (Ss)] and tuberculous lymphadenitis (TBL) coinfection in humans is a significant public health problem. We have previously shown that TBL+Ss+ coinfection significantly alters diverse cytokine, matrix metalloproteinase, and tissue inhibitors of metalloproteinase profiles. However, no data is available to understand the influence of Ss coinfection in TBL disease with respect to iron status biomarkers. Hence, we have studied the effect of Ss coinfection on the circulating levels of iron status (ferritin, transferrin [TF], apotransferrin [ApoT], hepcidin, hemopexin) biomarkers in TBL disease. Our results show that TBL+Ss+ and/or TBL+Ss- individuals are associated with significantly altered biochemical and hematological (red blood cell (RBC) counts, hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) were decreased, and platelets were increased) parameters compared to TBL-Ss+ individuals. Our results also show that TBL+Ss+ coinfection is associated with diminished circulating levels of ferritin, ApoT, hepcidin, and hemopexin compared to TBL+Ss- individuals. TBL+Ss+ and TBL+Ss- groups are associated with altered iron status biomarkers (decreased ferritin [TBL+Ss+ alone] and increased TF, ApoT, hepcidin and hemopexin [TBL+Ss- alone]) compared to TBL-Ss+ group. The heat map expression profile and principal component analysis (PCA) analysis of iron status biomarkers were significantly altered in TBL+Ss+ compared to TBL+Ss- and/or TBL-Ss+ individuals. A significant correlation (positive/negative) was obtained among the biochemical and hematological parameters (white blood cells (WBC)/ferritin, TF, and hepcidin, mean corpuscular hemoglobin concentration (MCHC)/ferritin and hemopexin) with iron status biomarkers. Finally, receiver operating characteristic (ROC) analysis revealed that hemopexin was significantly associated with greater specificity and sensitivity in discriminating TBL+Ss+ and TBL+Ss- coinfected individuals. Thus, our data conclude that Ss coinfection is associated with altered iron status biomarkers indicating that coinfection might alter the host-Mtb interface and could influence the disease pathogenesis.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
- *Correspondence: Gokul Raj Kathamuthu,
| | - Anuradha Rajamanickam
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dhanaraj Baskaran
- Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
12
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
13
|
Patidar A, Malhotra H, Chaudhary S, Kumar M, Dilawari R, Chaubey GK, Dhiman A, Modanwal R, Talukdar S, Raje CI, Raje M. Host glyceraldehyde-3-phosphate dehydrogenase-mediated iron acquisition is hijacked by intraphagosomal Mycobacterium tuberculosis. Cell Mol Life Sci 2022; 79:62. [PMID: 35001155 PMCID: PMC11072694 DOI: 10.1007/s00018-021-04110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Availability of iron is a key factor in the survival and multiplication of Mycobacterium tuberculosis (M.tb) within host macrophage phagosomes. Despite host cell iron regulatory machineries attempts to deny supply of this essential micronutrient, intraphagosomal M.tb continues to access extracellular iron. In the current study, we report that intracellular M.tb exploits mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) for the delivery of host iron carrier proteins lactoferrin (Lf) and transferrin (Tf). Studying the trafficking of iron carriers in infected cells we observed that sGAPDH along with the iron carrier proteins are preferentially internalized into infected cells and trafficked to M.tb containing phagosomes where they are internalized by resident mycobacteria resulting in iron delivery. Collectively our findings provide a new mechanism of iron acquisition by M.tb involving the hijack of host sGAPDH. This may contribute to its successful pathogenesis and provide an option for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Kumar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
14
|
Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Protein PE6 (Rv0335c), a Novel TLR4 Agonist, Evokes an Inflammatory Response and Modulates the Cell Death Pathways in Macrophages to Enhance Intracellular Survival. Front Immunol 2021; 12:696491. [PMID: 34322125 PMCID: PMC8311496 DOI: 10.3389/fimmu.2021.696491] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that exploits moonlighting functions of its proteins to interfere with host cell functions. PE/PPE proteins utilize host inflammatory signaling and cell death pathways to promote pathogenesis. We report that M. tb PE6 protein (Rv0335c) is a secretory protein effector that interacts with innate immune toll-like receptor TLR4 on the macrophage cell surface and promotes activation of the canonical NFĸB signaling pathway to stimulate secretion of proinflammatory cytokines TNF-α, IL-12, and IL-6. Using mouse macrophage TLRs knockout cell lines, we demonstrate that PE6 induced secretion of proinflammatory cytokines dependent on TLR4 and adaptor Myd88. PE6 possesses nuclear and mitochondrial targeting sequences and displayed time-dependent differential localization into nucleus/nucleolus and mitochondria, and exhibited strong Nucleolin activation. PE6 strongly induces apoptosis via increased production of pro-apoptotic molecules Bax, Cytochrome C, and pcMyc. Mechanistic details revealed that PE6 activates Caspases 3 and 9 and induces endoplasmic reticulum-associated unfolded protein response pathways to induce apoptosis through increased production of ATF6, Chop, BIP, eIF2α, IRE1α, and Calnexin. Despite being a potent inducer of apoptosis, PE6 suppresses innate immune defense strategy autophagy by inducing inhibitory phosphorylation of autophagy initiating kinase ULK1. Inversely, PE6 induces activatory phosphorylation of autophagy master regulator MtorC1, which is reflected by lower conversion of autophagy markers LC3BI to LC3BII and increased accumulation of autophagy substrate p62 which is also dependent on innate immune receptor TLR4. The use of pharmacological agents, rapamycin and bafilomycin A1, confirms the inhibitory effect of PE6 on autophagy, evidenced by the reduced conversion of LC3BI to LC3BII and increased accumulation of p62 in the presence of rapamycin and bafilomycin A1. We also observed that PE6 binds DNA, which could have significant implications in virulence. Furthermore, our analyses reveal that PE6 efficiently binds iron to likely aid in intracellular survival. Recombinant Mycobacterium smegmatis (M. smegmatis) containing pe6 displayed robust growth in iron chelated media compared to vector alone transformed cells, which suggests a role of PE6 in iron acquisition. These findings unravel novel mechanisms exploited by PE6 protein to subdue host immunity, thereby providing insights relevant to a better understanding of host–pathogen interaction during M. tb infection.
