1
|
Alemayehu A, Wassie L, Alemayehu DH, Adnew B, Neway S, Tefera DA, Ayalew S, Hailu E, Ayele S, Seyoum B, Bobosha K, Abebe M, Aseffa A, Petros B, Howe R. Genotypes and drug resistance pattern of Mycobacterium tuberculosis complex among clinically diagnosed pulmonary tuberculosis patients. Front Public Health 2024; 12:1420685. [PMID: 39687724 PMCID: PMC11646991 DOI: 10.3389/fpubh.2024.1420685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background Clinically diagnosed pulmonary tuberculosis (TB) (CDPTB) patients account for a huge proportion of TB. However, little is known about the genetic diversity and drug resistance profile of Mycobacterium tuberculosis Complex (MTBC) strains in this group of patients. Method Unmatched case-control study was conducted among 313 PTB patients to compare the genetic diversity of MTBC and their drug resistance profiles among CDPTB (n = 173) and bacteriologically confirmed pulmonary TB (BCPTB) (n = 140) patients. Lowenstein-Jensen (LJ) culture, geneXpert and acid fast staining were performed on sputum specimen collected from both CDPTB and BCPTB patients. Spoligotyping, whole genome sequencing (WGS) and phenotypic drug resistance testing (DST) were done for a subset of LJ grown MTBC isolates. Data was analyzed by STATA version 17 software and a p-value <0.05 were considered statistically significant. Results The proportion of lineage 3 was larger among CDPTB patients (31%, 13/42) compared to BCPTB patients (15%, 11/74) (p-value <0.05). A higher proportion of MTBC isolates from CDPTB 16.6% (3/18) were phenotypically resistant to one or more anti-TB drugs than BCPTB 12% (4/33) (p-value >0.05). A single lineage 3 strain resistant to all the primary anti-TB drugs was detected in one CDPTB by both DST methods. Conclusion The observed differences in the genotypes of MTBC isolates between CDPTB and BCPTB patients may be attributed to challenges in the identification of CDPTB that requires further investigation on sequenced genome of the MTBC strains for better understanding and recommendation based on the current finding. There was also primary drug resistant TB among culture positive CDPTB patients which would be otherwise missed by current national protocols.
Collapse
Affiliation(s)
- Alem Alemayehu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- School of Medial Laboratory Science, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | | | - Bethlehem Adnew
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Sebsib Neway
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | | | - Sosina Ayalew
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Elena Hailu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Samuel Ayele
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Berhanu Seyoum
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Deb S, Basu J, Choudhary M. An overview of next generation sequencing strategies and genomics tools used for tuberculosis research. J Appl Microbiol 2024; 135:lxae174. [PMID: 39003248 DOI: 10.1093/jambio/lxae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jhinuk Basu
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Megha Choudhary
- All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
3
|
Long R, Croxen M, Lee R, Doroshenko A, Lau A, Asadi L, Heffernan C, Paulsen C, Egedahl ML, Lloyd C, Li V, Tyrrell G. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: A retrospective 2-cohort study. J Infect 2024; 88:123-131. [PMID: 38104727 DOI: 10.1016/j.jinf.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Subclinical pulmonary tuberculosis (PTB) is an asymptomatic disease state between established TB infection and symptomatic (clinical) TB disease. It is present in 20-25% of PTB patients in high-income countries. Mycobacterium tuberculosis complex (MTBC) genetic heterogeneity, and differential host immunological responses, have been implicated in its pathogenesis. METHODS To determine the association between MTBC lineage and PTB disease phenotype, we used two retrospective cohorts of PTB patients in Canada and two independent lineage attribution methods (DNA fingerprinting and genome sequencing). The first cohort, Cohort 1, consisted of consecutively diagnosed PTB patients between 2014 and 2020. The second, Cohort 2, consisted of newly-arrived foreign-born PTB patients who either were or were not referred for post-landing medical surveillance between 2004 and 2017. Univariable and multivariable logistic regression models were sequentially fitted to both cohorts, adjusting for age, sex, disease type, drug resistance and HIV. Evolution of radiographic features was correlated to lineage in Cohort 2. FINDINGS Cohort 1 and 2 included 874 (209 subclinical) and 111 (44 subclinical) patients, respectively. In both cohorts, subclinical patients were more likely than clinical patients to have relapse/retreatment disease, be smear-negative, have longer times-to-culture positivity and to harbor an ancestral MTBC lineage (Indo-Oceanic or Mycobacterium africanum). Relapse/retreatment disease and ancestral MTBC lineage were independent predictors of subclinical disease (ORs and 95% CIs in Cohort 1, 1.85 [1.07,3.28], p < 0.029 and 2.30 [1.66,3.18], p < 0.001, respectively, and Cohort 2, 5.74 [1.37-24.06], p < 0.017 and 3.21 (1.29,7.97], p < 0.012, respectively). The geographic distribution of Indo-Oceanic strains causing subclinical disease was uneven. Non-progressive lung disease was more common in patients infected with ancestral than modern lineages in Cohort 2, 56.0% vs 25.4%, p < 0.005. INTERPRETATION MTBC lineage is a strong predictor of PTB disease phenotype. The genetic drivers of this association, and the relative contribution of other explanatory variables, are unknown.
Collapse
Affiliation(s)
- Richard Long
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Matthew Croxen
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn Lee
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Alexander Doroshenko
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Lau
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leyla Asadi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Heffernan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Paulsen
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Lou Egedahl
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin Lloyd
- Alberta Precision Laboratories, Edmonton, Alberta, Canada; Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Vincent Li
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Gregory Tyrrell
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Meaza A, Diriba G, Girma M, Wondimu A, Worku G, Medhin G, Ameni G, Gumi B. Molecular typing and drug sensitivity profiles of M. Tuberculosis isolated from refugees residing in Ethiopia. J Clin Tuberc Other Mycobact Dis 2023; 31:100371. [PMID: 37113677 PMCID: PMC10127110 DOI: 10.1016/j.jctube.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Background Refugees in developing countries have poor access to Tuberculosis (TB) care and control services. The understanding of genetic diversity and drug sensitivity patterns of M. tuberculosis (MTB) is important for the TB control program. However, there is no evidence that shows the drug sensitivity profiles and genetic diversity of MTB circulating among refugees residing in Ethiopia. This study aimed to investigate the genetic diversity of MTB strains and lineages, and to identify the drug sensitivity profiles of MTB isolated from refugees residing in Ethiopia. Methods A cross-sectional study was conducted among 68 MTB positive cases isolated from presumptive TB refugees from February to August 2021. Data and samples were collected in the refugee camp clinics and both rapid TB Ag detection and region of difference (RD)-9 deletion typing were used to confirm the MTBs. Drug susceptibility test (DST) and molecular typing were done using Mycobacterium Growth Indicator Tube (MGIT) method and spoligotyping respectively. Results DST and spoligotyping results were available for all 68 isolates. The isolates were grouped into 25 spoligotype patterns, which consisted of 1-31 isolates with 36.8% strain diversity. The international shared type (SIT)25 was predominant spoligotype pattern consisting of 31 (45.6%) isolates, followed by SIT24 comprising 5 (7.4%) isolates. Further investigation showed that 64.7% (44/68) of the isolates were belonged to CAS1-Delhi family and 75% (51/68) of the isolates were belonged to lineage(L)-3. Multi-drug resistance (MDR)-TB was observed only in one isolate (1.5%) for first-line anti-TB drugs and the highest level of mono-resistance, 5.9% (4/68), was observed for PZA(Pyrazinamide). Mono-resistance was observed in 2.9 % (2/68) and while 97.0% (66/68) of the MTB positive cases were susceptible to the second-line anti-TB drugs. Conclusion The findings are useful evidence for the TB screening, treatment and control in refugee populations and surrounding communities in Ethiopia.
Collapse
Affiliation(s)
- Abyot Meaza
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia
- Corresponding author.
| | - Getu Diriba
- Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia
| | - Musse Girma
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
| | - Ammanuel Wondimu
- Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia
| | - Getnet Worku
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Assefa G, Desta K, Araya S, Girma S, Hailu E, Mihret A, Hailu T, Tilahun M, Diriba G, Dagne B, Atnafu A, Endalafer N, Abera A, Bekele S, Mengistu Y, Bobosha K, Aseffa A. Drug Resistance in Tuberculous Lymphadenitis: Molecular Characterization. Tuberc Res Treat 2023; 2023:3291538. [PMID: 37032734 PMCID: PMC10076118 DOI: 10.1155/2023/3291538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Background Drug-resistant tuberculosis (TB) epidemic in high-TB-incidence countries, particularly Ethiopia, remains a significant challenge. As a result, we investigated the drug resistance, common gene mutation, and molecular characterization of mycobacterial isolates from patients with suspected tuberculous lymphadenitis (TBLN). Methodology. A cross-sectional study of 218 FNA samples from TBLN patients inoculated on Lowenstein-Jensen media was carried out. The culture isolates were identified as MTB by polymerase chain reaction (PCR) and the difference-9 (RD9) test region. In addition, the GenoType MTBDRplus assay tested the first and second-line MTB drugs, and the spoligotyping strain-dependent polymorphism test was determined. Results Among the 50 culture-positive isolates, 14% (7/50) had drug resistance caused by a gene mutation. Out of these, 4 (8%) isolates were mono-resistant to isoniazid drug, which is caused by a gene mutation in katG in the region of interrogated at codon 315 in the amino acid sequence of S315T1, and 3 (6%) isolates were resistant to both rifampicin and isoniazid drugs. The mutation was observed for katG (at codon 315 with a change in the sequence of amino acid S315T) and rpoB (at codon 530-533 with a change in the sequence of amino acid S531L (S450L)) genes. The most prevalent spoligotypes were orphan and SIT53 strains. Conclusion The predominance of INH mono-resistance poses a critical risk for the potential development of MDR-TB, as INH mono-resistance is a typical pathway to the occurrence of MDR-TB. The orphan and SIT53 (T) strains were the most common in the study area, and a drug-resistant strain caused by a common gene mutation could indicate the transmission of clonal-resistant strains in the community.
