1
|
Melgar S, Castellanos S, Stevens L, Monroy MC, Dorn PL. Genetic diversity of the Chagas vector Triatoma dimidiata s.l. (Hemiptera: Reduviidae) across geographic scales in a top-priority area for control. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1309-1321. [PMID: 38970363 DOI: 10.1093/jme/tjae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 07/08/2024]
Abstract
Population genetic structure of arthropod disease vectors provides important information on vector movement and climate or other environmental variables that influence their distribution. This information is critical for data-driven vector control. In the first comprehensive study of the genetic structure of T. dimidiata s.l. (Latreille, 1811) we focus on an area of active transmission designated as a top priority for control. We examined a high number of specimens across a broad geographic area along the border of Guatemala and El Salvador including multiple spatial scales using a high number of genome-wide markers. Measuring admixture, pairwise genetic differentiation, and relatedness, we estimated the specimens represented three genetic clusters. We found evidence of movement (migration/gene flow) across all spatial scales with more admixture among locations in El Salvador than in Guatemala. Although there was significant isolation by distance, the 2 close villages in Guatemala showed either the most or least genetic variation indicating an additional role of environmental variables. Further, we found that social factors may be influencing the genetic structure. We demonstrated the power of genomic studies with a large number of specimens across a broad geographic area. The results suggest that for effective vector control movement must be considered on multiple spatial scales along with its contributing factors.
Collapse
Affiliation(s)
- Sergio Melgar
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Salvador Castellanos
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT 05401, USA
| | - María Carlota Monroy
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA 70118, USA
| |
Collapse
|
2
|
Chan-Espinoza D, Ruiz-Piña HA, Canché-Pool EB, Reyes-Novelo E. Spatial distribution of Triatoma dimidiata peridomestic colonies modulated by distance between susceptible microhabitat patches. Acta Trop 2024; 253:107169. [PMID: 38432403 DOI: 10.1016/j.actatropica.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Triatoma dimidiata is a vector of the hemoparasite Trypanosoma cruzi, the causal agent of Chagas disease. It settles reproductive colonies in the peridomicile of the premises. The peridomicile is comprised of a random set of artificial and natural features that overlap and assemble a network of microenvironmental suitable sites (patches) that interact with each other and favor the structure and proliferation of T. dimidiata colonies. The heterogeneity of patch characteristics hinders the understanding and identification of sites susceptible to colonization. In this study, a classification system using a random forest algorithm was used to identify peridomiciles susceptible to colonization to describe the spatial distribution of these sites and their relationship with the colonies of T. dimidiata in ten localities of Yucatan. From 1,000 peridomiciles reviewed, the classification showed that 13.9 % (139) of the patches were highly susceptible (HSP), and 86.1 % (861) were less susceptible (LSP). All localities had at least one HSP. The occupancy by patch type showed that the percentage of total occupancy and by colonies was higher in the HSP, while the occupancy by adult T. dimidiata without evidence of nymphs or exuviae (propagules) was higher in the LSP. A generalized additive model (GAM) revealed that the percentage of occupied patches increases as the abundance of individuals in the localities increases however, the percentage of occupied patches in LSP is lower than occupied in HSP. Distance analyses revealed that colonies and propagules were located significantly closer (approximately 200 m) to a colony in a HSP than any colony in a LSP. The distribution of T. dimidiata in the localities was defined by the distribution of patch type; as the occupancy in these patches increased, a network of peridomestic populations was configured, which may be promoted by a greater abundance of insects inside the localities. These results reveal that the spatial distribution of T. dimidiata individuals and colonies in the peridomicile at the locality scale corresponds to a metapopulation pattern within the localities through a system of patches mediated by distance and level of the vectors' occupancy.
Collapse
Affiliation(s)
- Daniel Chan-Espinoza
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Itzaes No. 490 por 59, Col. Centro, Mérida, Yucatán 97000, Mexico
| | - Hugo A Ruiz-Piña
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Itzaes No. 490 por 59, Col. Centro, Mérida, Yucatán 97000, Mexico
| | - Elsy B Canché-Pool
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Itzaes No. 490 por 59, Col. Centro, Mérida, Yucatán 97000, Mexico
| | - Enrique Reyes-Novelo
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Itzaes No. 490 por 59, Col. Centro, Mérida, Yucatán 97000, Mexico.