Collapse
Affiliation(s)
- Neha Sharma
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohd Shariq
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasdeep Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India.,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| |
Collapse
|
15
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Liu Y, Zhao S, Li Y, Song W, Yu C, Gao L, Ran J, He D, Li H. Effect of ambient air pollution on tuberculosis risks and mortality in Shandong, China: a multi-city modeling study of the short- and long-term effects of pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27757-27768. [PMID: 33515408 DOI: 10.1007/s11356-021-12621-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Few studies conducted in China have assessed the effects of ambient air pollution exposure on tuberculosis (TB) risk and mortality, especially with a multicity setting. We evaluated the effect of short- and long-term ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and particulate matter≤2.5 μm in aerodynamic diameter (PM2.5) exposures on development and mortality of active TB in 7 Chinese cities in Shandong province from January 1, 2013, to December 31, 2017. We estimated the pollution-associated risk to new infection TB, recurrent TB, and mortality in relation to 1-μg/m3 increases in air pollutants using the penalized multivariate Poisson regression models. A total of 83,555 new infective TB and 3060 recurrent TB including 997 deaths were recorded. Short- and long-term exposures to outdoor air pollutants (SO2, NO2, CO, O3, and PM2.5) were significantly associated with new infection TB, recurrent TB risk, and mortality. The dominant positive effects of SO2, NO2, CO, and PM2.5 for new infection and recurrent TB risk were observed at long-term (>30 days) exposure, whereas the dominant effects of SO2, CO, and PM2.5 for mortality were observed at short-term (≤30 days) exposures. Of the 5 air pollutants we assessed, SO2 and PM2.5 exhibited more consistent and strong associations with TB-related outcomes. We estimated an increase of 1.33% (95% CI 1.29%, 1.37%) and 3.04% (95% CI 2.98%, 3.11%) in new infection TB count for each 1-μg/m3 increase of SO2 at lag 0-180 days and PM2.5 at lag 0-365 days, respectively. This epidemiologic study in China shows that air pollution exposure is associated with increased risk of active TB development and mortality. The control of ambient air pollution may benefit the control and decrease the mortality of TB disease.
Collapse
Affiliation(s)
- Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Shi Zhao
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
- School of Nursing, Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Wanmei Song
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong First Medical University, Shandong Province, Jinan, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinjun Ran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
- Shandong University of Chinese Traditional Medicine, Jinan, Shandong, China.
| |
Collapse
|
17
|
Iron homeostasis during anemia of inflammation: a prospective study in patients with tuberculosis. Blood 2021; 138:1293-1303. [PMID: 33876222 DOI: 10.1182/blood.2020010562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
Anemia of inflammation is a hallmark of tuberculosis. Factors controlling iron metabolism during anemia of inflammation and its resolution are uncertain. Whether iron supplements should be given during anti-tuberculosis treatment to support Hb recovery is unclear. Before and during treatment of tuberculosis, we assessed iron kinetics, and changes in inflammation and iron metabolism indices. In a 26-wk prospective study, Tanzanian adults with tuberculosis (n=18) were studied before treatment and then every two weeks during treatment; oral and intravenous iron tracers were administered before treatment, after intensive phase (8/12 wk) and complete treatment (24 wk); no iron supplements were given. Before treatment, hepcidin and erythroferrone (ERFE) were greatly elevated, erythrocyte iron utilization was high (~80%) and iron absorption was negligible (<1%). During treatment, hepcidin and IL-6 decreased ~70% after only 2 wk (p<0.001); in contrast, ERFE did not significantly decrease until 8 wk (p<0.01). ERFE and IL-6 were the main opposing determinants of hepcidin (p<0.05) and greater ERFE was associated with reticulocytosis and hemoglobin (Hb) repletion (p<0.01). Dilution of baseline tracer concentration was 2.6-fold higher during intensive phase treatment (p<0.01) indicating enhanced erythropoiesis. After treatment completion, iron absorption increased ~20-fold (p<0.001); Hb increased ~25% (p<0.001). In tuberculosis-associated anemia of inflammation, our findings suggest elevated ERFE is unable to suppress hepcidin and iron absorption is negligible. During treatment, as inflammation resolves, ERFE may remain elevated, contributing to hepcidin suppression and Hb repletion. Iron is well-absorbed only after tuberculosis treatment and supplementation should be reserved for patients remaining anemic after treatment. (ClinicalTrials.gov Identifier:NCT02176772).