Collapse
Affiliation(s)
- Gebeyehu Assefa
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassu Desta
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Shambel Araya
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Selfu Girma
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Elena Hailu
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Tsegaye Hailu
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Melaku Tilahun
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Getu Diriba
- Ethiopian Public Health Institute, EPHI, Addis Ababa, Ethiopia
| | - Biniyam Dagne
- Ethiopian Public Health Institute, EPHI, Addis Ababa, Ethiopia
| | - Abay Atnafu
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | | | - Adugna Abera
- Ethiopian Public Health Institute, EPHI, Addis Ababa, Ethiopia
| | - Shiferaw Bekele
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | | | - Kidist Bobosha
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, AHRI, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Sarmah DT, Parveen R, Kundu J, Chatterjee S. Latent tuberculosis and computational biology: A less-talked affair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:17-31. [PMID: 36781150 DOI: 10.1016/j.pbiomolbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Tuberculosis (TB) is a pervasive and devastating air-borne disease caused by the organisms belonging to the Mycobacterium tuberculosis (Mtb) complex. Currently, it is the global leader in infectious disease-related death in adults. The proclivity of TB to enter the latent state has become a significant impediment to the global effort to eradicate TB. Despite decades of research, latent tuberculosis (LTB) mechanisms remain poorly understood, making it difficult to develop efficient treatment methods. In this review, we seek to shed light on the current understanding of the mechanism of LTB, with an accentuation on the insights gained through computational biology. We have outlined various well-established computational biology components, such as omics, network-based techniques, mathematical modelling, artificial intelligence, and molecular docking, to disclose the crucial facets of LTB. Additionally, we highlighted important tools and software that may be used to conduct a variety of systems biology assessments. Finally, we conclude the article by addressing the possible future directions in this field, which might help a better understanding of LTB progression.
Collapse
Affiliation(s)
- Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rubi Parveen
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Jayendrajyoti Kundu
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
7
|
Dale K, Globan M, Horan K, Sherry N, Ballard S, Tay EL, Bittmann S, Meagher N, Price DJ, Howden BP, Williamson DA, Denholm J. Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 28:100556. [PMID: 36034164 PMCID: PMC9405109 DOI: 10.1016/j.lanwpc.2022.100556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. Methods WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. Findings Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. Interpretation WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. Funding The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
Collapse
Affiliation(s)
- Katie Dale
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Public Health Division, Department of Health, Victoria, Australia
| | - Simone Bittmann
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Niamh Meagher
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Multidrug-Resistant Tuberculosis—Diagnostic Procedures and Treatment of Two Beijing-like TB Cases. Diagnostics (Basel) 2022; 12:diagnostics12071699. [PMID: 35885603 PMCID: PMC9318939 DOI: 10.3390/diagnostics12071699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The Beijing/W genotype is one of the major molecular families of Mycobacterium tuberculosis complex (MTBC), responsible for approximately 50% of tuberculosis (TB) cases in Far East Asia and at least 25% of TB cases globally. Studies have revealed that the Beijing genotype family is associated with a more severe clinical course of TB, increased ability to spread compared to other genotypes, and an unpredictable response to treatment. Based on the profile of spacers 35–43 in the Direct Repeat (DR) locus of the MTBC genome determined by spoligotyping, classical (typical) and modern (Beijing-like) clones can be identified within the Beijing family. While the modern and ancient Beijing strains appear to be closely related at the genetic level, there are marked differences in their drug resistance, as well as their ability to spread and cause disease. This paper presents two cases of drug-resistant tuberculosis caused by rare mycobacteria from the Beijing family: the Beijing 265 and Beijing 541 subtypes. The genotypes of isolated strains were linked with the clinical course of TB, and an attempt was made to initially assess whether the Beijing subtype can determine treatment outcomes in patients.
Collapse
|
9
|
Distribution of Common and Rare Genetic Markers of Second-Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrob Agents Chemother 2022; 66:e0207521. [PMID: 35532237 DOI: 10.1128/aac.02075-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.
Collapse
|
10
|
Zenteno-Cuevas R, Munro-Rojas D, Pérez-Martínez D, Fernandez-Morales E, Jimenez-Ruano AC, Montero H, Escobar L, de Igartua E, Trigos Á, Fuentes-Dominguez J. Genetic diversity and drug susceptibility of Mycobacterium tuberculosis in a city with a high prevalence of drug resistant tuberculosis from Southeast of Mexico. BMC Infect Dis 2021; 21:1202. [PMID: 34847856 PMCID: PMC8630842 DOI: 10.1186/s12879-021-06904-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mexico is on the top five countries with the highest number of TB cases in America continent, nevertheless, information about genotypes circulating is practically unknown. Considering the above this study aims to characterize the genetic diversity of TB in the city of Veracruz, México. Methods A cross-sectional study was conducted among positive smear samples from patients living in Veracruz City, samples were cultured, and first-line drug profiles determined. Genotyping was made by spoligotyping and MIRU-VNTR 24 loci. Associations of lineages, clusters, and variables were also analyzed. Results Among the 202 isolates analyzed resistance to at least one drug was observed in 60 (30%) isolates and 41(20%) were multidrug-resistant. Three major lineages were identified: L4/Euro-American (88%), L1/Indo-Oceanic (9%), and L2/East Asian (3%). The Euro-American lineage included more than six sublineages, the most abundant were: H (32%), T (23%), LAM (18%), and X (12%). 140 isolates (70%) were placed in 42 SITs patterns. Conclusions These results provide the first baseline data on the genetic structure of TB in the city of Veracruz. Sublineages H, X and LAM were predominant; however, it was founded an important diversity of genotypes that could contribute to the dispersion of TB and explain the high prevalence. This information might be useful for the development of further interventions to reduce impact of TB. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06904-z.
Collapse
Affiliation(s)
- Roberto Zenteno-Cuevas
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México. .,Multidisciplinary Research Network on Tuberculosis, Veracruz, Mexico.
| | | | - Damián Pérez-Martínez
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México.,Doctorate in Health Sciences Program, Health Sciences Institute, University of Veracruz, Veracruz, Mexico
| | - Esdras Fernandez-Morales
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México.,Master of Health Science Program, Health Sciences Institute, University of Veracruz, Xalapa, Veracruz, Mexico
| | - Ana C Jimenez-Ruano
- Master of Health Science Program, Health Sciences Institute, University of Veracruz, Xalapa, Veracruz, Mexico
| | - Hilda Montero
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México
| | | | | | - Ángel Trigos
- Research Center in Applied Mycology, University of Veracruz, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
11
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
12
|
Couvin D, Segretier W, Stattner E, Rastogi N. Novel methods included in SpolLineages tool for fast and precise prediction of Mycobacterium tuberculosis complex spoligotype families. Database (Oxford) 2020; 2020:baaa108. [PMID: 33320180 PMCID: PMC7737520 DOI: 10.1093/database/baaa108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022]
Abstract
Bioinformatic tools are currently being developed to better understand the Mycobacterium tuberculosis complex (MTBC). Several approaches already exist for the identification of MTBC lineages using classical genotyping methods such as mycobacterial interspersed repetitive units-variable number of tandem DNA repeats and spoligotyping-based families. In the recently released SITVIT2 proprietary database of the Institut Pasteur de la Guadeloupe, a large number of spoligotype families were assigned by either manual curation/expertise or using an in-house algorithm. In this study, we present two complementary data-driven approaches allowing fast and precise family prediction from spoligotyping patterns. The first one is based on data transformation and the use of decision tree classifiers. In contrast, the second one searches for a set of simple rules using binary masks through a specifically designed evolutionary algorithm. The comparison with the three main approaches in the field highlighted the good performances of our contributions and the significant runtime gain. Finally, we propose the 'SpolLineages' software tool (https://github.com/dcouvin/SpolLineages), which implements these approaches for MTBC spoligotype families' identification.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, F-97183, Abymes, Guadeloupe, France
| | - Wilfried Segretier
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), Université des Antilles, F-97154, Pointe-à-Pitre, Guadeloupe, France
| | - Erick Stattner
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), Université des Antilles, F-97154, Pointe-à-Pitre, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, F-97183, Abymes, Guadeloupe, France
| |
Collapse
|
13
|
Mokrousov I. Ubiquitous and multifaceted: SIT53 spoligotype does not correlate with any particular family of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2020; 126:102024. [PMID: 33242765 DOI: 10.1016/j.tube.2020.102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Euro-American lineage (Lineage 4) of Mycobacterium tuberculosis comprises genetically and geographically diverse families that differ in their clinical and/or epidemiological capacities. Due to the characteristic structure of the CRISPR locus (presence of almost all 43 classical spacers except for deleted signals 33-36), spoligotype SIT53 takes the basal position in the evolution of this lineage. In the SITVIT database, it is assigned to the "ill-defined" T family and T1 subfamily. Here, I analyzed the phylogenetic diversity of SIT53 isolates and discussed interconnected terminological issues concerning M. tuberculosis population structure. The 24-MIRU-VNTR profiles of 266 SIT53 isolates from Europe, Asia, Africa, and South America were submitted to the phylogenetic analysis jointly with reference profiles of different families from MIRU-VNTRplus database. Under this analysis, SIT53 isolates were clustered within different and distant families such as Ghana, NEW-1 (L4.5), TUR (L4.2.2.1), etc whereas many remained unclassified within L4. This confirms the evolutionarily basal position of this spoligotype and in its turn, this demonstrates that SIT53 does not correspond to any particular family of M. tuberculosis. Instead, different SIT53 subpopulations with evolutionarily stable and unchanged CRISPR locus gave rise to different and distant families that in many instances evolved through long-term allopatric evolution.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg, 197101, Russia.
| |
Collapse
|
14
|
Rodríguez-Castillo JG, Llerena C, Argoty-Chamorro L, Guerra J, Couvin D, Rastogi N, Murcia MI. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb) 2020; 125:102011. [PMID: 33137696 DOI: 10.1016/j.tube.2020.102011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022]
Abstract
Emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) isolates is a major public health problem that threatens progress made in tuberculosis (TB) care and control worldwide. In Colombia, the prevalence of MDR tuberculosis (MDR-TB) has increased slowly but steadily since 2001. However, the population structure of the MDR-TB strains circulating in Colombia is sparsely known. In this work, 203 MDR isolates isolated in 2012-2013 were collected, and characterized by spoligotyping, followed by 24-loci MIRU-VNTR (data available for 190 isolates). The most prevalent genotypes corresponded to SIT42/LAM9 (12.81%), SIT62/H1 (10.34%), and SIT190/Beijing (10.34%). A fine analysis showed that although the MDR strains came from 29 of the 33 departments of Colombia, the distribution of these main lineages was not at random and depended on the city of isolation (p-value <0.000001). Both LAM and Beijing lineage strains were significantly associated with MDR-TB (p-value <0.0001): LAM lineage was associated with 2 patterns of MDR, namely combined resistance to INH + Rifampin (HR), and to SHRE (Streptomycin + INH + Rifampin + Ethambutol), while the Beijing lineage strains were essentially associated with MDR (SHRE). Interestingly, distribution of genotypic lineages in function of drug resistance information (e.g. pansusceptible vs. MDR) was different in our setting as compared to other countries in Latin America. However, MIRU-VNTR patterns were unique for all strains, an observation that did not support active transmission of circulating MDR clones.
