1
|
Khaleel AQ, Altalbawy FMA, Jabir MS, F Hasan T, Jain V, Abbot V, Nakash P, Kumar MR, Mustafa YF, Jawad MA. CXCR4/CXCL12 blockade therapy; a new horizon in TNBC therapy. Med Oncol 2025; 42:161. [PMID: 40216617 DOI: 10.1007/s12032-025-02705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/29/2025] [Indexed: 05/03/2025]
Abstract
The only subtype of breast cancer (BC) without specific therapy is triple-negative breast cancer (TNBC), which represents 15-20% of incidence cases of BC. TNBC encompasses transformed and nonmalignant cells, including cancer-associated fibroblasts (CAF), endothelial vasculature, and tumor-infiltrating cells. These nonmalignant cells, soluble factors (e.g., cytokines), and the extracellular matrix (ECM) form the tumor microenvironment (TME). The TME is made up of these nonmalignant cells, ECM, and soluble components, including cytokines. Direct cell-to-cell contact and soluble substances like cytokines (e.g., chemokines) may facilitate interaction between cancer cells and the surrounding TME. Through growth-promoting cytokines, TME not only enables the development of cancer but also confers therapy resistance. New treatment targets will probably be suggested by comprehending the processes behind tumor development and progression as well as the functions of chemokines in TNBC. In this light, several investigations have shown the pivotal function of the C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis and chemokine receptor type 4 (CXCR4) in the pathophysiology of TNBC. This review provides an overview of the CXCR4/CXCL12 axis' function in TNBC development, metastasis, angiogenesis, and treatment resistance. A synopsis of current literature on targeting the CXCR4/CXCL12 axis for treating and managing TNBC has also been provided.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Thikra F Hasan
- College of Health&Medical Technology, Uruk University, Baghdad, Iraq
| | - Vicky Jain
- Department of Chemistry, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | |
Collapse
|
2
|
Ahmed S, Salem A, Hamadan N, Khalfallah M, Alfaki M. Identification of the Hub Genes Involved in Chikungunya Viral Infection. Cureus 2024; 16:e57603. [PMID: 38707036 PMCID: PMC11069395 DOI: 10.7759/cureus.57603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Chikungunya virus (CHIKV) infection poses a significant global health threat, necessitating a deeper understanding of its molecular mechanisms for effective management and treatment. This study aimed to understand the molecular and genetic mechanisms of CHIKV infection by analyzing microarray expression data. Methodology National Center for Biotechnology Information (NCBI) GEO2R with an adjusted p-value cut-off of <0.05 and |log2FC ≥ 1.5| was used to identify the differentially expressed genes involved in CHIKV infection using microarray data from the Gene Expression Omnibus (GEO) database, followed by enrichment analysis, protein-protein interaction (PPI) network construction, and, finally, hub gene identification. Results Analysis of the microarray dataset revealed 25 highly significant differentially expressed genes (DEGs), including 21 upregulated and four downregulated genes. PPI network analysis elucidated interactions among these DEGs, with hub genes such as ACTB and CTNNB1 exhibiting central roles. Enrichment analysis identified crucial pathways, including leukocyte transendothelial migration, regulation of actin cytoskeleton, and thyroid hormone signaling, implicating their involvement in CHIKV infection. Furthermore, the study highlights potential therapeutic targets such as ACTB and CTNNB1, which showed significant upregulation in infected cells. Conclusions These findings underscore the complex interplay between viral infection and host cellular processes, shedding light on novel avenues for diagnostic marker discovery and advancing antiviral strategies. In this study, we shed light on the molecular and genetic mechanisms of CHIKV infection and the potential role of ACTB and CTNNB1 genes.