Collapse
|
18
|
Jha V, Pal R, Kumar D, Mukhopadhyay S. ESAT-6 Protein of Mycobacterium tuberculosis Increases Holotransferrin-Mediated Iron Uptake in Macrophages by Downregulating Surface Hemochromatosis Protein HFE. THE JOURNAL OF IMMUNOLOGY 2020; 205:3095-3106. [PMID: 33148716 DOI: 10.4049/jimmunol.1801357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/01/2020] [Indexed: 11/19/2022]
Abstract
Iron is an essential element for Mycobacterium tuberculosis; it has at least 40 enzymes that require iron as a cofactor. Accessibility of iron at the phagosomal surface inside macrophage is crucial for survival and virulence of M. tuberculosis ESAT-6, a 6-kDa-secreted protein of region of difference 1, is known to play a crucial role in virulence and pathogenesis of M. tuberculosis In our earlier study, we demonstrated that ESAT-6 protein interacts with β-2-microglobulin (β2M) and affects class I Ag presentation through sequestration of β2M inside endoplasmic reticulum, which contributes toward inhibition of MHC class I:β2M:peptide complex formation. The 6 aa at C-terminal region of ESAT-6 are essential for ESAT6:β2M interaction. β2M is essential for proper folding of HFE, CD1, and MHC class I and their surface expression. It is known that M. tuberculosis recruit holotransferrin at the surface of the phagosome. But the upstream mechanism by which it modulates holotransferrin-mediated iron uptake at the surface of macrophage is not well understood. In the current study, we report that interaction of the ESAT-6 protein with β2M causes downregulation of surface HFE, a protein regulating iron homeostasis via interacting with transferrin receptor 1 (TFR1). We found that ESAT-6:β2M interaction leads to sequestration of HFE in endoplasmic reticulum, causing poorer surface expression of HFE and HFE:TFR1 complex (nonfunctional TFR1) in peritoneal macrophages from C57BL/6 mice, resulting in increased holotransferrin-mediated iron uptake in these macrophages. These studies suggest that M. tuberculosis probably targets the ESAT-6 protein to increase iron uptake.
Collapse
Affiliation(s)
- Vishwanath Jha
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; and
| | - Ravi Pal
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; and
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India;
| |
Collapse
|
19
|
Kopeckova M, Pavkova I, Stulik J. Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to its Multifunctionality? Front Cell Infect Microbiol 2020; 10:89. [PMID: 32195198 PMCID: PMC7062713 DOI: 10.3389/fcimb.2020.00089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial proteins exhibiting two or more unrelated functions, referred to as moonlighting proteins, are suggested to contribute to full virulence manifestation in pathogens. An expanding number of published studies have revealed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to be a multitasking protein with virulence impact in a number of pathogenic bacteria. This protein can be detected on the bacterial surface or outside the bacterial cell, where it interacts with host proteins. In this way, GAPDH is able to modulate various pathogenic processes. Moreover, it has been shown to be involved in non-enzymatic processes inside the bacterial cell. In this mini review, we summarize main findings concerning the multiple localization and protein interactions of GAPDH derived from bacterial pathogens of humans. We also briefly discuss problems associated with using GAPDH as a vaccine antigen and endeavor to inspire further research to fill gaps in the existing knowledge.
Collapse
Affiliation(s)
- Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
20
|
Serum proteomics of active tuberculosis patients and contacts reveals unique processes activated during Mycobacterium tuberculosis infection. Sci Rep 2020; 10:3844. [PMID: 32123229 PMCID: PMC7052228 DOI: 10.1038/s41598-020-60753-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/17/2020] [Indexed: 01/24/2023] Open
Abstract
Tuberculosis (TB) is the most lethal infection among infectious diseases. The specific aim of this study was to establish panels of serum protein biomarkers representative of active TB patients and their household contacts who were either infected (LTBI) or uninfected (EMI-TB Discovery Cohort, Pontevedra Region, Spain). A TMT (Tamdem mass tags) 10plex-based quantitative proteomics study was performed in quintuplicate containing a total of 15 individual serum samples per group. Peptides were analyzed in an LC-Orbitrap Elite platform, and raw data were processed using Proteome Discoverer 2.1. A total of 418 proteins were quantified. The specific protein signature of active TB patients was characterized by an accumulation of proteins related to complement activation, inflammation and modulation of immune response and also by a decrease of a small subset of proteins, including apolipoprotein A and serotransferrin, indicating the importance of lipid transport and iron assimilation in the progression of the disease. This signature was verified by the targeted measurement of selected candidates in a second cohort (EMI-TB Verification Cohort, Maputo Region, Mozambique) by ELISA and nephelometry techniques. These findings will aid our understanding of the complex metabolic processes associated with TB progression from LTBI to active disease.