Collapse
Affiliation(s)
- Juan Germán Rodríguez-Castillo
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - Claudia Llerena
- Grupo de Micobacterias, Red Nacional de Laboratorios, Instituto Nacional de Salud, Avenida calle 26 No. 51-20 - Zona 6 CAN, Bogotá, D.C, Colombia
| | - Lorena Argoty-Chamorro
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - Julio Guerra
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Morne Jolivière, BP484, F97183 Abymes Cedex, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Morne Jolivière, BP484, F97183 Abymes Cedex, Abymes, Guadeloupe, France.
| | - Martha Isabel Murcia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia.
| |
Collapse
|
15
|
Modlin SJ, Conkle-Gutierrez D, Kim C, Mitchell SN, Morrissey C, Weinrick BC, Jacobs WR, Ramirez-Busby SM, Hoffner SE, Valafar F. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. eLife 2020; 9:58542. [PMID: 33107429 PMCID: PMC7591249 DOI: 10.7554/elife.58542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.
Collapse
Affiliation(s)
- Samuel J Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Calvin Kim
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Scott N Mitchell
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Christopher Morrissey
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Sarah M Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Sven E Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States.,Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| |
Collapse
|
16
|
Genetic diversity and drug resistance pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings, Northwest Ethiopia. PLoS One 2020; 15:e0231320. [PMID: 32267877 PMCID: PMC7141659 DOI: 10.1371/journal.pone.0231320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Introduction Tuberculosis (TB) remains a major global public health problem and is the leading cause of death from a single bacterium, Mycobacterium tuberculosis (MTB) complex. The emergence and spread of drug-resistant strains aggravate the problem, especially in tuberculosis high burden countries such as Ethiopia. The supposedly high initial cost of laboratory diagnosis coupled with scarce financial resources has limited collection of information about drug resistance patterns and circulating strains in peripheral and emerging regions of Ethiopia. Here, we investigated drug susceptibility and genetic diversity of mycobacterial isolates among pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings in northwest Ethiopia. Methods and material In a cross-sectional study, 107 consecutive sputum smear-positive pulmonary tuberculosis (PTB) patients diagnosed at two hospitals and seven health centers were enrolled between October 2013 and June 2014. Sputum samples were cultured at Armauer Hansen Research Institute (AHRI) TB laboratory, and drug susceptibility testing (DST) was performed against Isoniazid, Rifampicin, Ethambutol, and Streptomycin using the indirect proportion method. Isolates were characterized using polymerase chain reaction (PCR)based Region of Difference 9 (RD9) testing and spoligotyping. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) for Windows version 24.0. Results Of 107 acid-fast-bacilli (AFB) smear-positive sputum samples collected, 81.3% (87/107) were culture positive. A PCR based RD9 testing revealed that all the 87 isolates were M. tuberculosis. Of these isolates, 16.1% (14/87) resistance to one or more drugs was observed. Isoniazid monoresistance occurred in 6.9% (6/87). Multidrug resistance (MDR) was observed in two isolates (2.3%), one of which was resistant to all the four drugs tested. Spoligotyping revealed that the majority, 61.3% (46/75) of strains could be grouped into ten spoligotype patterns containing two to 11 isolates each while the remaining 38.7% (29/75) were unique. SIT289 (11 isolates) and SIT53 (nine isolates) constituted 43.5% (20/46) among clustered isolates while 29.3% (22/75) were ‘‘New” to the database. The dominant families were T, 37% (28/75), CAS, 16.0% (12/75), and H, 8% (6/75), adding up to 51.3% (46/75) of all isolates identified. Conclusion and recommendations The current study indicates a moderate prevalence of MDR TB. However, the observed high monoresistance to Isoniazid, one of the two proxy drugs for MDR-TB, reveals the hidden potential threat fora sudden increase in MDR-TB if resistance to Rifampicin would increase. Clustered spoligotype patterns suggest ongoing active tuberculosis transmission in the area. The results underscore the need for enhanced monitoring of TB drug resistance and epidemiological studies in this and other peripheral regions of the country using robust molecular tools with high discriminatory power such as the Mycobacterial Interspersed Repetitive Units -Variable Number of Tandem Repeats (MIRU-VNTR) typing and whole-genome sequencing (WGS).
Collapse
|
17
|
Sun W, Wang L, Zhang Q, Dong Q. Microbial Biomarkers for Colorectal Cancer Identified with Random Forest Model. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-000. [DOI: 10.14218/erhm.2019.00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Minias A, Minias P, Czubat B, Dziadek J. Purifying Selective Pressure Suggests the Functionality of a Vitamin B12 Biosynthesis Pathway in a Global Population of Mycobacterium tuberculosis. Genome Biol Evol 2019; 10:2326-2337. [PMID: 30060031 PMCID: PMC6363050 DOI: 10.1093/gbe/evy153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest and most challenging pathogens to study in current microbiological research. One of the issues that remains to be resolved is the importance of cobalamin in the metabolism of M. tuberculosis. The functionality of a vitamin B12 biosynthesis pathway in M. tuberculosis is under dispute, and the ability of this pathogen to scavenge vitamin B12 from the host is unknown. Here, we quantified the ratios of nonsynonymous and synonymous nucleotide substitution rates (dN/dS) in the genes involved in vitamin B12 biosynthesis and transport and in genes encoding cobalamin-dependent enzymes in nearly four thousand strains of M. tuberculosis. We showed that purifying selection is the dominant force acting on cobalamin-related genes at the levels of individual codons, genes and groups of genes. We conclude that cobalamin-related genes may not be essential but are adaptive for M. tuberculosis in clinical settings. Furthermore, the cobalamin biosynthesis pathway is likely to be functional in this species.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection University of Łódź, Łódź, Poland
| | - Bożena Czubat
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland.,Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
19
|
Guthrie JL, Kong C, Roth D, Jorgensen D, Rodrigues M, Hoang L, Tang P, Cook V, Johnston J, Gardy JL. Molecular Epidemiology of Tuberculosis in British Columbia, Canada: A 10-Year Retrospective Study. Clin Infect Dis 2019; 66:849-856. [PMID: 29069284 PMCID: PMC5850024 DOI: 10.1093/cid/cix906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 11/14/2022] Open
Abstract
Background Understanding regional molecular epidemiology allows for the development of more efficient tuberculosis prevention strategies in low-incidence settings. Methods We analyzed 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem repeat (MIRU-VNTR) genotyping for 2290 Mycobacterium tuberculosis clinical isolates collected in the province of British Columbia (BC), Canada, in 2005–2014. Laboratory data for each isolate were linked to case-level clinical and demographic data. These data were used to describe the molecular epidemiology of tuberculosis across the province. Results We detected >1500 distinct genotypes across the 4 major M. tuberculosis lineages, reflecting BC’s diverse population. Disease site and clustering rates varied across lineages, and MIRU-VNTR was used to group the 2290 isolates into 189 clusters (2–70 isolates per cluster), with an overall clustering rate of 42.4% and an estimated local transmission rate of 34.1%. Risk factors for clustering varied between Canadian-born and foreign-born individuals; the former had increased odds (odds ratio, 7.8; 95% confidence interval [CI], 6.2–9.6) of belonging to a genotypic cluster, although nearly one-quarter of clusters included both Canadian- and foreign-born persons. Large clusters (≥10 cases) occurred more frequently within the M. tuberculosis Euro-American lineage, and individual-level risk factors associated with belonging to a large cluster included being Canadian born (adjusted odds ratio, 3.3; 95% CI, 2.3–4.8), residing in a rural area (2.3; 1.2–4.5), and illicit drug use (2.0; 1.2–3.4). Conclusions Although tuberculosis in BC largely arises through reactivation of latent tuberculosis in foreign-born persons, locally transmitted infections occur in discrete populations with distinct disease and risk factor profiles, representing groups for targeted interventions.
Collapse
Affiliation(s)
| | - Clare Kong
- British Columbia Centre for Disease Control Public Health Laboratory
| | - David Roth
- British Columbia Centre for Disease Control
| | | | - Mabel Rodrigues
- British Columbia Centre for Disease Control Public Health Laboratory
| | - Linda Hoang
- British Columbia Centre for Disease Control Public Health Laboratory.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - Victoria Cook
- British Columbia Centre for Disease Control.,Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - James Johnston
- British Columbia Centre for Disease Control.,Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jennifer L Gardy
- School of Population and Public Health, University of British Columbia.,British Columbia Centre for Disease Control
| |
Collapse
|
20
|
Poonawala H, Kumar N, Peacock SJ. A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. INFECTION GENETICS AND EVOLUTION 2019; 78:104072. [PMID: 31618692 DOI: 10.1016/j.meegid.2019.104072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTBC) lineages differ in clinical presentation, virulence, transmission, drug resistance and immunological responses. Despite having the largest burden of tuberculosis (TB) in the world, strains from India are underrepresented in international databases. We reviewed published spoligotype data to determine the distribution and diversity of MTBC lineages in India. METHODS A Pubmed/MEDLINE search identified 34 M. tuberculosis spoligotyping studies from India. Spoligotype patterns were extracted and the Spoligotype International Type (SIT) number, sub-lineage and lineage determined. Minimum Spanning Trees were used to determine relationships between patterns. RESULTS We identified 1528 spoligotype patterns distributed across 8300 isolates; 6733 isolates belonged to 472 SITs, with 53% of all isolates belonging to 12 SITs with at least 100 isolates each. Lineage 1 and Lineage 3 made up 67% of all isolates, although a lineage could not be assigned for 16% of isolates. Lineage 1 isolates were most common in Southern, Western and Eastern India, and Lineage 3 was most common in Northern and Central India. The RULE, CBN and KBBN lineage prediction algorithms from the TB-lineage tools performed variably, with the correct lineage predicted correctly for only 64% of patterns with known lineage. Using a consensus definition, 64% of the 1359 isolates with unknown lineage were assigned to Lineage 1, and 14% each were assigned to Lineages 3 and 4. With these lineage assignments, 80% of all isolates belonged to either Lineage 1 or Lineage 3. CONCLUSION Our findings indicate significant M. tuberculosis diversity in India. The documentation of 1056 orphan and unreported patterns indicate that this diversity is under-represented in global databases.