Collapse
Affiliation(s)
- Sanaa Ahmed
- Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, SDN
| | - Ahmed Salem
- Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, CZE
| | - Nema Hamadan
- Histopathology and Cytology, University of Ibn Sina, Khartoum, SDN
| | - Maha Khalfallah
- Zoology, Faculty of Science, University of Khartoum, Khartoum, SDN
| | | |
Collapse
|
3
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
4
|
Yang K, Xie Q, Liao J, Zhao N, Liang J, Liu B, Chen J, Cheng W, Bai X, Zhang P, Liu Q, Song B, Wang JD, Zheng F, Hu C, Liu L, Chen L, Wang Y. Shang-Ke-Huang-Shui and coptisine alleviate osteoarthritis in the knee of monosodium iodoacetate-induced rats through inhibiting CXCR4 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116476. [PMID: 37031825 DOI: 10.1016/j.jep.2023.116476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shang-Ke-Huang-Shui (SKHS) is a classic traditional Chinese medicine formula originally from the southern China city of Foshan. It has been widely used in the treatment of osteoarthritis (OA) but underlying molecular mechanisms remain unclear. AIM OF STUDY Recently, activation of C-X-C chemokine receptor type 4 (CXCR4) signaling has been reported to induce cartilage degradation in OA patients; therefore, inhibition of CXCR4 signaling has becoming a promising approach for OA treatment. The aim of this study was to validate the cartilage protective effect of SKHS and test whether the anti-OA effects of SKHS depend on its inhibition on CXCR4 signaling. Additionally, CXCR4 antagonist in SKHS should be identified and its anti-OA activity should also be tested in vitro and in vivo. METHODS The anti-OA effects of SKHS and the newly identified CXCR4 antagonist was evaluated by monosodium iodoacetate (MIA)-induced rats. The articular cartilage surface was examined by hematoxylin and eosin (H&E) staining and Safranin O-Fast Green (S-F) staining whereas the subchondral bone was examined by micro-CT. CXCR4 antagonist screenings were conducted by molecular docking and calcium response assay. The CXCR4 antagonist was characterized by UPLC/MS/MS. The bulk RNA-Seq was conducted to identify CXCR4-mediated signaling pathway. The expression of ADAMTS4,5 was tested by qPCR and Western blot. RESULTS SKHS protected rats from MIA-induced cartilage degradation and subchondral bone damage. SKHS also inhibited CXCL12-indcued ADAMTS4,5 overexpression in chondrocytes through inhibiting Akt pathway. Coptisine has been identified as the most potent CXCR4 antagonist in SKHS. Coptisine reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes. Furthermore, in MIA-induced OA model, the repaired cartilage and subchondral bone were observed in the coptisine-treated rats. CONCLUSION We first report here that the traditional Chinese medicine formula SKHS and its predominate phytochemical coptisine significantly alleviated cartilage degradation as well as subchondral bone damage through inhibiting CXCR4-mediated ADAMTS4,5 overexpression. Together, our work has provided an important insight of the molecular mechanism of SKHS and coptisine for their treatment of OA.
Collapse
Affiliation(s)
- Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaxin Liao
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, China
| | - Na Zhao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ben Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianhai Chen
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xueling Bai
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qian Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Song
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | | | - Fanghao Zheng
- Pharmaceutical Preparation Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Guo X, Feng Y, Zhao X, Qiao S, Ma Z, Li Z, Zheng H, Xiao S. Coronavirus Porcine Epidemic Diarrhea Virus Utilizes Chemokine Interleukin-8 to Facilitate Viral Replication by Regulating Ca 2+ Flux. J Virol 2023; 97:e0029223. [PMID: 37133374 PMCID: PMC10231212 DOI: 10.1128/jvi.00292-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
Chemokine production by epithelial cells is crucial for neutrophil recruitment to sites of inflammation during viral infection. However, the effect of chemokine on epithelia and how chemokine is involved in coronavirus infection remains to be fully understood. Here, we identified an inducible chemokine interleukin-8 (CXCL8/IL-8), which could promote coronavirus porcine epidemic diarrhea virus (PEDV) infection in African green monkey kidney epithelial cells (Vero) and Lilly Laboratories cell-porcine kidney 1 epithelial cells (LLC-PK1). IL-8 deletion restrained cytosolic calcium (Ca2+), whereas IL-8 stimulation improved cytosolic Ca2+. The consumption of Ca2+ restricted PEDV infection. PEDV internalization and budding were obvious reductions when cytosolic Ca2+ was abolished in the presence of Ca2+ chelators. Further study revealed that the upregulated cytosolic Ca2+ redistributes intracellular Ca2+. Finally, we identified that G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-store-operated Ca2+ (SOC) signaling was crucial for enhancive cytosolic Ca2+ and PEDV infection. To our knowledge, this study is the first to uncover the function of chemokine IL-8 during coronavirus PEDV infection in epithelia. PEDV induces IL-8 expression to elevate cytosolic Ca2+, promoting its infection. Our findings reveal a novel role of IL-8 in PEDV infection and suggest that targeting IL-8 could be a new approach to controlling PEDV infection. IMPORTANCE Coronavirus porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that caused severe economic losses worldwide, and more effort is needed to develop economical and efficient vaccines to control or eliminate this disease. The chemokine interleukin-8 (CXCL8/IL-8) is indispensable for the activation and trafficking of inflammatory mediators and tumor progression and metastasis. This study evaluated the effect of IL-8 on PEDV infection in epithelia. We found that IL-8 expression improved cytosolic Ca2+ in epithelia, facilitating PEDV rapid internalization and egress. G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-SOC signaling was activated by IL-8, releasing the intracellular Ca2+ stores from endoplasmic reticulum (ER). These findings provide a better understanding of the role of IL-8 in PEDV-induced immune responses, which will help develop small-molecule drugs for coronavirus cure.
