1
|
Jabal-Uriel C, Barrios L, Bonjour-Dalmon A, Caspi-Yona S, Chejanovsly N, Erez T, Henriques D, Higes M, Le Conte Y, Lopes AR, Meana A, Pinto MA, Reyes-Carreño M, Soroker V, Martín-Hernández R. Epidemiology of the Microsporidium Nosema ceranae in Four Mediterranean Countries. INSECTS 2022; 13:844. [PMID: 36135545 PMCID: PMC9505483 DOI: 10.3390/insects13090844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Nosema ceranae is a highly prevalent intracellular parasite of honey bees' midgut worldwide. This Microsporidium was monitored during a long-term study to evaluate the infection at apiary and intra-colony levels in six apiaries in four Mediterranean countries (France, Israel, Portugal, and Spain). Parameters on colony strength, honey production, beekeeping management, and climate were also recorded. Except for São Miguel (Azores, Portugal), all apiaries were positive for N. ceranae, with the lowest prevalence in mainland France and the highest intra-colony infection in Israel. A negative correlation between intra-colony infection and colony strength was observed in Spain and mainland Portugal. In these two apiaries, the queen replacement also influenced the infection levels. The highest colony losses occurred in mainland France and Spain, although they did not correlate with the Nosema infection levels, as parasitism was low in France and high in Spain. These results suggest that both the effects and the level of N. ceranae infection depends on location and beekeeping conditions. Further studies on host-parasite coevolution, and perhaps the interactions with other pathogens and the role of honey bee genetics, could assist in understanding the difference between nosemosis disease and infection, to develop appropriate strategies for its control.
Collapse
Affiliation(s)
- Clara Jabal-Uriel
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
| | - Laura Barrios
- Unidad de Estadística, Centro Nacional de Investigaciones Científicas, 28006 Madrid, Spain
| | - Anne Bonjour-Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Shiran Caspi-Yona
- Mina and Aberhard Gudman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Nor Chejanovsly
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Tal Erez
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 7610001, Israel
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Ana R. Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maritza Reyes-Carreño
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Victoria Soroker
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006 Albacete, Spain
| |
Collapse
|
2
|
Lopes AR, Martín-Hernández R, Higes M, Segura SK, Henriques D, Pinto MA. Colonisation Patterns of Nosema ceranae in the Azores Archipelago. Vet Sci 2022; 9:vetsci9070320. [PMID: 35878337 PMCID: PMC9323992 DOI: 10.3390/vetsci9070320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nosema ceranae is a highly prevalent pathogen of Apis mellifera, which is distributed worldwide. However, there may still exist isolated areas that remain free of N. ceranae. Herein, we used molecular tools to survey the Azores to detect N. ceranae and unravel its colonisation patterns. To that end, we sampled 474 colonies from eight islands in 2014/2015 and 91 from four islands in 2020. The findings revealed that N. ceranae was not only present but also the dominant species in the Azores. In 2014/2015, N. apis was rare and N. ceranae prevalence varied between 2.7% in São Jorge and 50.7% in Pico. In 2020, N. ceranae prevalence increased significantly (p < 0.001) in Terceira and São Jorge also showing higher infection levels. The spatiotemporal patterns suggest that N. ceranae colonised the archipelago recently, and it rapidly spread across other islands, where at least two independent introductions might have occurred. Flores and Santa Maria have escaped the N. ceranae invasion, and it is remarkable that Santa Maria is also free of Varroa destructor, which makes it one of the last places in Europe where the honey bee remains naive to these two major biotic stressors.
Collapse
Affiliation(s)
- Ana Rita Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FSE/EC-ESF), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
| | - Sara Kafafi Segura
- Zoología y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28014 Madrid, Spain;
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
- Correspondence:
| |
Collapse
|
3
|
Galajda R, Valenčáková A, Sučik M, Kandráčová P. Nosema Disease of European Honey Bees. J Fungi (Basel) 2021; 7:jof7090714. [PMID: 34575752 PMCID: PMC8468538 DOI: 10.3390/jof7090714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Nosematosis is currently a frequently discussed honey bee disease caused by two types of Microsporidia: Nosema apis and Nosema ceranae. Nosematosis as an intestinal disease caused by these species is one of the main factors associated with the weakening and loss of hives, with none of the stressors acting in isolation and all having an important synergistic or additive effect on the occurrence of parasitic infection. The most important factors are exposure to pesticides and nutritional stress, both worsening the immune response. Honey bees Apis mellifera become more susceptible to parasites and subsequently the disease manifests itself. Choosing the right laboratory diagnostics is important to determine the prevalence of both species. Our review summarizes the most commonly used methodologies, especially polymerase chain reaction (PCR), which is a reliable method for detecting nosematosis, as well as for distinguishing between the two species causing the disease.