Collapse
Affiliation(s)
- Husain Poonawala
- National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; Institute of Public Health, Banashankari, Bangalore 560070, India.
| | - Narender Kumar
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
21
|
Karmakar M, Trauer JM, Ascher DB, Denholm JT. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: Systematic review and meta-analysis. J Infect 2019; 79:572-581. [PMID: 31585190 DOI: 10.1016/j.jinf.2019.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The globally distributed "Beijing" lineage of Mycobacterium tuberculosis has been associated with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may have increased fitness; however, it has not been established whether these differences are of epidemiological significance with regards to transmission. Therefore, we undertook a systematic review of epidemiological studies of tuberculosis clustering to compare the transmission dynamics of Beijing lineages versus the non-Beijing lineages. METHODS We systematically searched Embase and MEDLINE before 31st December 2018, for studies which provided information on the transmission dynamics of the different M. tuberculosis lineages. We included articles that conducted population-based cross-sectional or longitudinal molecular epidemiological studies reporting information about extent of transmission of different lineages. The protocol for this systematic review was prospectively registered with PROSPERO (CDR42018088579). RESULTS Of 2855 records identified by the search, 46 were included in the review, containing 42,700 patients from 27 countries. Beijing lineage was the most prevalent and highly clustered strain in 72.4% of the studies and had a higher likelihood of transmission than non-Beijing lineages (OR 1·81 [95% 1·28-2·57], I2 = 94·0%, τ2 = 0·59, p < 0·01). CONCLUSIONS Despite considerable heterogeneity across epidemiological contexts, Beijing lineage appears to be more transmissible than other lineages.
Collapse
Affiliation(s)
- Malancha Karmakar
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James M Trauer
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Justin T Denholm
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Resolving a clinical tuberculosis outbreak using palaeogenomic genome reconstruction methodologies. Tuberculosis (Edinb) 2019; 119:101865. [PMID: 31563810 DOI: 10.1016/j.tube.2019.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 11/22/2022]
Abstract
This study describes the analysis of DNA from heat-killed (boilate) isolates of Mycobacterium tuberculosis from two UK outbreaks where DNA was of sub-optimal quality for the standard methodologies routinely used in microbial genomics. An Illumina library construction method developed for sequencing ancient DNA was successfully used to obtain whole genome sequences, allowing analysis of the outbreak by gene-by-gene MLST, SNP mapping and phylogenetic analysis. All cases were spoligotyped to the same Haarlem H1 sub-lineage. This is the first described application of ancient DNA library construction protocols to allow whole genome sequencing of a clinical tuberculosis outbreak. Using this method it is possible to obtain epidemiologically meaningful data even when DNA is of insufficient quality for standard methods.
Collapse
|
23
|
Thain N, Le C, Crossa A, Ahuja SD, Meissner JS, Mathema B, Kreiswirth B, Kurepina N, Cohen T, Chindelevitch L. Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 72:59-66. [PMID: 29960078 PMCID: PMC6708508 DOI: 10.1016/j.meegid.2018.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 11/30/2022]
Abstract
The determination of lineages from strain-based molecular genotyping information is an important problem in tuberculosis. Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing is a commonly used molecular genotyping approach that uses counts of the number of times pre-specified loci repeat in a strain. There are three main approaches for determining lineage based on MIRU-VNTR data - one based on a direct comparison to the strains in a curated database, and two others, on machine learning algorithms trained on a large collection of labeled data. All existing methods have limitations. The direct approach imposes an arbitrary threshold on how much a database strain can differ from a given one to be informative. On the other hand, the machine learning-based approaches require a substantial amount of labeled data. Notably, all three methods exhibit suboptimal classification accuracy without additional data. We explore several computational approaches to address these limitations. First, we show that eliminating the arbitrary threshold improves the performance of the direct approach. Second, we introduce RuleTB, an alternative direct method that proposes a concise set of rules for determining lineages. Lastly, we propose StackTB, a machine learning approach that requires only a fraction of the training data to outperform the accuracy of both existing machine learning methods. Our approaches demonstrate superior performance on a training dataset collected in New York City over 10 years, and the improvement in performance translates to a held-out testing set. We conclude that our methods provide opportunities for improving the determination of pathogenic lineages based on MIRU-VNTR data.
Collapse
Affiliation(s)
- Nithum Thain
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher Le
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aldo Crossa
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
| | - Shama Desai Ahuja
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
| | | | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barry Kreiswirth
- Public Health Research Institute TB Center, Rutgers University, Newark, NJ, USA
| | - Natalia Kurepina
- Public Health Research Institute TB Center, Rutgers University, Newark, NJ, USA
| | - Ted Cohen
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
24
|
O'Neill MB, Shockey A, Zarley A, Aylward W, Eldholm V, Kitchen A, Pepperell CS. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol 2019; 28:3241-3256. [PMID: 31066139 PMCID: PMC6660993 DOI: 10.1111/mec.15120] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a globally distributed, obligate pathogen of humans that can be divided into seven clearly defined lineages. An emerging consensus places the origin and global dispersal of M.tb within the past 6,000 years: identifying how the ancestral clone of M.tb spread and differentiated within this timeframe is important for identifying the ecological drivers of the current pandemic. We used Bayesian phylogeographic inference to reconstruct the migratory history of M.tb in Africa and Eurasia and to investigate lineage specific patterns of spread from a geographically diverse sample of 552 M.tb genomes. Applying evolutionary rates inferred with ancient M.tb genome calibration, we estimated the timing of major events in the migratory history of the pathogen. Inferred timings contextualize M.tb dispersal within historical phenomena that altered patterns of connectivity throughout Africa and Eurasia: trans-Indian Ocean trade in spices and other goods, the Silk Road and its predecessors, the expansion of the Roman Empire, and the European Age of Exploration. We found that Eastern Africa and Southeast Asia have been critical in the dispersal of M.tb. Our results further reveal that M.tb populations have grown through range expansion, as well as in situ, and delineate the independent evolutionary trajectories of bacterial subpopulations underlying the current pandemic.
Collapse
Affiliation(s)
- Mary B. O'Neill
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Unit of Human Evolutionary GeneticsInstitut PasteurParisFrance
| | - Abigail Shockey
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Alex Zarley
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - William Aylward
- Department of Classical and Ancient Near Eastern StudiesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vegard Eldholm
- Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa CityIAUSA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
25
|
Guthrie JL, Marchand-Austin A, Cronin K, Lam K, Pyskir D, Kong C, Jorgensen D, Rodrigues M, Roth D, Tang P, Cook VJ, Johnston J, Jamieson FB, Gardy JL. Universal genotyping reveals province-level differences in the molecular epidemiology of tuberculosis. PLoS One 2019; 14:e0214870. [PMID: 30943250 PMCID: PMC6447219 DOI: 10.1371/journal.pone.0214870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Compare the molecular epidemiology of tuberculosis (TB) between two large Canadian provinces-Ontario and British Columbia (BC)-to identify genotypic clusters within and across both provinces, allowing for an improved understanding of genotype data and providing context to more accurately identify clusters representing local transmission. DESIGN We compared 24-locus Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) genotyping for 3,314 Ontario and 1,602 BC clinical Mycobacterium tuberculosis isolates collected from 2008 through 2014. Laboratory data for each isolate was linked to case-level records to obtain clinical and demographic data. RESULTS The demographic characteristics of persons with TB varied between provinces, most notably in the proportion of persons born outside Canada, which was reflected in the large number of unique genotypes (n = 3,461). The proportion of clustered isolates was significantly higher in BC. Substantial clustering amongst non-Lineage 4 TB strains was observed within and across the provinces. Only two large clusters (≥10 cases/cluster) representing within province transmission had interprovincial genotype matches. CONCLUSION We recommend expanding analysis of shared genotypes to include neighbouring jurisdictions, and implementing whole genome sequencing to improve identification of TB transmission, recognize outbreaks, and monitor changing trends in TB epidemiology.
Collapse
Affiliation(s)
- Jennifer L. Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Public Health Ontario, Toronto, Canada
| | | | - Kirby Cronin
- Public Health Ontario, Toronto, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Karen Lam
- Public Health Ontario, Toronto, Canada
| | | | - Clare Kong
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - Danielle Jorgensen
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - Mabel Rodrigues
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - David Roth
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Patrick Tang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victoria J. Cook
- British Columbia Centre for Disease Control, Vancouver, Canada
- Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - James Johnston
- British Columbia Centre for Disease Control, Vancouver, Canada
- Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Frances B. Jamieson
- Public Health Ontario, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jennifer L. Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| |
Collapse
|
26
|
Alyamani EJ, Marcus SA, Ramirez-Busby SM, Hansen C, Rashid J, El-Kholy A, Spalink D, Valafar F, Almehdar HA, A Jiman-Fatani A, Khiyami MA, Talaat AM. Genomic analysis of the emergence of drug-resistant strains of Mycobacterium tuberculosis in the Middle East. Sci Rep 2019; 9:4474. [PMID: 30872748 PMCID: PMC6418154 DOI: 10.1038/s41598-019-41162-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) represents a significant challenge to public health authorities, especially with the emergence of drug-resistant (DR) and multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis. We sought to examine the genomic variations among recently isolated strains of M. tuberculosis in two closely related countries with different population demography in the Middle East. Clinical isolates of M. tuberculosis from both Egypt and Saudi Arabia were subjected to phenotypic and genotypic analysis on gene and genome-wide levels. Isolates with MDR phenotypes were highly prevalent in Egypt (up to 35%) despite its relatively stable population structure (sympatric pattern). MDR-TB isolates were not identified in the isolates from Saudi Arabia despite its active guest worker program (allopatric pattern). However, tuberculosis isolates from Saudi Arabia, where lineage 4 was more prevalent (>65%), showed more diversity than isolates from Egypt, where lineage 3 was the most prevalent (>75%). Phylogenetic and molecular dating analyses indicated that lineages from Egypt were recently diverged (~78 years), whereas those from Saudi Arabia were diverged by over 200 years. Interestingly, DR isolates did not appear to cluster together or spread more widely than drug-sensitive isolates, suggesting poor treatment as the main cause for emergence of drug resistance rather than more virulence or more capacity to persist.