Collapse
Affiliation(s)
- Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Martínez-Fleta P, Vera-Tomé P, Jiménez-Fernández M, Requena S, Roy-Vallejo E, Sanz-García A, Lozano-Prieto M, López-Sanz C, Vara A, Lancho-Sánchez Á, Martín-Gayo E, Muñoz-Calleja C, Alfranca A, González-Álvaro I, Galván-Román JM, Aspa J, de la Fuente H, Sánchez-Madrid F. A Differential Signature of Circulating miRNAs and Cytokines Between COVID-19 and Community-Acquired Pneumonia Uncovers Novel Physiopathological Mechanisms of COVID-19. Front Immunol 2022; 12:815651. [PMID: 35087533 PMCID: PMC8787267 DOI: 10.3389/fimmu.2021.815651] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) pneumonia is a life-threatening infectious disease, especially for elderly patients with multiple comorbidities. Despite enormous efforts to understand its underlying etiopathogenic mechanisms, most of them remain elusive. In this study, we compared differential plasma miRNAs and cytokines profiles between COVID-19 and other community-acquired pneumonias (CAP). A first screening and subsequent validation assays in an independent cohort of patients revealed a signature of 15 dysregulated miRNAs between COVID-19 and CAP patients. Additionally, multivariate analysis displayed a combination of 4 miRNAs (miR-106b-5p, miR-221-3p, miR-25-3p and miR-30a-5p) that significantly discriminated between both pathologies. Search for targets of these miRNAs, combined with plasma protein measurements, identified a differential cytokine signature between COVID-19 and CAP that included EGFR, CXCL12 and IL-10. Significant differences were also detected in plasma levels of CXCL12, IL-17, TIMP-2 and IL-21R between mild and severe COVID-19 patients. These findings provide new insights into the etiopathological mechanisms underlying COVID-19.
Collapse
Affiliation(s)
- Pedro Martínez-Fleta
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Paula Vera-Tomé
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - María Jiménez-Fernández
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Silvia Requena
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Emilia Roy-Vallejo
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ancor Sanz-García
- Data Analysis Unit, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Alicia Vara
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ángel Lancho-Sánchez
- Biobank, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid (IIS-IP), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid (IIS-IP), Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Isidoro González-Álvaro
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Department of Rheumatology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - José María Galván-Román
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Javier Aspa
- Department of Pneumology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de La Princesa IIS-IP (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
7
|
Abhishek K, Kumar A, Sardar AH, Vijayakumar S, Dikhit MR, Kumar A, Kumar V, Das S, Das P. Differential translational regulation of host exosomal proteins play key role in immunomodulation in antimony resistance in Visceral Leishmaniasis: A proteomic profiling study. Acta Trop 2022; 226:106268. [PMID: 34890541 DOI: 10.1016/j.actatropica.2021.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 11/01/2022]
Abstract
In host-pathogen interactions, exosomal secretions are crucial for cell to cell communication and have an established role in immunomodulation. Protozoans, including Leishmania, modulates their host vesicular secretions for better survival; although the role of exosomal secretions in unresponsive against sodium antimony gluconate (SAG) has never been documented. In this study, the exosomal proteome of RAW macrophages infected with either SAG responsive (SAGS) or SAG unresponsive (SAGR) L. donovani parasites has been compared with uninfected RAW macrophages. Proteins isolated from exosomes were labelled with iTRAQ reagents; followed by subsequent LC-TOF/-MS analysis. In total, 394 proteins (p < 0.05) were identified which were shared common among all sets. Highly differentially expressed proteins were sorted by log2 value -1 and +1 as down regulated and up regulated respectively which yielded 58 proteins in SAGR and 41 proteins during SAGS infection. Out of the 58 proteins identified during SAGR infection, 17 proteins were of immune modulatory function. Network visualization model and pathway analysis revealed the interactions among these proteins via different immunological pathways with reported involvement of some proteins in SAG resistance and host immune modulation. Hence, the differential abundance of immune pathway related proteins in exosomes of infected host during SAGR infection supports the immune modulatory strategy adopted by SAG resistant parasites for enhanced survival .