Collapse
|
21
|
Sutar YB, Mali JK, Telvekar VN, Rajmani RS, Singh A. Transferrin conjugates of antitubercular drug isoniazid: Synthesis and in vitro efficacy. Eur J Med Chem 2019; 183:111713. [DOI: 10.1016/j.ejmech.2019.111713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
|
22
|
Dragset MS, Ioerger TR, Zhang YJ, Mærk M, Ginbot Z, Sacchettini JC, Flo TH, Rubin EJ, Steigedal M. Genome-wide Phenotypic Profiling Identifies and Categorizes Genes Required for Mycobacterial Low Iron Fitness. Sci Rep 2019; 9:11394. [PMID: 31388080 PMCID: PMC6684656 DOI: 10.1038/s41598-019-47905-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022] Open
Abstract
Iron is vital for nearly all living organisms, but during infection, not readily available to pathogens. Infectious bacteria therefore depend on specialized mechanisms to survive when iron is limited. These mechanisms make attractive targets for new drugs. Here, by genome-wide phenotypic profiling, we identify and categorize mycobacterial genes required for low iron fitness. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can scavenge host-sequestered iron by high-affinity iron chelators called siderophores. We take advantage of siderophore redundancy within the non-pathogenic mycobacterial model organism M. smegmatis (Msmeg), to identify genes required for siderophore dependent and independent fitness when iron is low. In addition to genes with a potential function in recognition, transport or utilization of mycobacterial siderophores, we identify novel putative low iron survival strategies that are separate from siderophore systems. We also identify the Msmeg in vitro essential gene set, and find that 96% of all growth-required Msmeg genes have a mutual ortholog in Mtb. Of these again, nearly 90% are defined as required for growth in Mtb as well. Finally, we show that a novel, putative ferric iron ABC transporter contributes to low iron fitness in Msmeg, in a siderophore independent manner.
Collapse
Affiliation(s)
- Marte S Dragset
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway. .,Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA. .,Germans Trias i Pujol Research Institute, Tuberculosis Research Unit, Badalona, 80916, Spain.
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Yanjia J Zhang
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA
| | - Mali Mærk
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - Zekarias Ginbot
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - James C Sacchettini
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX, 77843, USA
| | - Trude H Flo
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA
| | - Magnus Steigedal
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway.,Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA.,St. Olavs University Hospital, Department of Medical Microbiology, Trondheim, 7030, Norway
| |
Collapse
|
23
|
Popovic I, Soares Magalhaes RJ, Ge E, Marks GB, Dong GH, Wei X, Knibbs LD. A systematic literature review and critical appraisal of epidemiological studies on outdoor air pollution and tuberculosis outcomes. ENVIRONMENTAL RESEARCH 2019; 170:33-45. [PMID: 30557690 DOI: 10.1016/j.envres.2018.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Ambient air pollution is the leading environmental risk factor for disease globally. Air pollutants can increase the risk of some respiratory infections, but their effects on tuberculosis (TB) are unclear. In this systematic literature review, we aimed to assess epidemiological studies on the association between outdoor air pollutants and TB incidence, hospital admissions and death (collectively referred to here as 'TB outcomes'). We sought to consolidate available evidence on this topic and propose recommendations for future studies. Following PRISMA guidelines, we searched PubMed, Web of Science, Google Scholar, and Scopus with no restrictions imposed on year of publication. A total of 11 epidemiological studies, performed in Asia, Europe and North America, met our inclusion criteria (combined sample size: 215,337 people). We extracted key study characteristics from each eligible publication, including design, exposure assessment, analytical approaches and effect estimates. The studies were assessed for overall quality and risk of bias using standard criteria. The pollutant most frequently associated with statistically significant effects on TB outcomes was fine particulate matter ( < 2.5 µm; PM2.5); 6/11 studies assessed PM2.5, of which 4/6 demonstrated a significant association). There was some evidence of significant associations between PM10 ( < 10 µm), nitrogen dioxide (NO2) and sulfur dioxide (SO2) and TB outcomes, but these associations were inconsistent. The existing epidemiological evidence is limited and shows mixed results. However, it is plausible that exposure to air pollutants, particularly PM2.5, may suppress important immune defence mechanisms, increasing an individual's susceptibility to development of active TB and TB-related mortality. Considering the small number of studies relative to the demonstrably large global health burdens of air pollution and TB, further research is required to corroborate the findings in the current literature. Based on a critical assessment of existing evidence, we conclude with methodological suggestions for future studies.