Collapse
Affiliation(s)
- Essam J Alyamani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sarah A Marcus
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | - Chungyi Hansen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Julien Rashid
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amani El-Kholy
- Clinical Pathology Department, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Daniel Spalink
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | - Hussein A Almehdar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Khiyami
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Hadifar S, Shamkhali L, Kargarpour Kamakoli M, Mostafaei S, Khanipour S, Mansoori N, Fateh A, Siadat SD, Vaziri F. Genetic diversity of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in the capital of Iran. Mol Phylogenet Evol 2019; 132:46-52. [PMID: 30513341 DOI: 10.1016/j.ympev.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Evaluation of the genetic diversity of Mycobacterium tuberculosis (M.tb) and determining if the association between a specific genotype and the site of infection is crucial. Accordingly, the current study aimed at comparing predominant M.tb genotypes in pulmonary (PTB) and extrapulmonary tuberculosis (EPTB) isolates circulating in the capital of Iran. METHODS The genetic diversity of culture-confirmed PTB and EPTB isolates were evaluated by Spoligotyping and MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing methods. Genotyping data were analyzed with SITVIT, MIRU-VNTRplus, and TBminer databases. To assess adjusted associations, chi-square/the Fisher exact test and multiple logistic regression model were applied. RESULTS URAL2 (NEW-1) (28/88; 31.8%) and CAS1-DELHI (25/84; 29.8%) genotypes were predominant in EPTB and PTB strains, respectively. Based on MIRU-VNTR typing, 158 different MIRU-VNTR patterns were identified. Clustering rate and minimum estimate of the proportion of TB caused by recent transmission was 4.1% and 8.1%, respectively. CONCLUSIONS The current study provided new insight into circulating genotypes of M.tb in PTB and EPTB patients in Tehran, Iran. This low percentage of TB transmission rate, demonstrated that mode of TB transmission was mainly associated with reactivation of latent TB rather than recently transmitted infection in this region. There was no significant difference in the association between the genotypes of M.tb strains and the site of the disease.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Leila Shamkhali
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Noormohamad Mansoori
- Department of Research & Technology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
Weerasekera D, Pathirane H, Madegedara D, Dissanayake N, Thevanesam V, Magana-Arachchi DN. Evaluation of the 15 and 24-loci MIRU-VNTR genotyping tools with spoligotyping in the identification of Mycobacterium tuberculosis strains and their genetic diversity in molecular epidemiology studies. Infect Dis (Lond) 2019; 51:206-215. [PMID: 30689510 DOI: 10.1080/23744235.2018.1551619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The transmission dynamics of Mycobacterium tuberculosis (Mtb) using various genotyping tools has been studied globally and a particular tool for genotyping Mtb is the mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR). Tuberculosis (TB) remains an important public health problem worldwide and Sri Lanka being a country of tourist destination; because of major development projects undergoing, it has a high proportion of tourists and immigrants from Asia and Europe that are characterized with highest TB incidences and drug-resistant clinical isolates. Hence, in order to address the question of Mtb genetic diversity, we investigated the discriminatory power of both MIRU-VNTR typing of 15 and 24 loci with spoligotyping to differentiate Mtb isolates. METHOD Acid-fast bacilli positive sputum samples (n = 150) from first visit patients were collected. Decontamination of sputum and extraction of genomic DNA were carried out using standard techniques. The isolates were characterized by MIRU-VNTR for both the 15 and 24 loci and spoligotyping. RESULTS In our study population, MIRU-VNTR 15 and 24 loci did not show a significant difference among the identified M. tuberculosis strains. However, MIRU 24 loci yielded an additional strain LAM, which is of T1 origin. 15 loci strain grouping had more clusters of strains grouped together while 24 loci differentiated the same cluster of strains into distinct strain types. CONCLUSION We conclude that the use of 15-locus MIRU-VNTR typing is sufficient for a first-line epidemiological study to genotype M. tuberculosis, but the additional discriminatory power of 24 loci MIRU-VNTR has been able to differentiate samples within highly homologous groups.
Collapse
Affiliation(s)
| | | | | | - Neranjan Dissanayake
- c Consultant Respiratory Unit , District General Hospital , Nuwara-Eliya , Sri Lanka
| | - Vasanthi Thevanesam
- d Department of Microbiology, Faculty of Medicine , University of Peradeniya , Peradeniya , Sri Lanka
| | | |
Collapse
|
29
|
Couvin D, David A, Zozio T, Rastogi N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. INFECTION GENETICS AND EVOLUTION 2018; 72:31-43. [PMID: 30593925 DOI: 10.1016/j.meegid.2018.12.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 02/01/2023]
Abstract
In order to provide a global overview of genotypic, epidemiologic, demographic, phylogeographical, and drug resistance characteristics related to the prevailing tuberculosis (TB) epidemic, we hereby report an update of the 6th version of the international genotyping database SITVIT2. We also make all the available information accessible through a dedicated website (available at http://www.pasteur-guadeloupe.fr:8081/SITVIT2). Thanks to the public release of SITVIT2 which is currently the largest international multimarker genotyping database with a compilation of 111,635 clinical isolates from 169 countries of patient origin (131 countries of isolation, representing 1032 cities), our major aim is to highlight macro- and micro-geographical cleavages and phylogeographical specificities of circulating Mycobacterium tuberculosis complex (MTBC) clones worldwide. For this purpose, we retained strains typed by the most commonly used PCR-based methodology for TB genotyping, i.e., spoligotyping based on the polymorphism of the direct repeat (DR) locus, 5-loci Exact Tandem Repeats (ETRs), and MIRU-VNTR minisatellites used in 12-, 15-, or 24-loci formats. We describe the SITVIT2 database and integrated online applications that permit to interrogate the database using easy drop-down menus to draw maps, graphics and tables versus a long list of parameters and variables available for individual clinical isolates (year and place of isolation, origin, sex, and age of patient, drug-resistance, etc.). Available tools further allow to generate phylogenetical snapshot of circulating strains as Lineage-specific WebLogos, as well as minimum spanning trees of their genotypes in conjunction with their geographical distribution, drug-resistance, demographic, and epidemiologic characteristics instantaneously; whereas online statistical analyses let a user to pinpoint phylogeographical specificities of circulating MTBC lineages and conclude on actual demographic trends. Available associated information on gender (n = 18,944), age (n = 16,968), drug resistance (n = 19,606), and HIV serology (n = 2673), allowed to draw some important conclusions on TB geo-epidemiology; e.g. a positive correlation exists between certain Mycobacterium tuberculosis lineages (such as CAS and Beijing) and drug resistance (p-value<.001), while other lineages (such as LAM, X, and BOV) are more frequently associated with HIV-positive serology (p-value<.001). Besides, availability of information on the year of isolation of strains (range 1759-2012), also allowed to make tentative correlations between drug resistance information and lineages - portraying probable evolution trends over time and space. To conclude, the present approach of geographical mapping of predominant clinical isolates of tubercle bacilli causing the bulk of the disease both at country and regional level in conjunction with epidemiologic and demographic characteristics allows to shed new light on TB geo-epidemiology in relation with the continued waves of peopling and human migration.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| | - Audrey David
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| |
Collapse
|
30
|
Sanoussi CN, de Jong BC, Odoun M, Arekpa K, Ali Ligali M, Bodi O, Harris S, Ofori-Anyinam B, Yeboah-Manu D, Otchere ID, Asante-Poku A, Anagonou S, Gagneux S, Coscolla M, Rigouts L, Affolabi D. Low sensitivity of the MPT64 identification test to detect lineage 5 of the Mycobacterium tuberculosis complex. J Med Microbiol 2018; 67:1718-1727. [PMID: 30388066 DOI: 10.1099/jmm.0.000846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Differentiation of the Mycobacterium tuberculosis complex (MTBc) from non-tuberculous mycobacteria (NTM) is important for tuberculosis diagnosis and is a prerequisite for reliable phenotypic drug-resistance testing. We evaluated the performance of the rapid MPT64 antigen identification test for the detection of Mycobacterium africanum lineage 5 (MAF L5). METHODOLOGY Smear-positive tuberculosis patients' sputa were included prospectively. Culture was performed on Löwenstein-Jensen medium and, when positive, the MPT64 test and the classical para-nitro benzoic acid susceptibility and heat-labile catalase (PNB/catalase) identification tests were performed. The MPT64 test was repeated 14 days after an initially negative first testing. Direct spoligotyping was performed for MTBc lineage determination. RESULTS In total, 333 isolates were tested for all of the methods. Three hundred and twenty-two (96.7 %) were pure MTBc, by agreement between spoligotyping and PNB/catalase, and 11 were NTM or a mixture of MTBc/NTM. The MPT64 test conducted on day zero of culture-positivity correctly identified most of the pure MTBc isolates (93.2 %, 300/322), but it failed to detect 24 % of the L5 isolates (18/75) versus 2 % (4/202) of the L4 ones [OR=15.6 (5.3-45.8), P<0.0001], with improved sensitivity for L5 detection on repeat testing after 14 days. The L5-wide non-synonymous single-nucleotide polymorphism in the mpt64 gene may explain the poor performance of the MPT64 test for L5. CONCLUSION The MPT64 test has a lower sensitivity for detecting L5 isolates of the MTBc, and can be considered as a first-screening test that should be confirmed by another identification method when it produces negative results in countries with L5. Given the microbiological bias in both the isolation and identification of MAF lineages, diagnostics with high sensitivity for direct testing on clinical material are preferable.