Collapse
|
8
|
Genome-wide expression analysis reveal host genes involved in immediate-early infections of different sheeppox virus strains. Gene 2021; 801:145850. [PMID: 34274484 DOI: 10.1016/j.gene.2021.145850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
This study explored the transcriptome of lamb testis cells infected with sheeppox virus (SPPV) wild strain (WS) and vaccine strain (VS) at an immediate-early time. Most of the differentially expressed genes (DEGs) and differentially expressed highly connected (DEHC) gene network were found to be involved in SPPV-VS infection compared to SPPV-WS. Further, the signaling pathways were mostly involved in SPPV-VS infection than SPPV-WS. SPPV modulates the expression of several important host proteins such as CD40, FAS, ITGβ1, ITGα1, Pak1, Pak2, CD14, ILK leading to viral attachment and entry; immune-related DEGs such as MAPK, JNK, ERK, NFKB, IKB, PI3K, STAT which provide optimal cellular condition for early viral protein expression; and FOXO3, ATF, CDKNA1, TCF, SRF, BDNF which help in inducing apoptosis and MPTP, BAD and Tp53 inhibits apoptosis or cell death at the immediate-early time. The results captured the specific genes and enabled to understand distinct pathogenic mechanisms employed by VS and WS of SPPV.
Collapse
|
9
|
Yahya I, Morosan-Puopolo G, Brand-Saberi B. The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Front Cell Dev Biol 2020; 8:615264. [PMID: 33415110 PMCID: PMC7783292 DOI: 10.3389/fcell.2020.615264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany.,Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Identification of a novel signaling complex containing host chemokine receptor CXCR4, Interleukin-10 receptor, and human cytomegalovirus US27. Virology 2020; 548:49-58. [PMID: 32838946 DOI: 10.1016/j.virol.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread herpesvirus that establishes latency in myeloid cells and persists by manipulating immune signaling. Chemokine receptor CXCR4 and its ligand CXCL12 regulate movement of myeloid progenitors into bone marrow and out into peripheral tissues. HCMV amplifies CXCL12-CXCR4 signaling through viral chemokine receptor US27 and cmvIL-10, a viral cytokine that binds the cellular IL-10 receptor (IL-10R), but precisely how these viral proteins influence CXCR4 is unknown. We used the proximity ligation assay (PLA) to examine association of CXCR4, IL-10R, and US27 in both transfected and HCMV-infected cells. CXCR4 and IL-10R colocalized to discrete clusters, and treatment with CXCL12 and cmvIL-10 dramatically increased receptor clustering and calcium flux. US27 was associated with CXCR4 and IL-10R in PLA clusters and further enhanced cluster formation and calcium signaling. These results indicate that CXCR4, IL-10R, and US27 form a novel virus-host signaling complex that enhances CXCL12 signaling during HCMV infection.
Collapse
|
11
|
Khan MAAK, Sany MRU, Islam MS, Islam ABMMK. Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19. Front Genet 2020; 11:765. [PMID: 32765592 PMCID: PMC7381279 DOI: 10.3389/fgene.2020.00765] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
A detailed understanding of the molecular mechanism of SARS-CoV-2 pathogenesis is still elusive, and there is a need to address its deadly nature and to design effective therapeutics. Here, we present a study that elucidates the interplay between the SARS-CoV and SARS-CoV-2 viruses' and host's miRNAs, an epigenetic regulator, as a mode of pathogenesis; and we explored how the SARS-CoV and SARS-CoV-2 infections differ in terms of their miRNA-mediated interactions with the host and the implications this has in terms of disease complexity. We have utilized computational approaches to predict potential host and viral miRNAs and their possible roles in different important functional pathways. We have identified several putative host antiviral miRNAs that can target the SARS viruses and also predicted SARS viruses-encoded miRNAs targeting host genes. In silico predicted targets were also integrated with SARS-infected human cell microarray and RNA-seq gene expression data. A comparison between the host miRNA binding profiles on 67 different SARS-CoV-2 genomes from 24 different countries with respective country's normalized death count surprisingly uncovered some miRNA clusters, which are associated with increased death rates. We have found that induced cellular miRNAs can be both a boon and a bane to the host immunity, as they have possible roles in neutralizing the viral threat; conversely, they can also function as proviral factors. On the other hand, from over representation analysis, our study revealed that although both SARS-CoV and SARS-CoV-2 viral miRNAs could target broad immune-signaling pathways; only some of the SARS-CoV-2 miRNAs are found to uniquely target some immune-signaling pathways, such as autophagy, IFN-I signaling, etc., which might suggest their immune-escape mechanisms for prolonged latency inside some hosts without any symptoms of COVID-19. Furthermore, SARS-CoV-2 can modulate several important cellular pathways that might lead to the increased anomalies in patients with comorbidities like cardiovascular diseases, diabetes, breathing complications, etc. This might suggest that miRNAs can be a key epigenetic modulator behind the overcomplications amongst the COVID-19 patients. Our results support that miRNAs of host and SARS-CoV-2 can indeed play a role in the pathogenesis which can be further concluded with more experiments. These results will also be useful in designing RNA therapeutics to alleviate the complications from COVID-19.