Collapse
Affiliation(s)
- Igor Popovic
- School of Public Health, Faculty of Medicine, University of Queensland, Herston, Australia.
| | - Ricardo J Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton, Australia; Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Erjia Ge
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Guy B Marks
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia; Woolcock Institute of Medical Research, Sydney, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, Australia
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Wei
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine, University of Queensland, Herston, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, Australia
| |
Collapse
|
24
|
Carlos AR, Weis S, Soares MP. Cross-Talk Between Iron and Glucose Metabolism in the Establishment of Disease Tolerance. Front Immunol 2018; 9:2498. [PMID: 30425714 PMCID: PMC6218924 DOI: 10.3389/fimmu.2018.02498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Infectious diseases are associated with disruption of host homeostasis. This can be triggered directly by pathogens or indirectly by host immune-driven resistance mechanisms. Disease tolerance is a defense strategy against infection that sustains host homeostasis, without exerting a direct negative impact on pathogens. The mechanisms governing disease tolerance encompass host metabolic responses that maintain vital homeostatic parameters within a range compatible with survival. Central to this defense strategy is the host's ability to sense and adapt to variations in nutrients, such as iron and glucose. Here we address how host responses regulating iron and glucose metabolism interact to establish disease tolerance and possibly modulate resistance to infection.
Collapse
Affiliation(s)
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
25
|
Tuning the Anti(myco)bacterial Activity of 3-Hydroxy-4-pyridinone Chelators through Fluorophores. Pharmaceuticals (Basel) 2018; 11:ph11040110. [PMID: 30347802 PMCID: PMC6316862 DOI: 10.3390/ph11040110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Controlling the sources of Fe available to pathogens is one of the possible strategies that can be successfully used by novel antibacterial drugs. We focused our interest on the design of chelators to address Mycobacterium avium infections. Taking into account the molecular structure of mycobacterial siderophores and considering that new chelators must be able to compete for Fe(III), we selected ligands of the 3-hydroxy-4-pyridinone class to achieve our purpose. After choosing the type of chelating unit it was also our objective to design chelators that could be monitored inside the cell and for that reason we designed chelators that could be functionalized with fluorophores. We didn’t realize at the time that the incorporation a fluorophore, to allow spectroscopic detection, would be so relevant for the antimycobacterial effect or to determine the affinity of the chelators towards biological membranes. From a biophysical perspective, this is a fascinating illustration of the fact that functionalization of a molecule with a particular label may lead to a change in its membrane permeation properties and result in a dramatic change in biological activity. For that reason we believe it is interesting to give a critical account of our entire work in this area and justify the statement “to label means to change”. New perspectives regarding combined therapeutic approaches and the use of rhodamine B conjugates to target closely related problems such as bacterial resistance and biofilm production are also discussed.
Collapse
|
26
|
Malhotra H, Patidar A, Boradia VM, Kumar R, Nimbalkar RD, Kumar A, Gani Z, Kaur R, Garg P, Raje M, Raje CI. Mycobacterium tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Functions as a Receptor for Human Lactoferrin. Front Cell Infect Microbiol 2017. [PMID: 28642848 PMCID: PMC5462994 DOI: 10.3389/fcimb.2017.00245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.
Collapse
Affiliation(s)
- Himanshu Malhotra
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Anil Patidar
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Vishant M Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajender Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajbeer Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Manoj Raje
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Chaaya I Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| |
Collapse
|
27
|
Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem 2017; 170:75-84. [DOI: 10.1016/j.jinorgbio.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/27/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
28
|
Mycobacterium tuberculosis Rv1474c is a TetR-like transcriptional repressor that regulates aconitase, an essential enzyme and RNA-binding protein, in an iron-responsive manner. Tuberculosis (Edinb) 2017; 103:71-82. [PMID: 28237036 DOI: 10.1016/j.tube.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.