Collapse
Affiliation(s)
- C N'Dira Sanoussi
- 2Laboratoire de Référence des Mycobactéries, Cotonou, Benin.,1Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C de Jong
- 1Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mathieu Odoun
- 2Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| | - Karamatou Arekpa
- 2Laboratoire de Référence des Mycobactéries, Cotonou, Benin.,3Génie de Biologie Humaine, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Benin
| | | | - Ousman Bodi
- 2Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| | - Simon Harris
- 4Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Boatema Ofori-Anyinam
- 5Vaccine and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | | | | | - Adwoa Asante-Poku
- 6Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
| | | | | | | | - Leen Rigouts
- 1Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium.,9Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dissou Affolabi
- 2Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| |
Collapse
|
31
|
Uddin MKM, Ahmed M, Islam MR, Rahman A, Khatun R, Hossain MA, Maug AKJ, Banu S. Molecular characterization and drug susceptibility profile of Mycobacterium tuberculosis isolates from Northeast Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:136-143. [PMID: 30048809 DOI: 10.1016/j.meegid.2018.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains a major public health problem worldwide including in Bangladesh. Molecular epidemiological tools provide genotyping profiles of Mycobacterium tuberculosis (M. tuberculosis) strains that can give insight into the transmission of TB in a specific region. The objective of the study was to identify the genetic diversity and drug susceptibility profile of M. tuberculosis strains circulating in the northeast Bangladesh. A total of 244 smear-positive sputum specimens were collected from two referral hospitals in Mymensingh and Netrakona districts. The isolated strains were genotyped by deletion analysis, spoligotyping, and MIRU-VNTR typing. We also analyzed the distributions of drug susceptibility pattern and demographic data among different genotypes. All isolates were identified as M. tuberculosis and among them 167 strains (68.44%) were 'ancestral' and the remaining 77 (31.56%) were 'modern' type. Spoligotyping analysis yielded 119 distinct patterns, among them, 86 isolates had unique patterns and the remaining 158 were grouped into 33 distinct clusters containing 2 to 18 isolates. The predominant spoligotypes belong to the EAI lineage strains, comprising 66 (27.04%) isolates followed by Beijing (7.38%), T1 (6.15%), CAS1-Delhi (5.33), LAM9 (3.28%), MANU-2 and X2. MIRU-VNTR analysis revealed 167 isolates (68%) had unique patterns, whereas 77 (32%) were grouped into 26 clusters and the rate of recent transmission was 20.9%, suggesting that the majority of TB cases in this region are caused by the reactivation of previous TB infections rather than recent transmission. About 136 (55.7%) isolates were sensitive to four anti-TB drugs, 69 (28.3%) were resistant to one or more (except rifampicin and isoniazid combination) drugs and 39 (15.9%) were MDR. In conclusion, our study provides a first insight into molecular characterization and drug resistance profile of M. tuberculosis strains in northeast Bangladesh which will ultimately contribute to the national TB control program.
Collapse
Affiliation(s)
| | - Moshtaq Ahmed
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Mohammad Riazul Islam
- Dept. of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arfatur Rahman
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Razia Khatun
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh.
| | | | - Aung Kya Jai Maug
- Damien Foundation Bangladesh, H# 106, R # 25, Block - A, Banani, Dhaka 1213, Bangladesh.
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh.
| |
Collapse
|
32
|
Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R, Goodridge A, Ullah I, Mathema B, Djoba Siawaya JF, Biehl MH, Ray SE, Bhattacharjee NV, Henry NJ, Reiner RC, Kyu HH, Murray CJL, Hay SI. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med 2018; 16:196. [PMID: 30373589 PMCID: PMC6206891 DOI: 10.1186/s12916-018-1180-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The host, microbial, and environmental factors that contribute to variation in tuberculosis (TB) disease are incompletely understood. Accumulating evidence suggests that one driver of geographic variation in TB disease is the local ecology of mycobacterial genotypes or strains, and there is a need for a comprehensive and systematic synthesis of these data. The objectives of this study were to (1) map the global distribution of genotypes that cause TB disease and (2) examine whether any epidemiologically relevant clinical characteristics were associated with those genotypes. METHODS We performed a systematic review of PubMed and Scopus to create a comprehensive dataset of human TB molecular epidemiology studies that used representative sampling techniques. The methods were developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We extracted and synthesized data from studies that reported prevalence of bacterial genotypes and from studies that reported clinical characteristics associated with those genotypes. RESULTS The results of this study are twofold. First, we identified 206 studies for inclusion in the study, representing over 200,000 bacterial isolates collected over 27 years in 85 countries. We mapped the genotypes and found that, consistent with previously published maps, Euro-American lineage 4 and East Asian lineage 2 strains are widespread, and West African lineages 5 and 6 strains are geographically restricted. Second, 30 studies also reported transmission chains and 4 reported treatment failure associated with genotypes. We performed a meta-analysis and found substantial heterogeneity across studies. However, based on the data available, we found that lineage 2 strains may be associated with increased risk of transmission chains, while lineages 5 and 6 strains may be associated with reduced risk, compared with lineage 4 strains. CONCLUSIONS This study provides the most comprehensive systematic analysis of the evidence for diversity in bacterial strains that cause TB disease. The results show both geographic and epidemiological differences between strains, which could inform our understanding of the global burden of TB. Our findings also highlight the challenges of collecting the clinical data required to inform TB diagnosis and treatment. We urge future national TB programs and research efforts to prioritize and reinforce clinical data collection in study designs and results dissemination.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Lauren P Woyczynski
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jorge R Ledesma
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jennifer M Ross
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
- Departments of Global Health and Medicine, University of Washington, Seattle, WA, USA
| | | | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama, Panama
| | - Irfan Ullah
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
- Programmatic Management of Drug-Resistant TB Unit, BSL-II TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joel Fleury Djoba Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique, Libreville, Gabon
- Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne EBORI, Libreville, Gabon
| | - Molly H Biehl
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Sarah E Ray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Natalia V Bhattacharjee
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Nathaniel J Henry
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Hmwe H Kyu
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA.
| |
Collapse
|
33
|
Characterization of Mutations Conferring Resistance to Rifampin in Mycobacterium tuberculosis Clinical Strains. Antimicrob Agents Chemother 2018; 62:AAC.01093-18. [PMID: 30061294 DOI: 10.1128/aac.01093-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Resistance of Mycobacterium tuberculosis to rifampin (RMP), mediated by mutations in the rpoB gene coding for the beta-subunit of RNA polymerase, poses a serious threat to the efficacy of clinical management and, thus, control programs for tuberculosis (TB). The contribution of many individual rpoB mutations to the development and level of RMP resistance remains elusive. In this study, the incidence of mutations throughout the rpoB gene among 115 Mycobacterium tuberculosis clinical isolates, both resistant and susceptible to RMP, was determined. Of the newly discovered rpoB mutations, the role of three substitutions in the causation of RMP resistance was empirically tested. The results from in vitro mutagenesis experiments were combined with the assessment of the prevalence of rpoB mutations, and their reciprocal co-occurrences, across global M. tuberculosis populations. Twenty-two different types of mutations in the rpoB gene were identified and distributed among 58 (89.2%) RMP-resistant strains. The MICs of RMP were within the range of 40 to 800 mg/liter, with MIC50 and MIC90 values of 400 and 800 mg/liter, respectively. None of the mutations (Gln429His, Met434Ile, and Arg827Cys) inspected for their role in the development of RMP resistance produced an RMP-resistant phenotype in isogenic M. tuberculosis H37Rv strain-derived mutants. These mutations are supposed to compensate for fitness impairment incurred by other mutations directly associated with drug resistance.
Collapse
|
34
|
Asare P, Asante-Poku A, Prah DA, Borrell S, Osei-Wusu S, Otchere ID, Forson A, Adjapong G, Koram KA, Gagneux S, Yeboah-Manu D. Reduced transmission of Mycobacterium africanum compared to Mycobacterium tuberculosis in urban West Africa. Int J Infect Dis 2018; 73:30-42. [PMID: 29879521 PMCID: PMC6069673 DOI: 10.1016/j.ijid.2018.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Understanding transmission dynamics is useful for tuberculosis (TB) control. A population-based molecular epidemiological study was conducted to determine TB transmission in Ghana. METHODS Mycobacterium tuberculosis complex (MTBC) isolates obtained from prospectively sampled pulmonary TB patients between July 2012 and December 2015 were characterized using spoligotyping and standard 15-locus mycobacterial interspersed repetitive unit variable number tandem repeat (MIRU-VNTR) typing for transmission studies. RESULTS Out of 2309 MTBC isolates, 1082 (46.9%) unique cases were identified, with 1227 (53.1%) isolates belonging to one of 276 clusters. The recent TB transmission rate was estimated to be 41.2%. Whereas TB strains of lineage 4 belonging to M. tuberculosis showed a high recent transmission rate (44.9%), reduced recent transmission rates were found for lineages of Mycobacterium africanum (lineage 5, 31.8%; lineage 6, 24.7%). CONCLUSIONS The study findings indicate high recent TB transmission, suggesting the occurrence of unsuspected outbreaks in Ghana. The observed reduced transmission rate of M. africanum suggests other factor(s) (host/environmental) may be responsible for its continuous presence in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana
| | - Diana Ahu Prah
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana
| | | | | | - Kwadwo Ansah Koram
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Ghana.
| |
Collapse
|
35
|
Changing patterns of human migrations shaped the global population structure of Mycobacterium tuberculosis in France. Sci Rep 2018; 8:5855. [PMID: 29643428 PMCID: PMC5895845 DOI: 10.1038/s41598-018-24034-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits a structured phylogeographic distribution worldwide linked with human migrations. We sought to infer how the interactions between distinct human populations shape the global population structure of Mtb on a regional scale. We applied the recently described timescaled haplotypic density (THD) technique on 638 minisatellite-based Mtb genotypes from French tuberculosis patients. THD with a long-term (200 y) timescale indicated that Mtb population in France had been mostly influenced by interactions with Eastern and Southern Europe and, to a lesser extent, Northern and Middle Africa, consistent with historical migrations favored by geographic proximity or commercial exchanges with former French colonies. Restricting the timescale to 20 y, THD identified a sustained influence of Northern Africa, but not Europe where tuberculosis incidence decreased sharply. Evolving interactions between human populations, thus, measurably influence the local population structure of Mtb. Relevant information on such interactions can be inferred using THD from Mtb genotypes.
Collapse
|
36
|
Diversity of Mycobacterium tuberculosis Complex from Cattle Lymph Nodes in Eastern Cape Province. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3683801. [PMID: 29850506 PMCID: PMC5914149 DOI: 10.1155/2018/3683801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/10/2018] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) remains a major health challenge in South Africa and the condition in humans has been well researched and documented. However, investigations on the circulating Mycobacterium tuberculosis complex (MTBC) strains from cattle in the Eastern Cape Province of South Africa are insufficient. This study delineated the diversity of MTBC isolates from cows' lymph nodes. A total of 162 MTBC isolates, collected over a one-year period from cattle lymph nodes from two abattoirs, were submitted to spoligotyping and 12 MIRU-VNTR typing. The spoligotyping results were matched with isolates in the universal spoligotyping database (SITVIT2). Our study identified 27 spoligotype patterns, with 10 shared types assigned to five lineages: the East-Asian (Beijing) was predominant, 17.9%, and East-Asian (Microti) and Latin-American-Mediterranean S were the least detected with 0.6%. Spoligotyping showed a higher clustering rate of 82.1%, with the lowest being the Hunter-Gaston Diversity Index (HGDI) of 0.485; 12 MIRU-VNTR resulted in a clustering rate of 64.8%, showing a higher HGDI of 0.671. The results of this study show a high diversity of MTBC strains in the Eastern Cape Province and clustering rate, which indicates ongoing transmission in the province.