Collapse
Affiliation(s)
| | - Md Rabi Us Sany
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
12
|
Freudenberg JM, Dunham I, Sanseau P, Rajpal DK. Uncovering new disease indications for G-protein coupled receptors and their endogenous ligands. BMC Bioinformatics 2018; 19:345. [PMID: 30285606 PMCID: PMC6167889 DOI: 10.1186/s12859-018-2392-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The Open Targets Platform integrates different data sources in order to facilitate identification of potential therapeutic drug targets to treat human diseases. It currently provides evidence for nearly 2.6 million potential target-disease pairs. G-protein coupled receptors are a drug target class of high interest because of the number of successful drugs being developed against them over many years. Here we describe a systematic approach utilizing the Open Targets Platform data to uncover and prioritize potential new disease indications for the G-protein coupled receptors and their ligands. Results Utilizing the data available in the Open Targets platform, potential G-protein coupled receptor and endogenous ligand disease association pairs were systematically identified. Intriguing examples such as GPR35 for inflammatory bowel disease and CXCR4 for viral infection are used as illustrations of how a systematic approach can aid in the prioritization of interesting drug discovery hypotheses. Combining evidences for G-protein coupled receptors and their corresponding endogenous peptidergic ligands increases confidence and provides supportive evidence for potential new target-disease hypotheses. Comparing such hypotheses to the global pharma drug discovery pipeline to validate the approach showed that more than 93% of G-protein coupled receptor-disease pairs with a high overall Open Targets score involved receptors with an existing drug discovery program. Conclusions The Open Targets gene-disease score can be used to prioritize potential G-protein coupled receptors-indication hypotheses. In addition, availability of multiple different evidence types markedly increases confidence as does combining evidence from known receptor-ligand pairs. Comparing the top-ranked hypotheses to the current global pharma pipeline serves validation of our approach and identifies and prioritizes new therapeutic opportunities. Electronic supplementary material The online version of this article (10.1186/s12859-018-2392-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Philippe Sanseau
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,Computational Biology and Stats, Target Sciences, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Deepak K Rajpal
- Computational Biology, Target Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| |
Collapse
|
13
|
Genetic variation of CXCR4 and risk of coronary artery disease: epidemiological study and functional validation of CRISPR/Cas9 system. Oncotarget 2017; 9:14077-14083. [PMID: 29581828 PMCID: PMC5865654 DOI: 10.18632/oncotarget.23491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, while coronary artery disease (CAD) account for a large part of CVDs. Vascular CXCR4 could limit atherosclerosis by maintaining arterial integrity. Here, we conducted a population-based, case-control study to evaluate the associations of common genetic variation within the CXCR4 gene (rs2228014, rs117600832, rs2471859, and rs2322864) with CAD risk in a Chinese population. We found that CXCR4 rs2228014 was significantly associated with 1.29-fold increased risk of CAD (A vs G: OR = 1.29; 95% CI = 1.07–1.55; P = 0.007). The subjects with genotype AA (OR = 1.98; 95% CI = 1.03–3.81; P = 0.041) and AG (OR = 1.27; 95% CI = 1.02–1.58; P = 0.030) have higher risk of CAD, compared with those with genotype GG. Furthermore, both in the CAD patients with diabetes and those without diabetes, rs2228014 was significantly associated with increased risk of CAD (P < 0.05). Additionally, we also validated the significant association for rs2322864 (C vs T: OR = 1.20; 95% CI = 1.00–1.44; P = 0.046). Knockout of CXCR4 gene could significantly impair the capacity of cholesterol efflux (P < 0.01). These findings strongly suggest that CXCR4 polymorphisms might contribute to CAD susceptibility, and the exact biological mechanism awaits further research.
Collapse
|
14
|
Li YL, Li YF, Li HF, Lv HQ, Sun DZ. Role of SDF-1α/CXCR4 signaling pathway in clinicopathological features and prognosis of patients with nasopharyngeal carcinoma. Biosci Rep 2017; 37:BSR20170144. [PMID: 28559386 PMCID: PMC5518484 DOI: 10.1042/bsr20170144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
The present study aims to explore the role of stromal cell-derived factor-1α (SDF-1α)/stromal cell-derived factor receptor-4 (CXCR4) signaling pathway to the clinicopathological features and prognosis of patients with nasopharyngeal carcinoma (NPC). From January 2009 to December 2010, 102 patients with NPC and 80 patients with chronic nasopharyngitis were enrolled for the study. Immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting were employed to determine the expressions of SDF-1α and CXCR4 proteins in NPC tissues and chronic nasopharyngitis tissues. Chi-square test was conducted to analyze the associations of the expressions of SDF-1α and CXCR4 proteins with the clinicopathological features of NPC patients. Spearman rank correlation analysis was used to analyze the correlation between the SDF-1α protein expression and CXCR4 protein expression. The mRNA and protein expressions of SDF-1α and CXCR4 in NPC tissues were significantly higher than those in chronic nasopharyngitis tissues. The expressions of SDF-1α and CXCR4 proteins showed associations with T staging, N staging, tumor node metastasis (TNM) staging, skull base invasion, and cervical lymph node metastasis of NPC patients. Compared with NPC patients showing negative expressions of SDF-1α and CXCR4 proteins, those with positive expressions of SDF-1α and CXCR4 proteins had a significantly shorter survival time. SDF-1α protein, CXCR4 protein, EBV-IgG status, T staging, N staging, TNM staging, skull base invasion, and cervical lymph node metastasis were independent risk factors for the prognosis of NPC. The findings indicated that SDF-1α/CXCR4 signaling pathway might be associated with the clinicopathological features and prognosis of patients with NPC.