Collapse
|
29
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
30
|
Calder B, Albeldas C, Blackburn JM, Soares NC. Mass Spectrometry Offers Insight into the Role of Ser/Thr/Tyr Phosphorylation in the Mycobacteria. Front Microbiol 2016; 7:141. [PMID: 26904014 PMCID: PMC4751927 DOI: 10.3389/fmicb.2016.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
Phosphorylation is a post translational modification which can rapidly regulate biochemical pathways by altering protein function, and has been associated with pathogenicity in bacteria. Once engulfed by host macrophages, pathogenic bacteria are exposed to harsh conditions and must respond rapidly in order to survive. The causative agent of TB, Mycobacterium tuberculosis, is unusual amongst the bacteria because it can survive within the host macrophage for decades in a latent state, demonstrating a remarkable capacity to successfully evade the host immune response. This ability may be mediated in part by regulatory mechanisms such as ser/thr/tyr phosphorylation. Mass spectrometry-based proteomics has afforded us the capacity to identify hundreds of phosphorylation sites in the bacterial proteome, allowing for comparative phosphoproteomic studies in the mycobacteria. There remains an urgent need to validate the reported phosphosites, and to elucidate their biological function in the context of pathogenicity. However, given the sheer number of putative phosphorylation events in the mycobacterial proteome, and the technical difficulty of assigning biological function to a phosphorylation event, it will not be trivial to do so. There are currently six published phosphoproteomic investigations of a member of mycobacteria. Here, we combine the datasets from these studies in order to identify commonly detected phosphopeptides and phosphosites in order to present high confidence candidates for further validation. By applying modern mass spectrometry-based techniques to improve our understanding of phosphorylation and other PTMs in pathogenic bacteria, we may identify candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Bridget Calder
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Claudia Albeldas
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Jonathan M Blackburn
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nelson C Soares
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
31
|
Sandhu P, Akhter Y. The drug binding sites and transport mechanism of the RND pumps from Mycobacterium tuberculosis: Insights from molecular dynamics simulations. Arch Biochem Biophys 2016; 592:38-49. [PMID: 26792538 DOI: 10.1016/j.abb.2016.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
Abstract
RND permease superfamily drug efflux pumps are involved in multidrug transport and are attractive to study them for therapeutic purpose. In previous work we have classified 14 members of MmpL proteins belong to RND superfamily from Mycobacterium tuberculosis (Mtb) within its families [Sandhu P. and Akhter Y., 2015. Int. J. Med. Microbiol., 305:413-423]. In this study, structures of these proteins are homology modelled. The drug binding sites and channels are identified using local micro-stereochemistry and charge densities. Potential transport mechanism based on differential structural behaviour in the absence and on the binding of drug molecules is explained using the molecular dynamics simulation results. Our studies show two potential drug binding sites positioned at opposite ends of the transport tunnel leading from cytoplasmic to the periplasmic space across MmpL5 trimer. The drug binding have effects on the structural conformation of the protein leading to molecular-scale peristaltic movements. The free binding energy calculations reveal that the subsequent binding events are interdependent and may have implications on transport mechanism. Two drug binding sites and a continuous channel in the RND pump have been reported. The proposed ligand binding mechanism shows peristaltic movements in the channel leading to the drug efflux. This study would be helpful in understanding the molecular basis of drugs resistance in Mtb.
Collapse
Affiliation(s)
- Padmani Sandhu
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
32
|
Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476534. [PMID: 26120582 PMCID: PMC4450229 DOI: 10.1155/2015/476534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.
Collapse
|
33
|
Minchella PA, Donkor S, McDermid JM, Sutherland JS. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb) 2015; 95:288-93. [PMID: 25764944 DOI: 10.1016/j.tube.2015.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022]
Abstract
Early identification of individuals at risk for progressing to active tuberculosis (TB) disease may limit new transmission and improve clinical outcomes. Evidence indicates altered iron homeostasis may identify those at greater risk of disease progression in HIV co-infection. We aimed to investigate iron homeostasis biomarkers as risk factors for progression to TB. Archived plasma samples were analyzed from household contacts of pulmonary TB index cases in The Gambia. Contacts were classified as asymptomatic non-progressors (n = 17) or TB-progressors (n = 10), which included two HIV-infected participants. Iron homeostasis (hemoglobin, ferritin, hepcidin, soluble transferrin receptor, transferrin) was assessed in all contacts at study recruitment. Plasma was collected a median of 910 days prior to TB diagnosis. Low transferrin around the time of known exposure to infectious TB was a disease progression risk factor among all TB-progressors (Poisson incidence rate ratio: 0.55; 95% CI: 0.35-0.89). Iron homeostasis also differed between early and delayed TB-progressors, with higher ferritin and hepcidin concentrations observed among early TB-progressors (mean ferritin 50.2 vs. 26.2 ng/ml; P = 0.027; mean hepcidin 37.7 vs. 5.6 ng/ml; P = 0.036). Iron homeostasis is associated with progression to TB among household contacts. Further studies are needed to elucidate mechanisms and determine the clinical utility of monitoring iron homeostasis biomarkers.
Collapse
Affiliation(s)
| | - Simon Donkor
- Vaccinology Theme, Medical Research Council Unit, Fajara, Gambia
| | - Joann M McDermid
- Division of Nutritional Sciences, Cornell University, Ithaca, USA.