| |
Collapse
|
3
|
Justi SA, Dale C. Designation of the neotype of Triatomadimidiata (Latreille, 1811) (Hemiptera, Reduviidae, Triatominae), with full integrated redescription including mitogenome and nuclear ITS-2 sequences. Zookeys 2022; 1076:9-24. [PMID: 34975271 PMCID: PMC8674215 DOI: 10.3897/zookeys.1076.72835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
The taxonomic status of Triatomadimidiata (Latreille, 1811) is, by far, the most discussed within Triatominae. Molecular studies have recovered at least three independently evolving lineages in T.dimidiata across its range. The original description of T.dimidiata (as Reduviusdimidiatus) included few taxonomic characters, and no types were assigned. To define and describe the cryptic diversity within T.dimidiata sensu lato (s.l.), a neotype must be designated. For this purpose, all 199 specimens identified as T.dimidiata from the collections of the Smithsonian Institution – National Museum of Natural History and the American Museum of Natural History, ranging from Peru to Mexico, were studied. Only one specimen (from Tumbes, Peru) matched the combination of characters as listed in the original description, and it is herein formally designated as the neotype for T.dimidiata. The neotype is morphologically described and DNA sequences of its whole mitochondrial genome and the nuclear second internal transcribed spacer region (ITS2), commonly used in triatomine molecular systematics studies, are presented and compared to other publicly available sequences of T.dimidiata s.l. in GenBank. Our results suggest that T.dimidiata sensu stricto (s.s.) is somewhat rare and, therefore, unlikely to serve as a major vector of Chagas disease.
Collapse
Affiliation(s)
- Silvia Andrade Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, 4210 Silver Hill Road, Suitland, MD 20746, USA Smithsonian Institution Museum Support Center Suitland United States of America.,Entomology Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA Entomology Branch, Walter Reed Army Institute of Research Silver Spring United States of America.,Department of Entomology, Smithsonian Institution National Museum of Natural History, Washington, DC 20560, USA Smithsonian Institution National Museum of Natural History Washington United States of America
| | - Carolina Dale
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil Instituto Oswaldo Cruz Rio de Janeiro Brazil
| |
Collapse
|
4
|
Alevi KCC, de Oliveira J, da Silva Rocha D, Galvão C. Trends in Taxonomy of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae): From Linnaean to Integrative Taxonomy. Pathogens 2021; 10:1627. [PMID: 34959582 PMCID: PMC8706908 DOI: 10.3390/pathogens10121627] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi and transmitted mainly by members of the subfamily Triatominae. There are currently 157 species, grouped into 18 genera and five tribes. Most descriptions of triatomine species are based on classical taxonomy. Facing evolutionary (cryptic speciation and phenotypic plasticity) and taxonomic (more than 190 synonymizations) problems, it is evident that integrative taxonomy studies are an important and necessary trend for this group of vectors. Almost two-and-a-half centuries after the description of the first species, we present for the first time the state-of-the-art taxonomy of the whole subfamily, covering from the initial classic studies to the use of integrative taxonomy.
Collapse
Affiliation(s)
- Kaio Cesar Chaboli Alevi
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14801-902, Brazil; (K.C.C.A.); (J.d.O.)
- Laboratório de Entomologia em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo (USP), Av. Dr. Arnaldo 715, São Paulo 01246-904, Brazil
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, Brazil;
| | - Jader de Oliveira
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14801-902, Brazil; (K.C.C.A.); (J.d.O.)
- Laboratório de Entomologia em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo (USP), Av. Dr. Arnaldo 715, São Paulo 01246-904, Brazil
| | - Dayse da Silva Rocha
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, Brazil;
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, Brazil;
| |
Collapse
|
5
|
Michel-Parra JG, Martínez-Ibarra JA, Montañez-Valdez OD, Nogueda-Torres B. Life cycle of Triatoma huehuetenanguensis Lima-Cordón, Monroy, Stevens, Rodas, Rodas, Dorn, Justi 2019 (Hemiptera: Reduviidae: Triatominae) from Mexico. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:57-64. [PMID: 35229582 DOI: 10.52707/1081-1710-46.1.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/06/2021] [Indexed: 06/14/2023]
Abstract
Several important biological parameters for estimating the vectorial capacity of a triatomine species were determined on a Mexican population of the recently described Triatoma huehuetenanguensis Lima-Cordón, Monroy, Stevens, Rodas, Rodas, Dorn, Justi (Hemiptera: Reduviidae: Triatominae). The biological parameters were the egg-to-adult development time, number of blood meals required for molting, cumulative mortality, onset time for feeding, feeding and defecation behaviors, and fertility and fecundity of T. huehuetenanguensis. The median egg-to-adult development time was 253 days, with 11 blood meals required for molting. A cumulative mortality rate of 47.41% was observed. The time to begin feeding was between 2.5 and 3.5 min. Feeding times were longer than 15 min. The highest percentages of defecation delays were 1 to 10 min in all nymphal instars and also in males. In contrast, significantly (P < 0.01) more females defecated while eating. At the end of the cycle, the percentage of the obtained females was 54.9%. The mean number of eggs laid per day per female for a month was 2.08. These eggs had an eclosion rate of 98.08%, with an incubation period of 19 days. Our results contribute to estimations of the potential role of T. huehuetenanguensis in the transmission of Trypanosoma cruzi in its distribution area.