Collapse
Affiliation(s)
- Yun-Ling Li
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - Yu-Fen Li
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - Hua-Feng Li
- Department of Genetic Laboratory, Women and Children's Hospital of Linyi, Linyi City 276016, P.R. China
| | - Huai-Qing Lv
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - De-Zhong Sun
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| |
Collapse
|
15
|
Hoyer C, Alonso A, Schlotter-Weigel B, Platten M, Fatar M. HIV-Associated Cerebellar Dysfunction and Improvement with Aminopyridine Therapy: A Case Report. Case Rep Neurol 2017. [PMID: 28626409 PMCID: PMC5471757 DOI: 10.1159/000475544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Apart from infectious causes and cerebellar dysfunction associated with acquired immune deficiency syndrome dementia or HIV-associated neurocognitive disorder, cerebellar dysfunction in HIV-positive individuals has been ascribed to granule cell neuronopathy as well as primary cerebellar atrophy without identifiable etiology. We report the case of a patient with progressive cerebellar dysfunction as the primary manifestation of HIV infection. No symptom improvement was seen under combination antiretroviral therapy, which had been established upon diagnosis, but the patient improved rapidly under 4-aminopyridine treatment, which was recommended 1 year later. Our report, adding to the rather small number of reports of HIV-associated cerebellar atrophy and dysfunction as a primary manifestation of HIV infection, draws attention to HIV as a possible differential etiology of a cerebellar syndrome. Further, rapid improvement of symptom severity under 4-aminopyridine treatment warrants further investigation with longer-term follow-up into the effectiveness of this compound in gait disorder associated with HIV infection.
Collapse
Affiliation(s)
- Carolin Hoyer
- Department of Neurology, University Medical Centre Mannheim, Mannheim, Germany
| | - Angelika Alonso
- Department of Neurology, University Medical Centre Mannheim, Mannheim, Germany
| | - Beate Schlotter-Weigel
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Platten
- Department of Neurology, University Medical Centre Mannheim, Mannheim, Germany
| | - Marc Fatar
- Department of Neurology, University Medical Centre Mannheim, Mannheim, Germany
| |
Collapse
|
16
|
Takayama Y, Aoki R, Uchida R, Tajima A, Aoki-Yoshida A. Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochem Cell Biol 2016; 95:57-63. [PMID: 28075616 DOI: 10.1139/bcb-2016-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lactoferrin exerts its biological activities by interacting with receptors on target cells, including LDL receptor-related protein-1 (LRP-1/CD91), intelectin-1 (omentin-1), and Toll-like receptor 4 (TLR4). However, the effects mediated by these receptors are not sufficient to fully explain the many functions of lactoferrin. C-X-C-motif cytokine receptor 4 (CXCR4) is a ubiquitously expressed G-protein coupled receptor for stromal cell-derived factor-1 (SDF-1/CXCL12). Lactoferrin was found to be as capable as SDF-1 in blocking infection by an HIV variant that uses CXCR4 as a co-receptor (X4-tropic HIV), suggesting that lactoferrin interacts with CXCR4. We addressed whether CXCR4 acts as a lactoferrin receptor using HaCaT human keratinocytes and Caco-2 human intestinal cells. We found that bovine lactoferrin interacted with CXCR4-containing lipoparticles, and that this interaction was not antagonized by SDF-1. In addition, activation of Akt in response to lactoferrin was abrogated by AMD3100, a small molecule inhibitor of CXCR4, or by a CXCR4-neutralizing antibody, suggesting that CXCR4 functions as a lactoferrin receptor able to mediate activation of the PI3K-Akt signaling pathway. Lactoferrin stimulation mimicked many aspects of SDF-1-induced CXCR4 activity, including receptor dimerization, tyrosine phosphorylation, and ubiquitination. Cycloheximide chase assays indicated that turnover of CXCR4 was accelerated in response to lactoferrin. These results indicate that CXCR4 is a potent lactoferrin receptor that mediates lactoferrin-induced activation of Akt signaling.