| | | |
Collapse
|
34
|
Fang Z, Sampson SL, Warren RM, Gey van Pittius NC, Newton-Foot M. Iron acquisition strategies in mycobacteria. Tuberculosis (Edinb) 2015; 95:123-30. [PMID: 25636179 DOI: 10.1016/j.tube.2015.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/01/2015] [Accepted: 01/07/2015] [Indexed: 02/04/2023]
Abstract
Iron is an essential element to most life forms including mycobacterial species. However, in the oxidative atmosphere iron exists as insoluble salts. Free and soluble iron ions are scarce in both the extracellular and intracellular environment which makes iron assimilation very challenging to mycobacteria. Tuberculosis, caused by the pathogen, Mycobacterium tuberculosis, is one of the most infectious and deadly diseases in the world. Extensive studies regarding iron acquisition strategies have been documented in mycobacteria, including work on the mycobacterial iron chelators (siderophores), the iron-responsive regulon, and iron transport and utilization pathways. Under low iron conditions, expression of the genes encoding iron importers, exporters and siderophore biosynthetic enzymes is up-regulated significantly increasing the ability of the bacteria to acquire limited host iron. Disabling these proteins impairs the growth of mycobacteria under low iron conditions both in vitro and in vivo, and that of pathogenic mycobacteria in animal models. Drugs targeting siderophore-mediated iron transport could offer promising therapeutic options. However, the discovery and characterization of an alternative iron acquisition mechanism, the heme transport and utilization pathway, questions the effectiveness of the siderophore-centered therapeutic strategy. Links have been found between these two distinct iron acquisition mechanisms, thus, targeting a few candidate proteins or mechanisms may influence both pathways, leading to effective elimination of the bacteria in the host.
Collapse
Affiliation(s)
- Zhuo Fang
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Samantha Leigh Sampson
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Robin Mark Warren
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Nicolaas Claudius Gey van Pittius
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
35
|
Boradia VM, Malhotra H, Thakkar JS, Tillu VA, Vuppala B, Patil P, Sheokand N, Sharma P, Chauhan AS, Raje M, Raje CI. Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Nat Commun 2014; 5:4730. [DOI: 10.1038/ncomms5730] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/17/2014] [Indexed: 11/09/2022] Open
|
36
|
Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med Chem 2014; 5:1391-403. [PMID: 23919550 DOI: 10.4155/fmc.13.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified. Rv0203, MmpL3 and MmpL11 are mycobacteria-specific proteins, making them excellent drug targets. Importantly, MmpL3, a necessary protein, has also been implicated in trehalose monomycolate export. Recent drug-discovery efforts revealed that MmpL3 is the target of several compounds with antimycobacterial activity. Inhibition of the Mtb heme uptake pathway has yet to be explored. We propose that inhibitor design could focus on heme analogs, with the goal of blocking specific steps of this pathway. In addition, heme uptake could be hijacked as a method of importing drugs into the mycobacterial cytosol.
Collapse
|
37
|
Abstract
Particle exposures increase the risk for human infections. Particles can deposit in the nose, pharynx, larynx, trachea, bronchi, and distal lung and, accordingly, the respiratory tract is the system most frequently infected after such exposure; however, meningitis also occurs. Cigarette smoking, burning of biomass, dust storms, mining, agricultural work, environmental tobacco smoke (ETS), wood stoves, traffic-related emissions, gas stoves, and ambient air pollution are all particle-related exposures associated with an increased risk for respiratory infections. In addition, cigarette smoking, burning of biomass, dust storms, mining, and ETS can result in an elevated risk for tuberculosis, atypical mycobacterial infections, and meningitis. One of the mechanisms for particle-related infections includes an accumulation of iron by surface functional groups of particulate matter (PM). Since elevations in metal availability are common to every particle exposure, all PM potentially contributes to these infections. Therefore, exposures to wood stove emissions, diesel exhaust, and air pollution particles are predicted to increase the incidence and prevalence of tuberculosis, atypical mycobacterial infections, and meningitis, albeit these elevations are likely to be small and detectable only in large population studies. Since iron accumulation correlates with the presence of surface functional groups and dependent metal coordination by the PM, the risk for infection continues as long as the particle is retained. Subsequently, it is expected that the cessation of exposure will diminish, but not totally reverse, the elevated risk for infection.
Collapse
Affiliation(s)
- A J Ghio
- National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC, 27711, USA,
| |
Collapse
|
38
|
Regulation of mycolactone, the Mycobacterium ulcerans toxin, depends on nutrient source. PLoS Negl Trop Dis 2013; 7:e2502. [PMID: 24244764 PMCID: PMC3828164 DOI: 10.1371/journal.pntd.0002502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future.
Collapse
|
39
|
Lamont EA, Xu WW, Sreevatsan S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013; 14:694. [PMID: 24112552 PMCID: PMC3832399 DOI: 10.1186/1471-2164-14-694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
40
|
Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R, Sampson NS, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H, Lew JM. Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 2013; 93:47-59. [PMID: 23375378 DOI: 10.1016/j.tube.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023]
Abstract
The sequencing of complete genomes has accelerated biomedical research by providing information about the overall coding capacity of bacterial chromosomes. The original TB annotation resulted in putative functional assignment of ∼60% of the genes to specific metabolic functions, however, the other 40% of the encoded ORFs where annotated as conserved hypothetical proteins, hypothetical proteins or encoding proteins of unknown function. The TB research community is now at the beginning of the next phases of post-genomics; namely reannotation and functional characterization by targeted experimentation. Arguably, this is the most significant time for basic microbiology in recent history. To foster basic TB research, the Tuberculosis Community Annotation Project (TBCAP) jamboree exercise began the reannotation effort by providing additional information for previous annotations, and refining and substantiating the functional assignment of ORFs and genes within metabolic pathways. The overall goal of the TBCAP 2012 exercise was to gather and compile various data types and use this information with oversight from the scientific community to provide additional information to support the functional annotations of encoding genes. Another objective of this effort was to standardize the publicly accessible Mycobacterium tuberculosis reference sequence and its annotation. The greatest benefit of functional annotation information of genome sequence is that it fuels TB research for drug discovery, diagnostics, vaccine development and epidemiology.