Collapse
Affiliation(s)
- J Guadalupe Michel-Parra
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - José Alejandro Martínez-Ibarra
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Laboratorio de Entomología Médica, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Oziel Dante Montañez-Valdez
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Laboratorio de Entomología Médica, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Benjamín Nogueda-Torres
- COFAA Grant Fellow, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México,
| |
Collapse
|
6
|
Aguilera-Uribe M, Meza-Lázaro RN, Kieran TJ, Ibarra-Cerdeña CN, Zaldívar-Riverón A. Phylogeny of the North-Central American clade of blood-sucking reduviid bugs of the tribe Triatomini (Hemiptera: Triatominae) based on the mitochondrial genome. INFECTION GENETICS AND EVOLUTION 2020; 84:104373. [DOI: 10.1016/j.meegid.2020.104373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
|
7
|
Rengifo‐Correa L, Abad‐Franch F, Martínez‐Hernández F, Salazar‐Schettino PM, Téllez‐Rendón JL, Villalobos G, Morrone JJ. A biogeographic–ecological approach to disentangle reticulate evolution in the
Triatoma phyllosoma
species group (Heteroptera: Triatominae), vectors of Chagas disease. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laura Rengifo‐Correa
- Departamento de Biología Evolutiva Facultad de Ciencias Museo de Zoología ‘Alfonso L. Herrera’Universidad Nacional Autónoma de México Mexico City Mexico
| | - Fernando Abad‐Franch
- Programa de Pós‐graduação em Medicina Tropical Núcleo de Medicina Tropical Facultade Medicina Universidade de Brasília Brasília Brazil
| | | | - Paz M. Salazar‐Schettino
- Laboratorio de Biología de Parásitos Departamento de Microbiología y Parasitología Facultad de Medicina Universidad Nacional Autónoma de México Mexico City Mexico
| | | | - Guiehdani Villalobos
- Departamento de Ecología de Agentes Patógenos Hospital General Dr. Manuel Gea González Mexico City Mexico
| | - Juan J. Morrone
- Departamento de Biología Evolutiva Facultad de Ciencias Museo de Zoología ‘Alfonso L. Herrera’Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
8
|
Landaverde-González P, Menes M, Melgar S, Bustamante D, Monroy C. Common pattern of distribution for Mesoamerican Triatoma dimidiata suggest geological and ecological association. Acta Trop 2020; 204:105329. [DOI: 10.1016/j.actatropica.2020.105329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/09/2019] [Accepted: 01/01/2020] [Indexed: 01/17/2023]
|
9
|
Caicedo-Garzón V, Salgado-Roa FC, Sánchez-Herrera M, Hernández C, Arias-Giraldo LM, García L, Vallejo G, Cantillo O, Tovar C, Aristeu da Rosa J, Carrasco HJ, Segovia M, Salazar C, Ramírez JD. Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLoS One 2019; 14:e0223963. [PMID: 31622439 PMCID: PMC6797096 DOI: 10.1371/journal.pone.0223963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
Triatomines are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Although Triatoma and Rhodnius are the most-studied vector genera, other triatomines, such as Panstrongylus, also transmit T. cruzi, creating new epidemiological scenarios. Panstrongylus has at least 13 reported species but there is limited information about its intraspecific genetic variation and patterns of diversification. Here, we begin to fill this gap by studying populations of P. geniculatus from Colombia and Venezuela and including other epidemiologically important species from the region. We examined the pattern of diversification of P. geniculatus in Colombia using mitochondrial and nuclear ribosomal data. Genetic diversity and differentiation were calculated within and among populations of P. geniculatus. Moreover, we constructed maximum likelihood and Bayesian inference phylogenies and haplotype networks using P. geniculatus and other species from the genus (P. megistus, P. lignarius, P. lutzi, P. tupynambai, P. chinai, P. rufotuberculatus and P. howardi). Using a coalescence framework, we also dated the P. geniculatus lineages. The total evidence tree showed that P. geniculatus is a monophyletic species, with four clades that are concordant with its geographic distribution and are partly explained by the Andes orogeny. However, other factors, including anthropogenic and eco-epidemiological effects must be investigated to explain the existence of recent geographic P. geniculatus lineages. The epidemiological dynamics in structured vector populations, such as those found here, warrant further investigation. Extending our knowledge of P. geniculatus is necessary for the accurate development of effective strategies for the control of Chagas disease vectors.