Collapse
|
4
|
Rodríguez-García C, Heerman MC, Cook SC, Evans JD, DeGrandi-Hoffman G, Banmeke O, Zhang Y, Huang S, Hamilton M, Chen YP. Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathog 2021; 17:e1009270. [PMID: 33600478 PMCID: PMC7891791 DOI: 10.1371/journal.ppat.1009270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.
Collapse
Affiliation(s)
| | - Matthew C. Heerman
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Steven C. Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | | | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yi Zhang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Shaokang Huang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
5
|
Requier F, Paillet Y, Laroche F, Rutschmann B, Zhang J, Lombardi F, Svoboda M, Steffan‐Dewenter I. Contribution of European forests to safeguard wild honeybee populations. Conserv Lett 2019. [DOI: 10.1111/conl.12693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Fabrice Requier
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of Würzburg Am Hubland Würzburg Germany
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris‐SudUniversité Paris‐Saclay Gif‐sur‐Yvette Paris France
| | - Yoan Paillet
- Irstea, UR EFNODomaine des Barres Nogent‐sur‐Vernisson France
- Université Grenoble AlpesIrstea, LESSEM Grenoble France
| | - Fabien Laroche
- Irstea, UR EFNODomaine des Barres Nogent‐sur‐Vernisson France
| | - Benjamin Rutschmann
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of Würzburg Am Hubland Würzburg Germany
- HOBOSUniversity of Würzburg Würzburg Germany
| | - Jie Zhang
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of Würzburg Am Hubland Würzburg Germany
| | - Fabio Lombardi
- Dipartimento di AgrariaUniversità Mediterranea di Reggio Calabria Reggio Calabria Italy
| | - Miroslav Svoboda
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences Prague Suchdol Czech Republic
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
6
|
Anthropogenic hive movements are changing the genetic structure of a stingless bee (Tetragonula carbonaria) population along the east coast of Australia. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1040-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Porrini MP, Porrini LP, Garrido PM, de Melo E Silva Neto C, Porrini DP, Muller F, Nuñez LA, Alvarez L, Iriarte PF, Eguaras MJ. Nosema ceranae in South American Native Stingless Bees and Social Wasp. MICROBIAL ECOLOGY 2017; 74:761-764. [PMID: 28389730 DOI: 10.1007/s00248-017-0975-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.
Collapse
Affiliation(s)
- Martín Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| | - Leonardo Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Carlos de Melo E Silva Neto
- Instituto Federal de Educação, Ciência e Tecnólogia de Goiás, Quartel do XX, Praça Brasil Ramos Caiado, 76600.000, Goiás, Brazil
| | - Darío Pablo Porrini
- GENEBSO, INBIOTEC, UNMdP, CONICET, Funes 3350, 7600, Mar del Plata, Argentina
| | - Fernando Muller
- Centro de Cría y mejoramiento de abejas "Erich Karl Faltus", N° 111009, Calle J. M. Estrada N°210, N3233, Capioví, Argentina
| | - Laura Alejandra Nuñez
- Laboratorio de Industrias Alimenticias, Universidad Nacional del Chaco Austral, Cdte. Fernandez 755, 3700, Pres. R. Sáenz Peña, Argentina
| | - Leopoldo Alvarez
- División Entomología, Museo de La Plata, CONICET, Universidad Nacional de La Plata, Edificio Anexo Museo, Unidades de Investigación FCN yM, 122 y 60, 1900FWA, La Plata, Argentina
| | - Pedro Fernandez Iriarte
- Laboratorio de Genética, Dto. de Biología, CONICET, UNMdP, Funes 3350, 7600, Mar del Plata, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
8
|
Branchiccela B, Arredondo D, Higes M, Invernizzi C, Martín-Hernández R, Tomasco I, Zunino P, Antúnez K. Characterization of Nosema ceranae Genetic Variants from Different Geographic Origins. MICROBIAL ECOLOGY 2017; 73:978-987. [PMID: 27837253 DOI: 10.1007/s00248-016-0880-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
In recent years, large-scale colony losses of honey bees (Apis mellifera) have been reported and the infection with the microsporidia Nosema ceranae has been involved. However, the effect of N. ceranae at the colony level and its role in colony losses vary in different geographic areas. This difference may be related to the presence of multiple N. ceranae genetic variants resulting in different biological consequences. In this study, we analyzed the genetic diversity of 75 N. ceranae samples obtained from 13 countries and Hawaii through inter-sequence single repetition (ISSR) and evaluated if two of these genetic variants triggered different immune responses when infecting Apis mellifera iberiensis. The genetic diversity analysis showed that 41% of the samples had the same DNA amplification pattern, including samples from most European countries except Spain, while the remaining samples showed high variability. Infection assays were performed to analyze the infection levels and the immune response of bees infected with N. ceranae from Spain and Uruguay. The infected bees presented similar infection levels, and both isolates downregulated the expression of abaecin, confirming the ability of the microsporidia to depress the immune response. Only N. ceranae from Uruguay downregulated the expression level of imd compared to control bees. On the other hand, both genetic variants triggered different expression levels of lysozyme. As imd and lysozyme play important roles in the response to pathogens, these results could reflect differences in the biological consequences of N. ceranae variants in A. mellifera infection.