Collapse
Affiliation(s)
- Yoshiharu Takayama
- a Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Reiji Aoki
- a Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Ryo Uchida
- a Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.,b Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Atsushi Tajima
- b Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ayako Aoki-Yoshida
- a Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.,c Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Optochemokine Tandem for Light-Control of Intracellular Ca2. PLoS One 2016; 11:e0165344. [PMID: 27768773 PMCID: PMC5074463 DOI: 10.1371/journal.pone.0165344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 01/13/2023] Open
Abstract
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.
Collapse
|
18
|
Reker D, Schneider P, Schneider G. Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. Chem Sci 2016; 7:3919-3927. [PMID: 30155037 PMCID: PMC6013791 DOI: 10.1039/c5sc04272k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/27/2016] [Indexed: 11/21/2022] Open
Abstract
Active machine learning puts artificial intelligence in charge of a sequential, feedback-driven discovery process. We present the application of a multi-objective active learning scheme for identifying small molecules that inhibit the protein-protein interaction between the anti-cancer target CXC chemokine receptor 4 (CXCR4) and its endogenous ligand CXCL-12 (SDF-1). Experimental design by active learning was used to retrieve informative active compounds that continuously improved the adaptive structure-activity model. The balanced character of the compound selection function rapidly delivered new molecular structures with the desired inhibitory activity and at the same time allowed us to focus on informative compounds for model adjustment. The results of our study validate active learning for prospective ligand finding by adaptive, focused screening of large compound repositories and virtual compound libraries.
Collapse
Affiliation(s)
- D Reker
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog Weg 4 , 8093 Zürich , Switzerland .
| | - P Schneider
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog Weg 4 , 8093 Zürich , Switzerland .
| | - G Schneider
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog Weg 4 , 8093 Zürich , Switzerland .
| |
Collapse
|
19
|
Pineda-Tenor D, Jiménez-Sousa MA, Rallón N, Berenguer J, Soriano V, Aldámiz-Echevarria T, García-Álvarez M, Diez C, Fernández-Rodríguez A, Benito JM, Resino S. Short Communication: CXCL12 rs1029153 Polymorphism Is Associated with the Sustained Virological Response in HIV/Hepatitis C Virus-Coinfected Patients on Hepatitis C Virus Therapy. AIDS Res Hum Retroviruses 2016; 32:226-31. [PMID: 26499461 DOI: 10.1089/aid.2015.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response against HIV and hepatitis C virus (HCV) infection partly depends on chemokine-mediated recruitment of specific T cells. CXCL12 polymorphisms have been associated with AIDS progression and survival, but there are no data related to HCV infection. The aim of this study was to determine whether CXCL12 polymorphisms are related so as to achieve sustained virological response (SVR) after HCV therapy with pegylated-interferon-alpha/ribavirin (pegIFN-α/ribavirin) in HIV/HCV-coinfected patients. We carried out a retrospective study in 319 naive patients who started HCV treatment. The CXCL12 (rs266093, rs1029153, and rs1801157) and IL28B (rs12980275) polymorphisms were genotyped by using the GoldenGate assay. Genetic data were analyzed under an additive inheritance model. The overall rates of the SVR were 54.9% (175/319) and 41.5% (90/217) in GT1/4 patients and 83.2% (84/101) in GT2/3 patients. Patients with a favorable CXCL12 rs1029153 T allele had higher SVR rates than patients with the rs1029153 CC genotype (44% CC, 49% CT, and 61.3% TT; p = 0.025). No significant results for the rs266093 and rs1801157 polymorphisms were found. Patients harboring the favorable rs1029153 T allele had significantly increased odds of achieving SVR [adjusted odds ratio (aOR) = 1.55; 95% confidence interval (95% CI) = 1.01; 2.40; p = 0.047]. Moreover, no significant association was found when the study population was stratified by HCV genotype (data not shown), possibly due to the low number of patients in each group. In conclusion, in this study we found that the favorable CXCL12 rs1029153 T allele seems to be related so as to achieve an SVR in HIV/HCV-coinfected patients on pegIFN-α/ribavirin therapy.
Collapse
Affiliation(s)
- Daniel Pineda-Tenor
- Servicio de Laboratorio Clínico, Hospital Universitario de Fuenlabrada, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María A. Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IIS-GM), Madrid, Spain
| | - Vicente Soriano
- Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid. Spain
- Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid. Spain
| | - Teresa Aldámiz-Echevarria
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IIS-GM), Madrid, Spain
| | - Mónica García-Álvarez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Diez
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jose Miguel Benito
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
20
|
Christiaansen A, Varga SM, Spencer JV. Viral manipulation of the host immune response. Curr Opin Immunol 2015; 36:54-60. [PMID: 26177523 DOI: 10.1016/j.coi.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
Viruses are obligate intracellular parasites that require a host for essential machinery to replicate and ultimately be transmitted to new susceptible hosts. At the same time, the immune system has evolved to protect the human body from invasion by viruses and other pathogens. To counter this, viruses have developed an arsenal of strategies to not only avoid immune detection but to actively manipulate host immune responses to create an environment more favorable for infection. Here, we describe recent advances uncovering novel mechanisms by which viruses skew host immune responses through modulation of cytokine and chemokine signaling networks, interference with antigen presentation and T cell responses, and preventing antibody production.