Collapse
Affiliation(s)
- Valentina Caicedo-Garzón
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. Bogotá D.C., Colombia.,Grupo de Genética Evolutiva, Filogeografía y Ecología de la Biodiversidad Neotropical (GEUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá D.C., Colombia
| | - Fabian C Salgado-Roa
- Grupo de Genética Evolutiva, Filogeografía y Ecología de la Biodiversidad Neotropical (GEUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá D.C., Colombia
| | - Melissa Sánchez-Herrera
- Grupo de Genética Evolutiva, Filogeografía y Ecología de la Biodiversidad Neotropical (GEUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá D.C., Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. Bogotá D.C., Colombia
| | - Luisa María Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. Bogotá D.C., Colombia
| | - Lineth García
- Universidad Nacional de San Simón, Cochabamba, Bolivia
| | - Gustavo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Omar Cantillo
- Laboratorio de Referencia e Investigación en Enfermedades Tropicales, Dirección de Sanidad Ejército, Ejército Nacional de Colombia, Bogotá, Colombia
| | - Catalina Tovar
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Joao Aristeu da Rosa
- Laboratório de Parasitologia, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Araraquara, SP, Brasil
| | - Hernán J Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maikell Segovia
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Camilo Salazar
- Grupo de Genética Evolutiva, Filogeografía y Ecología de la Biodiversidad Neotropical (GEUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá D.C., Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. Bogotá D.C., Colombia
| |
Collapse
|
10
|
Cahan SH, Orantes LC, Wallin KF, Hanley JP, Rizzo DM, Stevens L, Dorn PL, Rodas A, Monroy C. Residual survival and local dispersal drive reinfestation by Triatoma dimidiata following insecticide application in Guatemala. INFECTION GENETICS AND EVOLUTION 2019; 74:104000. [DOI: 10.1016/j.meegid.2019.104000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
|
11
|
Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. ADVANCES IN PARASITOLOGY 2019. [PMID: 29530308 DOI: 10.1016/bs.apar.2017.12.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this chapter, we review and update current knowledge about the evolution, systematics, and biogeography of the Triatominae (Hemiptera: Reduviidae)-true bugs that feed primarily on vertebrate blood. In the Americas, triatomines are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Despite declining incidence and prevalence, Chagas disease is still a major public health concern in Latin America. Triatomines occur also in the Old World, where vector-borne T. cruzi transmission has not been recorded. Triatomines evolved from predatory reduviid bugs, most likely in the New World, and diversified extensively across the Americas (including the Caribbean) and in parts of Asia and Oceania. Here, we first discuss our current understanding of how, how many times, and when the blood-feeding habit might have evolved among the Reduviidae. Then we present a summary of recent advances in the systematics of this diverse group of insects, with an emphasis on the contribution of molecular tools to the clarification of taxonomic controversies. Finally, and in the light of both up-to-date phylogenetic hypotheses and a thorough review of distribution records, we propose a global synthesis of the biogeography of the Triatominae. Over 130 triatomine species contribute to maintaining T. cruzi transmission among mammals (sometimes including humans) in almost every terrestrial ecoregion of the Americas. This means that Chagas disease will never be eradicated and underscores the fact that effective disease prevention will perforce require stronger, long-term vector control-surveillance systems.