Collapse
|
41
|
McDermid JM, Hennig BJ, van der Sande M, Hill AVS, Whittle HC, Jaye A, Prentice AM. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study. BMC Infect Dis 2013; 13:48. [PMID: 23360117 PMCID: PMC3568026 DOI: 10.1186/1471-2334-13-48] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/16/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Identifying people at higher risk of developing tuberculosis with human immunodeficiency virus (HIV) infection may improve clinical management of co-infections. Iron influences tuberculosis (TB) pathogenesis, but understanding the exact mechanisms of how and timing of when iron is involved remains challenging since biological samples are rarely available from the disease susceptibility period due to the difficulty in predicting in who and when, if ever, TB will develop. The objective of this research was to determine how host iron status measured at HIV diagnosis and genotypes related to host iron metabolism were associated with incident TB. METHODS Archived clinical data, plasma and DNA were analyzed from 1139 adult participants in a large HIV-1, HIV-2 and dual seroprevalent cohort based at the Medical Research Council Laboratories in The Gambia. Incident pulmonary and/or extrapulmonary TB diagnoses a minimum of 28 days after HIV diagnosis were independently re-confirmed using available evidence (n=152). Multiple host iron status biomarkers, Haptoglobin and solute carrier family 11, member 1 (SLC11A1) genotypes were modeled to characterize how indicators of host iron metabolism were associated with TB susceptibility. RESULTS Hemoglobin (incidence rate ratio, IRR=0.88, 95% CI=0.79-0.98), plasma transferrin (IRR=0.53, 0.33-0.84) and ferritin (IRR=1.26, 1.05-1.51) were significantly associated with TB after adjusting for TB susceptibility factors. While genotype associations were not statistically significant, SLC11A1 associations replicated similar directions as reported in HIV-seronegative meta-analyses. CONCLUSIONS Evidence of host iron redistribution at HIV diagnosis was associated with incident TB, and genetic influences on iron homeostasis may be involved. Low hemoglobin was associated with subsequent diagnosis of TB, but when considered in combination with additional iron status biomarkers, the collective findings point to a mechanism whereby anemia and iron redistribution are likely due to viral and/or bacteria-driven processes and the host immune response to infection. As a result, iron supplementation may not be efficacious or safe under these circumstances. Clinical and nutritional management of HIV and Mycobacterium tuberculosis co-infected individuals, especially in regions where food insecurity and malnutrition co-exist, may be further improved when the iron-related TB risk factors identified here are better understood and managed to favor host rather than pathogen outcomes.
Collapse
Affiliation(s)
- Joann M McDermid
- Division of Nutritional Sciences, Cornell University, 310 Savage Hall, Ithaca, NY, 14853, USA
| | - Branwen J Hennig
- Medical Research Council International Nutrition Group, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom and Medical Research Council, Keneba, The Gambia
| | - Marianne van der Sande
- Epidemiology and Surveillance Unit, Centre of Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands and Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrian VS Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Assan Jaye
- Medical Research Council Laboratories, Fajara, The Gambia
| | - Andrew M Prentice
- Medical Research Council International Nutrition Group, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom and Medical Research Council, Keneba, The Gambia
| |
Collapse
|
42
|
Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie 2012; 94:110-6. [DOI: 10.1016/j.biochi.2011.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/27/2011] [Indexed: 02/03/2023]
|
43
|
Santhanagopalan SM, Rodriguez GM. Examining the role of Rv2895c (ViuB) in iron acquisition in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 92:60-2. [PMID: 22015175 DOI: 10.1016/j.tube.2011.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/07/2011] [Accepted: 09/21/2011] [Indexed: 11/15/2022]
Abstract
Iron acquisition is essential for Mycobacterium tuberculosis (Mtb) virulence. Understanding the molecular mechanisms used by Mtb to scavenge iron during infection might reveal new targets for antimicrobial development. Rv2895c, a homolog of ViuB from Vibrio cholerae has been postulated to be involved in iron-siderophore uptake and utilization in Mtb. This study examines the requirement of Rv2895c for adaptation of Mtb to iron limitation. We show that Rv2895c is dispensable for normal replication of Mtb in iron deficient conditions and in human macrophages. Thus, contrary to the predictions of sequence analysis and in-vitro studies the genetic evidence indicates that in normal conditions Rv2895c is not required for iron acquisition in Mtb.
Collapse
Affiliation(s)
- Sujatha M Santhanagopalan
- Public Health Research Institute, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | |
Collapse
|