Collapse
Affiliation(s)
- Allison Christiaansen
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Steven M Varga
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Department of Pathology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA.
| |
Collapse
|
21
|
Wu CH, Wang CJ, Chang CP, Cheng YC, Song JS, Jan JJ, Chou MC, Ke YY, Ma J, Wong YC, Hsieh TC, Tien YC, Gullen EA, Lo CF, Cheng CY, Liu YW, Sadani AA, Tsai CH, Hsieh HP, Tsou LK, Shia KS. Function-oriented development of CXCR4 antagonists as selective human immunodeficiency virus (HIV)-1 entry inhibitors. J Med Chem 2015; 58:1452-65. [PMID: 25584630 DOI: 10.1021/jm501772w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Motivated by the pivotal role of CXCR4 as an HIV entry co-receptor, we herein report a de novo hit-to-lead effort on the identification of subnanomolar purine-based CXCR4 antagonists against HIV-1 infection. Compound 24, with an EC50 of 0.5 nM against HIV-1 entry into host cells and an IC50 of 16.4 nM for inhibition of radioligand stromal-derived factor-1α (SDF-1α) binding to CXCR4, was also found to be highly selective against closely related chemokine receptors. We rationalized that compound 24 complementarily interacted with the critical CXCR4 residues that are essential for binding to HIV-1 gp120 V3 loop and subsequent viral entry. Compound 24 showed a 130-fold increase in anti-HIV activity compared to that of the marketed CXCR4 antagonist, AMD3100 (Plerixafor), whereas both compounds exhibited similar potency in mobilization of CXCR4(+)/CD34(+) stem cells at a high dose. Our study offers insight into the design of anti-HIV therapeutics devoid of major interference with SDF-1α function.
Collapse
Affiliation(s)
- Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, Gaulke CA, Fenton AN, Li JA, Crawford RW, Chuang F, Tarara R, Marco ML, Bäumler AJ, Cheng H, Dandekar S. Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption. PLoS Pathog 2014; 10:e1004311. [PMID: 25166758 PMCID: PMC4148401 DOI: 10.1371/journal.ppat.1004311] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
HIV causes rapid CD4+ T cell depletion in the gut mucosa, resulting in immune deficiency and defects in the intestinal epithelial barrier. Breakdown in gut barrier integrity is linked to chronic inflammation and disease progression. However, the early effects of HIV on the gut epithelium, prior to the CD4+ T cell depletion, are not known. Further, the impact of early viral infection on mucosal responses to pathogenic and commensal microbes has not been investigated. We utilized the SIV model of AIDS to assess the earliest host-virus interactions and mechanisms of inflammation and dysfunction in the gut, prior to CD4+ T cell depletion. An intestinal loop model was used to interrogate the effects of SIV infection on gut mucosal immune sensing and response to pathogens and commensal bacteria in vivo. At 2.5 days post-SIV infection, low viral loads were detected in peripheral blood and gut mucosa without CD4+ T cell loss. However, immunohistological analysis revealed the disruption of the gut epithelium manifested by decreased expression and mislocalization of tight junction proteins. Correlating with epithelial disruption was a significant induction of IL-1β expression by Paneth cells, which were in close proximity to SIV-infected cells in the intestinal crypts. The IL-1β response preceded the induction of the antiviral interferon response. Despite the disruption of the gut epithelium, no aberrant responses to pathogenic or commensal bacteria were observed. In fact, inoculation of commensal Lactobacillus plantarum in intestinal loops led to rapid anti-inflammatory response and epithelial tight junction repair in SIV infected macaques. Thus, intestinal Paneth cells are the earliest responders to viral infection and induce gut inflammation through IL-1β signaling. Reversal of the IL-1β induced gut epithelial damage by Lactobacillus plantarum suggests synergistic host-commensal interactions during early viral infection and identify these mechanisms as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lauren A. Hirao
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Irina Grishina
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Olivier Bourry
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - William K. Hu
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Monsicha Somrit
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Chris A. Gaulke
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Anne N. Fenton
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Jay A. Li
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Robert W. Crawford
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, United States of America
| | - Ross Tarara
- Department of Primate Medicine, California National Primate Center, Davis, California, United States of America
| | - Maria L. Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|