Collapse
Affiliation(s)
- Fernando Araujo Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | | | - Márcio Felix
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA. Description of Triatomahuehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). Zookeys 2019:51-70. [PMID: 30728739 PMCID: PMC6361876 DOI: 10.3897/zookeys.820.27258] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/04/2018] [Indexed: 11/22/2022] Open
Abstract
A new species of the genus Triatoma Laporte, 1832 (Hemiptera, Reduviidae) is described based on specimens collected in the department of Huehuetenango, Guatemala. Triatomahuehuetenanguensissp. n. is closely related to T.dimidiata (Latreille, 1811), with the following main morphological differences: lighter color; smaller overall size, including head length; and width and length of the pronotum. Natural Trypanosomacruzi (Chagas, 1909) infection, coupled with its presence in domestic habitats, makes this species a potentially important vector of Trypanosomacruzi in Guatemala.
Collapse
Affiliation(s)
| | | | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States
| | | | | | - Patricia L Dorn
- pplied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala
| | - Silvia A Justi
- Department of Biology, University of Vermont, Burlington, Vermont, United States.,Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, USA.,Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Maryland, USA
| |
Collapse
|
14
|
Genetic variation and phylogeography of the Triatoma dimidiata complex evidence a potential center of origin and recent divergence of haplogroups having differential Trypanosoma cruzi and DTU infections. PLoS Negl Trop Dis 2019; 13:e0007044. [PMID: 30689662 PMCID: PMC6366694 DOI: 10.1371/journal.pntd.0007044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/07/2019] [Accepted: 12/02/2018] [Indexed: 11/19/2022] Open
Abstract
The population genetics of Triatoma dimidiata haplogroups was analyzed at landscape and sub-regional scales in Chiapas and regional level across the Mexican Neotropics, and phylogeography of the complex was re-analyzed across its complete geographic range. Two contiguous fragments of the ND4 gene were analyzed due to bias from differential haplogroup specificity using a previously designed sequence. At both landscape (anthropic modification gradient) and regional (demographic, fragmentation, biogeographic, climate) scales, lowest T. dimidiata genetic diversity occurs where there is greatest historical anthropic modification, and where T. cruzi infection prevalence is significantly highest. Trypanosoma cruzi prevalence was significantly higher than expected in haplogroups 1 and 3, while lower than expected in haplogroup 2. There was also a significant difference of DTUI and DTUVI infection frequencies in both haplogroups 1 and 3, while no difference of either in haplogroup 2. All haplogroups from the Mexican Neotropics had moderate to high haplotype diversity, while greatest genetic differentiation was between haplogroups 1 and 3 (above FST = 0.868, p < 0.0001). Divergence of the complex from the MRCA was estimated between 0.97 MYA (95% HPD interval = 0.55–1.53 MYA) and 0.85 MYA (95% HPD interval = 0.42–1.5 MYA) for ND4A and both concatenated fragments, respectively, with primary divergence from the MRCA of haplogroups 2 and 3. Effective population size for Mexican haplogroups 1 and 2 increased between 0.02 and 0.03 MYA. This study supports previous ecological niche evidence for the complex´s origin surrounding the Tehuantepec Isthmus, and provides evidence for recent divergence of three primary dimidiata haplogroups, with differential T. cruzi infection frequency and DTU specificity, important components of vector capacity. Triatoma dimidiata is one of the broadest distributed triatomine species´ complexes transmitting Trypanosoma cruzi. In Mexico, three haplogroups of the T. dimidiata complex have been reported and all are primary vectors of Chagas disease south of the Tehuantepec Isthmus. Given their epidemiological importance, the question arises whether haplogroups have similar genetic diversity in domestic/modified landscapes, as well as infection characteristics and parasite DTU associations, key components of vector capacity. The aim of the present study was to analyze Triatoma dimidiata population genetics across landscapes, sub-regional, regional, and global Neotropical realm scales, using two contiguous fragments of the ND4 gene. Our results support previous evidence for the complex´s origin surrounding the Tehuantepec Isthmus, and provides evidence for recent divergence of three principal dimidiata haplogroups and significant secondary divergence within each. Differential T. cruzi prevalence and Discrete Typing Unit (DTU) specificity for individual haplogroups provide evidence for potential differential vector capacity within the complex in Mexico.