Collapse
|
37
|
Molecular epidemiology and drug sensitivity pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in and around Ambo Town, Central Ethiopia. PLoS One 2018; 13:e0193083. [PMID: 29447273 PMCID: PMC5814086 DOI: 10.1371/journal.pone.0193083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) is caused by M. tuberculosis complex and remains a major global public health problem. The epidemic remains a threat to sub-Saharan Africa, including Ethiopia, with further emergence of drug resistant TB. We investigated the drug sensitivity pattern and molecular epidemiology of mycobacterial strains isolated from pulmonary TB patients in and around Ambo town in Oromia Region, Central Ethiopia. METHODS A cross-sectional study was conducted involving 105 consecutive new smear positive pulmonary TB patients diagnosed at Ambo Hospital and surrounding Health Centers between May 2014 and March 2015 upon informed consent. Sputum samples were cultured on Löwenstein-Jensen (LJ) media using standard techniques to isolate mycobacteria. Region of difference 9 (RD9)-based polymerase chain reaction (PCR) and spoligotyping was employed for the identification of the isolates at species and strain levels. The spoligotype patterns were entered into the SITVIT database to determine Octal and SIT (Spoligotyping International Typing) numbers for each strain. The sensitivity of the isolates to isoniazid (INH), rifampicin (RIF), ethambutol (ETB) and streptomycin (STM) was evaluated on LJ-medium with the indirect proportion method. RESULTS Cultures were positive in 86/105 (82%) of newly diagnosed smear positive pulmonary TB cases. All of the 86 isolates were confirmed as M. tuberculosis. The majority (76.7%) of them were clustered into seven groups while the rest (23.3%) appeared unique. The most predominant Spoligotypes were SIT53 and SIT149, consisting of 24.4% and 20.9% of the isolates, respectively. Assigning of the isolates to family using SPOTCLUST software revealed that 45.3% of the isolates belonged to T1, 23.3% to T3 and 13% to CAS family. The majority (76.7%) of the M. tuberculosis isolates were susceptible to all the four drugs. Any resistance to any one of the four drugs was detected in 23.3% of the isolates. The highest proportion of any resistance was observed against isoniazid (9.3%) and ethambutol (7%). There was only a single case (1.2%) of multidrug resistant/rifampicin resistant (MDR/RR) TB. CONCLUSION The majority of the isolates were clustered suggesting on-going active transmission in the study area. Mono resistance is relatively prevalent while the magnitude of MDR/RR-TB was found to be lower than in previous studies.
Collapse
|
38
|
Guthrie JL, Alexander DC, Marchand-Austin A, Lam K, Whelan M, Lee B, Furness C, Rea E, Stuart R, Lechner J, Varia M, McLean J, Jamieson FB. Technology and tuberculosis control: the OUT-TB Web experience. J Am Med Inform Assoc 2018; 24:e136-e142. [PMID: 27589943 DOI: 10.1093/jamia/ocw130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/02/2016] [Indexed: 11/12/2022] Open
Abstract
Objective Develop a tool to disseminate integrated laboratory, clinical, and demographic case data necessary for improved contact tracing and outbreak detection of tuberculosis (TB). Methods In 2007, the Public Health Ontario Laboratories implemented a universal genotyping program to monitor the spread of TB strains within Ontario. Ontario Universal Typing of TB (OUT-TB) Web utilizes geographic information system (GIS) technology with a relational database platform, allowing TB control staff to visualize genotyping matches and microbiological data within the context of relevant epidemiological and demographic data. Results OUT-TB Web is currently available to the 8 health units responsible for >85% of Ontario's TB cases and is a valuable tool for TB case investigation. Users identified key features to implement for application enhancements, including an e-mail alert function, customizable heat maps for visualizing TB and drug-resistant cases, socioeconomic map layers, a dashboard providing TB surveillance metrics, and a feature for animating the geographic spread of strains over time. Conclusion OUT-TB Web has proven to be an award-winning application and a useful tool. Developed and enhanced using regular user feedback, future versions will include additional data sources, enhanced map and line-list filter capabilities, and development of a mobile app.
Collapse
Affiliation(s)
| | - David C Alexander
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | | | - Karen Lam
- Public Health Ontario, Toronto, Ontario, Canada
| | | | - Brenda Lee
- Public Health Ontario, Toronto, Ontario, Canada
| | - Colin Furness
- Faculty of Information, University of Toronto, Toronto, Ontario, Canada.,Institute for Health Policy, Management, and Evaluation, University of Toronto
| | - Elizabeth Rea
- Toronto Public Health, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto
| | | | | | - Monali Varia
- Peel Public Health, Mississauga, Ontario, Canada
| | | | - Frances B Jamieson
- Public Health Ontario, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto
| |
Collapse
|
39
|
Rajwani R, Yam WC, Zhang Y, Kang Y, Wong BKC, Leung KSS, Tam KKG, Tulu KT, Zhu L, Siu GKH. Comparative Whole-Genomic Analysis of an Ancient L2 Lineage Mycobacterium tuberculosis Reveals a Novel Phylogenetic Clade and Common Genetic Determinants of Hypervirulent Strains. Front Cell Infect Microbiol 2018; 7:539. [PMID: 29376038 PMCID: PMC5770396 DOI: 10.3389/fcimb.2017.00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-α than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results:Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.
Collapse
Affiliation(s)
- Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Wing Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Kenneth Siu Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kingsley King Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ketema Tafess Tulu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Li Zhu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Gilman Kit Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
40
|
Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbón MH. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol 2017; 68:324-332. [PMID: 29205127 DOI: 10.1099/ijsem.0.002507] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37RvT were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37RvT. Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37RvT (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.
Collapse
Affiliation(s)
| | - Katya J McGough
- ATCC®, Manassas, VA 20110, USA
- George Mason University, Fairfax, VA 22030, USA
| | | | - Nalin Rastogi
- Institut Pasteur de la Guadeloupe, Les Abymes 97139, Guadeloupe, France
| | | |
Collapse
|
41
|
Sanoussi CN, Affolabi D, Rigouts L, Anagonou S, de Jong B. Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures. PLoS Negl Trop Dis 2017; 11:e0005900. [PMID: 28863143 PMCID: PMC5599059 DOI: 10.1371/journal.pntd.0005900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/14/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to compare the prevalence of Mycobacterium tuberculosis complex (MTBc) lineages between direct genotyping (on sputum) and indirect genotyping (on culture), to characterize potential culture bias against difficult growers. METHODOLOGY/PRINCIPAL FINDINGS Smear-positive sputa from consecutive new tuberculosis patients diagnosed in Cotonou, (Benin) were included, before patients had started treatment. An aliquot of decontaminated sputum was used for direct spoligotyping, and another aliquot was cultured on Löwenstein Jensen (LJ) medium (90 days), for indirect spoligotyping. After DNA extraction, spoligotyping was done according to the standard method for all specimens, and patterns obtained from sputa were compared versus those from the derived culture isolates. From 199 patient's sputa, 146 (73.4%) yielded a positive culture. In total, direct spoligotyping yielded a pattern in 98.5% (196/199) of the specimens, versus 73.4% (146/199) for indirect spoligotyping on cultures. There was good agreement between sputum- and isolate derived patterns: 94.4% (135/143) at spoligotype level and 96.5% (138/143) at (sub)lineage level. Two of the 8 pairs with discrepant pattern were suggestive of mixed infection in sputum. Ancestral lineages (Lineage 1, and M. africanum Lineages 5 and 6) were less likely to grow in culture (OR = 0.30, 95%CI (0.14 to 0.64), p = 0.0016); especially Lineage 5 (OR = 0.37 95%CI (0.17 to 0.79), p = 0.010). Among modern lineages, Lineage 4 was over-represented in positive-culture specimens (OR = 3.01, 95%CI (1.4 to 6.51), p = 0.005). CONCLUSIONS/ SIGNIFICANCE Ancestral lineages, especially M. africanum West African 1 (Lineage 5), are less likely to grow in culture relative to modern lineages, especially M. tuberculosis Euro-American (Lineage 4). Direct spoligotyping on smear positive sputum is effective and efficient compared to indirect spoligotyping of cultures. It allows for a more accurate unbiased determination of the population structure of the M. tuberculosis complex. TRIAL REGISTRATION ClinicalTrials.gov NCT02744469.
Collapse
Affiliation(s)
- C. N’Dira Sanoussi
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Séverin Anagonou
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
| | - Bouke de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
42
|
Couvin D, Zozio T, Rastogi N. SpolSimilaritySearch – A web tool to compare and search similarities between spoligotypes of Mycobacterium tuberculosis complex. Tuberculosis (Edinb) 2017; 105:49-52. [DOI: 10.1016/j.tube.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
43
|
Rasigade JP, Barbier M, Dumitrescu O, Pichat C, Carret G, Ronnaux-Baron AS, Blasquez G, Godin-Benhaim C, Boisset S, Carricajo A, Jacomo V, Fredenucci I, Pérouse de Montclos M, Flandrois JP, Ader F, Supply P, Lina G, Wirth T. Strain-specific estimation of epidemic success provides insights into the transmission dynamics of tuberculosis. Sci Rep 2017; 7:45326. [PMID: 28349973 PMCID: PMC5368603 DOI: 10.1038/srep45326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/21/2017] [Indexed: 12/03/2022] Open
Abstract
The transmission dynamics of tuberculosis involves complex interactions of socio-economic and, possibly, microbiological factors. We describe an analytical framework to infer factors of epidemic success based on the joint analysis of epidemiological, clinical and pathogen genetic data. We derive isolate-specific, genetic distance-based estimates of epidemic success, and we represent success-related time-dependent concepts, namely epidemicity and endemicity, by restricting analysis to specific time scales. The method is applied to analyze a surveillance-based cohort of 1,641 tuberculosis patients with minisatellite-based isolate genotypes. Known predictors of isolate endemicity (older age, native status) and epidemicity (younger age, sputum smear positivity) were identified with high confidence (P < 0.001). Long-term epidemic success also correlated with the ability of Euro-American and Beijing MTBC lineages to cause active pulmonary infection, independent of patient age and country of origin. Our results demonstrate how important insights into the transmission dynamics of tuberculosis can be gained from active surveillance data.