Collapse
Affiliation(s)
- B Branchiccela
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, CP 11600, Montevideo, Uruguay
| | - D Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, CP 11600, Montevideo, Uruguay
| | - M Higes
- Bee Pathology Laboratory, Regional Apicultural Center, Guadalajara, Spain
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - R Martín-Hernández
- Bee Pathology Laboratory, Regional Apicultural Center, Guadalajara, Spain
| | - I Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - P Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, CP 11600, Montevideo, Uruguay
| | - K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
9
|
Muñoz I, Henriques D, Jara L, Johnston JS, Chávez-Galarza J, De La Rúa P, Pinto MA. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol Ecol Resour 2016; 17:783-795. [PMID: 27863055 DOI: 10.1111/1755-0998.12637] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content.
Collapse
Affiliation(s)
- Irene Muñoz
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Área de Biología Animal, Dpto. de Zoología y Antropología Física, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Dora Henriques
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Laura Jara
- Área de Biología Animal, Dpto. de Zoología y Antropología Física, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | - Pilar De La Rúa
- Área de Biología Animal, Dpto. de Zoología y Antropología Física, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - M Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| |
Collapse
|
10
|
Jara L, Muñoz I, Cepero A, Martín-Hernández R, Serrano J, Higes M, De la Rúa P. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Naturwissenschaften 2015; 102:53. [PMID: 26306398 DOI: 10.1007/s00114-015-1298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.
Collapse
Affiliation(s)
- Laura Jara
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Meixner MD, Kryger P, Costa C. Effects of genotype, environment, and their interactions on honey bee health in Europe. CURRENT OPINION IN INSECT SCIENCE 2015; 10:177-184. [PMID: 29588006 DOI: 10.1016/j.cois.2015.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 06/08/2023]
Abstract
There are several reports of honey bee populations in Europe which survive without treatment for Varroa. However, when evaluated outside their native area, higher survival and resistance traits were not observed in colonies of a survivor population. Varroa infestation is strongly influenced by environmental factors, probably affecting threshold levels on a European scale. In a Europe-wide experiment colonies of local origin survived significantly longer than colonies of non-local origin, clearly indicating the presence of genotype-environment interactions. Transmission by Varroa selects for virulent strains of DWV, but it is currently unknown how these may interact with different genotypes of bees. The distribution of Nosema ceranae is significantly affected by environment, but there is at least one Nosema-resistant population.
Collapse
Affiliation(s)
| | - Per Kryger
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Cecilia Costa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Unità di ricerca di apicoltura e bachicoltura, via di Saliceto 80, Bologna, Italy
| |
Collapse
|
12
|
Pelin A, Selman M, Aris-Brosou S, Farinelli L, Corradi N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environ Microbiol 2015; 17:4443-58. [PMID: 25914091 DOI: 10.1111/1462-2920.12883] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Nosema ceranae is a microsporidian pathogen whose infections have been associated with recent global declines in the populations of western honeybees (Apis mellifera). Despite the outstanding economic and ecological threat that N. ceranae may represent for honeybees worldwide, many aspects of its biology, including its mode of reproduction, propagation and ploidy, are either very unclear or unknown. In the present study, we set to gain knowledge in these biological aspects by re-sequencing the genome of eight isolates (i.e. a population of spores isolated from one single beehive) of this species harvested from eight geographically distant beehives, and by investigating their level of polymorphism. Consistent with previous analyses performed using single gene sequences, our analyses uncovered the presence of very high genetic diversity within each isolate, but also very little hive-specific polymorphism. Surprisingly, the nature, location and distribution of this genetic variation suggest that beehives around the globe are infected by a population of N. ceranae cells that may be polyploid (4n or more), and possibly clonal. Lastly, phylogenetic analyses based on genome-wide single-nucleotide polymorphism data extracted from these parasites and mitochondrial sequences from their hosts all failed to support the current geographical structure of our isolates.
Collapse
Affiliation(s)
- Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology; University of Ottawa, Ottawa, ON, Canada
| | - Mohammed Selman
- Canadian Institute for Advanced Research, Department of Biology; University of Ottawa, Ottawa, ON, Canada
| | - Stéphane Aris-Brosou
- Departments of Biology and of Mathematics & Statistics, University of Ottawa, Ottawa, ON, Canada
| | - Laurent Farinelli
- FASTERIS S.A., Ch. du Pont-du-Centenaire 109, P.O. Box 28, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology; University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|