Collapse
|
15
|
Lima-Cordón RA, Stevens L, Solórzano Ortíz E, Rodas GA, Castellanos S, Rodas A, Abrego V, Zúniga Valeriano C, Monroy MC. Implementation science: Epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Negl Trop Dis 2018; 12:e0006952. [PMID: 30485265 PMCID: PMC6287883 DOI: 10.1371/journal.pntd.0006952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/10/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
The Ecohealth strategy is a multidisciplinary data-driven approach used to improve the quality of people's lives in Chagas disease endemic areas, such as regions of Central America. Chagas is a vector-borne disease caused by the parasite Trypanosoma cruzi. In Central America, the main vector is Triatoma dimidiata. Because successful implementation of the Ecohealth approach reduced home infestation in Jutiapa department, Guatemala, it was scaled-up to three localities, one in each of three Central American countries (Texistepeque, El Salvador; San Marcos de la Sierra, Honduras and Olopa, Guatemala). As a basis for the house improvement phase of the Ecohealth program, we determined if the localities differ in the role of sylvatic, synanthropic and domestic animals in the Chagas transmission cycle by measuring entomological indices, blood meal sources and parasite infection from vectors collected in and around houses. The Polymerase Chain Reaction (PCR) with taxa specific primers to detect both, blood sources and parasite infection, was used to assess 71 T. dimidiata from Texistepeque, 84 from San Marcos de la Sierra and 568 from Olopa. Our results show that infestation (12.98%) and colonization (8.95%) indices were highest in Olopa; whereas T. cruzi prevalence was higher in Texistepeque and San Marcos de la Sierra (>40%) than Olopa (8%). The blood meal source profiles showed that in Olopa, opossum might be important in linking the sylvatic and domestic Chagas transmission cycle, whereas in San Marcos de la Sierra dogs play a major role in maintaining domestic transmission. For Texistepeque, bird was the major blood meal source followed by human. When examining the different life stages, we found that in Olopa, the proportion bugs infected with T. cruzi is higher in adults than nymphs. These findings highlight the importance of location-based recommendations for decreasing human-vector contact in the control of Chagas disease.
Collapse
Affiliation(s)
- Raquel Asunción Lima-Cordón
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth Solórzano Ortíz
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Gabriela Anaité Rodas
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Salvador Castellanos
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Antonieta Rodas
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Vianney Abrego
- Centro de Investigación y desarrollo en salud (CENSALUD-CID), Universidad de El Salvador, San Salvador, El Salvador
| | | | - María Carlota Monroy
- The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| |
Collapse
|
16
|
Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, Hanley JP, Rodas AG, Richards B, Wallin KF, Helms Cahan S. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis 2018; 12:e0006730. [PMID: 30335763 PMCID: PMC6193617 DOI: 10.1371/journal.pntd.0006730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Chagas disease, considered a neglected disease by the World Health Organization, is caused by the protozoan parasite Trypanosoma cruzi, and transmitted by >140 triatomine species across the Americas. In Central America, the main vector is Triatoma dimidiata, an opportunistic blood meal feeder inhabiting both domestic and sylvatic ecotopes. Given the diversity of interacting biological agents involved in the epidemiology of Chagas disease, having simultaneous information on the dynamics of the parasite, vector, the gut microbiome of the vector, and the blood meal source would facilitate identifying key biotic factors associated with the risk of T. cruzi transmission. In this study, we developed a RADseq-based analysis pipeline to study mixed-species DNA extracted from T. dimidiata abdomens. To evaluate the efficacy of the method across spatial scales, we used a nested spatial sampling design that spanned from individual villages within Guatemala to major biogeographic regions of Central America. Information from each biotic source was distinguished with bioinformatics tools and used to evaluate the prevalence of T. cruzi infection and predominant Discrete Typing Units (DTUs) in the region, the population genetic structure of T. dimidiata, gut microbial diversity, and the blood meal history. An average of 3.25 million reads per specimen were obtained, with approximately 1% assigned to the parasite, 20% to the vector, 11% to bacteria, and 4% to putative blood meals. Using a total of 6,405 T. cruzi SNPs, we detected nine infected vectors harboring two distinct DTUs: TcI and a second unidentified strain, possibly TcIV. Vector specimens were sufficiently variable for population genomic analyses, with a total of 25,710 T. dimidiata SNPs across all samples that were sufficient to detect geographic genetic structure at both local and regional scales. We observed a diverse microbiotic community, with significantly higher bacterial species richness in infected T. dimidiata abdomens than those that were not infected. Unifrac analysis suggests a common assemblage of bacteria associated with infection, which co-occurs with the typical gut microbial community derived from the local environment. We identified vertebrate blood meals from five T. dimidiata abdomens, including chicken, dog, duck and human; however, additional detection methods would be necessary to confidently identify blood meal sources from most specimens. Overall, our study shows this method is effective for simultaneously generating genetic data on vectors and their associated parasites, along with ecological information on feeding patterns and microbial interactions that may be followed up with complementary approaches such as PCR-based parasite detection, 18S eukaryotic and 16S bacterial barcoding.