Collapse
Affiliation(s)
- Jean-Philippe Rasigade
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France.,Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Maxime Barbier
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Catherine Pichat
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Gérard Carret
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | | | | | | | - Sandrine Boisset
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble, Grenoble, France.,Laboratoire TIMC-IMAG, UMR 5525 CNRS-UJF, UFR de Médecine, Université Grenoble Alpes, Grenoble, France
| | - Anne Carricajo
- Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Jean-Pierre Flandrois
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Philip Supply
- INSERM U1019, CNRS-UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Gérard Lina
- Centre International de Recherche en Infectiologie, CIRI, University of Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
44
|
Ai L, Tian H, Chen Z, Chen H, Xu J, Fang JY. Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 2017; 8:9546-9556. [PMID: 28061434 PMCID: PMC5354752 DOI: 10.18632/oncotarget.14488] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Predicting colorectal cancer (CRC) based on fecal microbiota presents a promising method for non-invasive screening of CRC, but the optimization of classification models remains an unaddressed question. The purpose of this study was to systematically evaluate the effectiveness of different supervised machine-learning models in predicting CRC in two independent eastern and western populations. The structures of intestinal microflora in feces in Chinese population (N = 141) were determined by 454 FLX pyrosequencing, and different supervised classifiers were employed to predict CRC based on fecal microbiota operational taxonomic unit (OTUs). As a result, Bayes Net and Random Forest displayed higher accuracies than other algorithms in both populations, although Bayes Net was found with a lower false negative rate than that of Random Forest. Gut microbiota-based prediction was more accurate than the standard fecal occult blood test (FOBT), and the combination of both approaches further improved the prediction accuracy. Moreover, when unclassified OTUs were used as input, the BayesDMNB text algorithm achieved higher accuracy in the Chinese population (AUC=0.994). Taken together, our results suggest that Bayes Net classification model combined with unclassified OTUs may present an accurate method for predicting CRC based on the compositions of gut microbiota.
Collapse
Affiliation(s)
- Luoyan Ai
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Haiying Tian
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Zhaofei Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Jie Xu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| |
Collapse
|
45
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
46
|
Ofori-Anyinam B, Kanuteh F, Agbla SC, Adetifa I, Okoi C, Dolganov G, Schoolnik G, Secka O, Antonio M, de Jong BC, Gehre F. Impact of the Mycobaterium africanum West Africa 2 Lineage on TB Diagnostics in West Africa: Decreased Sensitivity of Rapid Identification Tests in The Gambia. PLoS Negl Trop Dis 2016; 10:e0004801. [PMID: 27387550 PMCID: PMC4936735 DOI: 10.1371/journal.pntd.0004801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/02/2016] [Indexed: 01/19/2023] Open
Abstract
Background MPT64 rapid speciation tests are increasingly being used in diagnosis of tuberculosis (TB). Mycobacterium africanum West Africa 2 (Maf 2) remains an important cause of TB in West Africa and causes one third of disease in The Gambia. Since the introduction of MPT64 antigen tests, a higher than expected rate of suspected non-tuberculous mycobacteria (NTM) was seen among AFB smear positive TB suspects, which led us to prospectively assess sensitivity of the MPT64 antigen test in our setting. Methodology/Principal Findings We compared the abundance of mRNA encoded by the mpt64 gene in sputa of patients with untreated pulmonary TB caused by Maf 2 and Mycobacterium tuberculosis (Mtb). Subsequently, prospectively collected sputum samples from presumptive TB patients were inoculated in the BACTEC MGIT 960 System. One hundred and seventy-three acid fast bacilli (AFB)-positive and blood agar negative MGIT cultures were included in the study. Cultures were tested on the day of MGIT positivity with the BD MGIT TBc Identification Test. A random set of positives and all negatives were additionally tested with the SD Bioline Ag MPT64 Rapid. MPT64 negative cultures were further incubated at 37°C and retested until positive. Bacteria were spoligotyped and assigned to different lineages. Maf 2 isolates were 2.52-fold less likely to produce a positive test result and sensitivity ranged from 78.4% to 84.3% at the beginning and end of the recommended 10 day testing window, respectively. There was no significant difference between the tests. We further showed that the decreased rapid test sensitivity was attributable to variations in mycobacterial growth behavior and the smear grades of the patient. Conclusions/Significance In areas where Maf 2 is endemic MPT64 tests should be cautiously used and MPT64 negative results confirmed by a second technique, such as nucleic acid amplification tests, to avoid their misclassification as NTMs. Diagnostics for rapid confirmation of positive liquid cultures presumptive of Mycobacterium tuberculosis bacteria, based on the detection of the MPT64 antigen, are being used in many TB diagnostic laboratories worldwide. Of note, diagnostic performance of these tests in West Africa, where TB is uniquely caused by the geographically restricted Mycobacterium africanum (Maf 1 and 2) and Mycobacterium tuberculosis lineages, has not been properly assessed. Although M. tuberculosis and M. africanum are genetically related, they differ in various aspects. Amongst several differences, Maf 2 grows significantly slower than Mtb bacteria. Because secretion of the MTP64 protein is dependent on the bacterial growth rate, we found that the MPT64 rapid test performance for detecting Maf 2 was lower in our setting in The Gambia. These findings might be relevant for other West African Maf 2 endemic countries where this rapid test is commonly used, as Maf 2 infected patients might have been missed in the past. Our finding emphasizes the need to thoroughly consider the presence of bacterial variants specific to certain regions during product development and implementation of novel diagnostic tests.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Fatoumatta Kanuteh
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Schadrac C. Agbla
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Ifedayo Adetifa
- Disease Control and Elimination Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Department of Infectious Diseases Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Catherine Okoi
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Gregory Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Gary Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ousman Secka
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Division of Microbiology & Immunity, Warwick Medical School, Coventry, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Division of Infectious Diseases, New York University, New York, New York, United States of America
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- * E-mail:
| |
Collapse
|
47
|
Jain A, Pardasani KR. Fuzzy soft set model for mining amino acid associations in peptide sequences of Mycobacterium tuberculosis complex (MTBC). JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2016. [DOI: 10.3233/ifs-162139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Amita Jain
- Department of Computer Application, MANIT, Bhopal, Madhya Pradesh, India
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, MANIT, Bhopal, Madhya Pradesh, India
| |
Collapse
|
48
|
Cohen KA, El-Hay T, Wyres KL, Weissbrod O, Munsamy V, Yanover C, Aharonov R, Shaham O, Conway TC, Goldschmidt Y, Bishai WR, Pym AS. Paradoxical Hypersusceptibility of Drug-resistant Mycobacteriumtuberculosis to β-lactam Antibiotics. EBioMedicine 2016; 9:170-179. [PMID: 27333036 PMCID: PMC4972527 DOI: 10.1016/j.ebiom.2016.05.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is considered innately resistant to β-lactam antibiotics. However, there is evidence that susceptibility to β-lactam antibiotics in combination with β–lactamase inhibitors is variable among clinical isolates, and these may present therapeutic options for drug-resistant cases. Here we report our investigation of susceptibility to β-lactam/β–lactamase inhibitor combinations among clinical isolates of M. tuberculosis, and the use of comparative genomics to understand the observed heterogeneity in susceptibility. Eighty-nine South African clinical isolates of varying first and second-line drug susceptibility patterns and two reference strains of M. tuberculosis underwent minimum inhibitory concentration (MIC) determination to two β-lactams: amoxicillin and meropenem, both alone and in combination with clavulanate, a β–lactamase inhibitor. 41/91 (45%) of tested isolates were found to be hypersusceptible to amoxicillin/clavulanate relative to reference strains, including 14/24 (58%) of multiple drug-resistant (MDR) and 22/38 (58%) of extensively drug-resistant (XDR) isolates. Genome-wide polymorphisms identified using whole-genome sequencing were used in a phylogenetically-aware linear mixed model to identify polymorphisms associated with amoxicillin/clavulanate susceptibility. Susceptibility to amoxicillin/clavulanate was over-represented among isolates within a specific clade (LAM4), in particular among XDR strains. Twelve sets of polymorphisms were identified as putative markers of amoxicillin/clavulanate susceptibility, five of which were confined solely to LAM4. Within the LAM4 clade, ‘paradoxical hypersusceptibility’ to amoxicillin/clavulanate has evolved in parallel to first and second-line drug resistance. Given the high prevalence of LAM4 among XDR TB in South Africa, our data support an expanded role for β-lactam/β-lactamase inhibitor combinations for treatment of drug-resistant M. tuberculosis. Paradoxical hypersusceptibility is observed drug susceptibility despite innate resistance in the wild type state. Many MDR and XDR M. tuberculosis strains are susceptible to amoxicillin/clavulanate. Whole-genome sequencing identified mutations associated with paradoxical hypersusceptibility. An expanded role for β-lactams in drug-resistant M. tuberculosis is supported.
The global increase in drug-resistant tuberculosis has prompted a search for alternative therapies, including repurposing existing antibiotics. β-lactam antibiotics are safe drugs, however, they have previously been thought to be of limited use for tuberculosis due to innate resistance to this drug class. In this study, the authors found many drug-resistant tuberculosis isolates from South Africa to be susceptible to a β-lactam and β-lactamase combination, amoxicillin/clavulanate. With the use of comparative genomics, multiple genetic mutations were identified to be associated with this hypersusceptible phenotype. These findings support an expanded role of β-lactam/β-lactamase inhibitor combinations for treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Keira A Cohen
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa.
| | | | - Kelly L Wyres
- IBM Research - Australia, Carlton, Victoria, Australia; Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vanisha Munsamy
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | | | | | | | | | | | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexander S Pym
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa.
| |
Collapse
|
49
|
Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 2016; 11:e0154571. [PMID: 27149626 PMCID: PMC4858144 DOI: 10.1371/journal.pone.0154571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P. O. Box 65001, Dar es Salaam, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Bugwesa Z. Katale
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Sharon L. Kendall
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Hazel M. Dockrell
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anita L. Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mark M. Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Mecky I. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| |
Collapse
|
50
|
|