Collapse
Affiliation(s)
- Lucia C. Orantes
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| | - Carlota Monroy
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Patricia L. Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, United States of America
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Donna M. Rizzo
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont, United States of America
| | - Leslie Morrissey
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| | - John P. Hanley
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont, United States of America
| | - Antonieta Guadalupe Rodas
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Bethany Richards
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, United States of America
| | - Kimberly F. Wallin
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
- USDA Forest Service, Northern Research Station, Burlington, Vermont, United States of America
| | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
17
|
Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordón R, Monroy C. Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). Zookeys 2018:69-95. [PMID: 30057472 PMCID: PMC6058004 DOI: 10.3897/zookeys.775.22553] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/04/2018] [Indexed: 11/12/2022] Open
Abstract
In this paper, Triatomamopansp. n. is described based on five males and six females collected in the Rio Frio cave, Cayo District, Belize. This species is similar to Triatomadimidiata (Latreille), but can be distinguished by characters found on the pronotum, legs, and abdomen. Geometric morphometry and phylogenetic comparisons are also provided. Presently, the species is known only from the type locality and is a potential Chagas vector.
Collapse
Affiliation(s)
- Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, USA
| | - Silvia A Justi
- Department of Biology, University of Vermont, Burlington, VT, USA.,The Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, 4210 Silver Hill Rd, Suitland, MD 20746-2863, USA
| | - Carolina Dale
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Carlota Monroy
- LENAP, University of San Carlos, Guatemala City, Guatemala
| |
Collapse
|
18
|
Justi SA, Cahan S, Stevens L, Monroy C, Lima-Cordón R, Dorn PL. Vectors of diversity: Genome wide diversity across the geographic range of the Chagas disease vector Triatoma dimidiata sensu lato (Hemiptera: Reduviidae). Mol Phylogenet Evol 2018; 120:144-150. [PMID: 29248626 PMCID: PMC5991476 DOI: 10.1016/j.ympev.2017.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023]
Abstract
To date, the phylogeny of Triatoma dimidiata sensu lato (s. l.) (Hemiptera: Reduviidae: Triatominae), the epidemiologically most important Chagas disease vector in Central America and a secondary vector in Mexico and northern South America, has only been investigated by one multi-copy nuclear gene (Internal Transcribed Spacer - 2) and a few mitochondrial genes. We examined 450 specimens sampled across most of its native range from Mexico to Ecuador using reduced representation next-generation sequencing encompassing over 16,000 single nucleotide polymorphisms (SNPs). Using a combined phylogenetic and species delimitation approach we uncovered two distinct species, as well as a well-defined third group that may contain multiple species. The findings are discussed with respect to possible drivers of diversification and the epidemiological importance of the distinct species and groups.
Collapse
Affiliation(s)
- Silvia A Justi
- Department of Biology, University of Vermont, Burlington, VT, United States.
| | - Sara Cahan
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Carlota Monroy
- Biology School, University of San Carlos, Guatemala City, Guatemala
| | - Raquel Lima-Cordón
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| |
Collapse
|
19
|
Justi SA, Galvão C. The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends Parasitol 2017; 33:42-52. [PMID: 27986547 PMCID: PMC5518462 DOI: 10.1016/j.pt.2016.11.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
Chagas disease is amongst the ten most important neglected tropical diseases but knowledge on the diversification of its vectors, Triatominae (Hemiptera: Reduviidae), is very scarce. Most Triatominae species occur in the Americas, and are all considered potential vectors. Despite its amazing ecological vignette, there are remarkably few evolutionary studies of the whole subfamily, and only one genome sequence has been published. The young age of the subfamily, coupled with the high number of independent lineages, are intriguing, yet the lack of genome-wide data makes it a challenge to infer the phylogenetic relationships within Triatominae. Here we synthesize what is known, and suggest the next steps towards a better understanding of how this important group of disease vectors came to be.
Collapse
Affiliation(s)
- Silvia A Justi
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT, USA
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|