1
|
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024; 16:1043. [PMID: 39066207 PMCID: PMC11281586 DOI: 10.3390/v16071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Classical Swine Fever (CSF), a highly contagious viral disease affecting pigs and wild boar, results in significant economic losses in the swine industry. In endemic regions, prophylactic vaccination and stamping-out strategies are used to control CSF outbreaks. However, sporadic outbreaks and persistent infections continue to be reported. Although the conventional attenuated CSF vaccines protect pigs against the disease, they do not allow for the differentiation of infected from vaccinated animals (DIVA), limiting their use as an eradication tool. In this study, three targeted attenuation strategies were employed to generate vaccine candidates based on the current prevalent CSFV group 2 strains GD18 and QZ07: a single deletion of H79 in Erns (QZ07-sdErnsH-KARD), double deletion of H79 and C171 in Erns (GD18-ddErnsHC-KARD and QZ07-ddErnsHC-KARD), and deletion of H79 in Erns combined with a 5-168 amino acids deletion of Npro (GD18-ddNpro-ErnsH-KARD). Additionally, a negative serological marker with four substitutions in a highly conserved epitope in E2 recognized by the monoclonal antibody 6B8 was introduced in each candidate for DIVA purposes. The safety of these four resulting vaccine candidates was evaluated in pregnant sows. Two candidates, GD18-ddErnsHC-KARD and QZ07-sdErnsH-KARD were found to be safe for pregnant sows and unlikely to cause vertical transmission. Both candidates also demonstrated potential to be used as DIVA vaccines, as was shown using a proprietary blocking ELISA based on the 6B8 monoclonal antibody. These results, together with our previous work, constitute a proof-of-concept for the rational design of CSF antigenically marked modified live virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever/immunology
- Swine
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/adverse effects
- Classical Swine Fever Virus/immunology
- Classical Swine Fever Virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Pregnancy
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Vaccines, Marker/immunology
- Vaccines, Marker/administration & dosage
- Vaccines, Marker/genetics
- Vaccination/veterinary
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| | - Alice Mundt
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Alexandra Meindl-Boehmer
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Verena Haist
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Andreas Gallei
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| |
Collapse
|
2
|
Chen X, Yu Y, Zheng Y, Jia J, Jin J, Sun H, Jiang C, Yang H. Structural characterization and adjuvant action of Paulownia tomentosa flower polysaccharide on the immune responses to classical swine fever vaccine in mice. Front Vet Sci 2023; 10:1271996. [PMID: 37795015 PMCID: PMC10545964 DOI: 10.3389/fvets.2023.1271996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Paulownia tomentosa flower polysaccharide (PTFP) from dried cultured P. tomentosa flowers, is widely known for its immunomodulatory activities. Here, PTFP was extracted from Paulownia tomentosa flower using hot water extraction, followed by ethanol precipitation methods. Structural characterization of PTFP was revealed by scanning electron microscope, high-performance anion-exchange chromatography, gel chromatography, ultraviolet and infrared spectral. Meanwhile, adjuvant action of PTFT on the immune responses to classical swine fever vaccine in mice was evaluated to further proclaim the immune regulatory effect of PTFP. The results showed that PTFP was a type of heteropolysaccharide with a dense, rough surface and high molecular weight (667.02 kDa), mainly composed of glucose (30.93%), rhamnose (29.99%), galactose (15.66%), arabinose (6.95%), mannose (5.52%), and xylose (4.80%). The results of gel chromatography suggested that the molecular configuration of PTFP may be a spherical structure. The infrared spectrum results confirmed that the functional groups and chemical bond of PTFP contained -OH, O-H, C-H, C=O, C-O, etc. Moreover, PTFP exhibited obvious immune enhancement effect by improving concanavalin A (ConA), lipopolysaccharide (LPS), and CSFV E2-stimulated splenocyte growth and natural killer cell activity in CSFV-immunized mice. Similarly, the titers of CSFV E2-specific IgG, IgG1, IgG2a, and IgG2b antibodies and IFN-γ and IL-10 levels in CSFV-immunized mice were distinctly increased by PTFP treatment. Overall, PTFP was a macromolecular heteropolysaccharide primarily containing glucose and rhamnose, and possessed the auxiliary effect of immune enhancement on the immune responses to classical swine fever vaccine.
Collapse
Affiliation(s)
- Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yaming Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Zheng
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jiping Jia
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Junjie Jin
- Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | | | - Chunmao Jiang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Haifeng Yang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| |
Collapse
|
3
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
A Novel Blocking Enzyme-Linked Immunosorbent Assay Based on a Biotinylated Nanobody for the Rapid and Sensitive Clinical Detection of Classical Swine Fever Virus Antibodies. Microbiol Spectr 2023; 11:e0299622. [PMID: 36688674 PMCID: PMC9927282 DOI: 10.1128/spectrum.02996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoclonal and polyclonal antibodies are mostly used for the development of traditional enzyme-linked immunosorbent assays (ELISAs), but the use of certain conventional antibodies may be limited by their low yield, the difficulty of their isolation, and their high cost. Heavy-chain antibodies derived from camelids with naturally missing light chains can overcome these deficiencies and are an excellent alternative to conventional antibodies. In this study, a nanobody (Nb)-AviTag fusion protein was constructed, and the feasibility of its use as a high-sensitivity probe in a blocking ELISA (bELISA) for classical swine fever virus (CSFV) was investigated. The CSFV E2 recombinant protein expressed by the CHO expression system exhibited good reactogenicity and immunogenicity and induced the production of high CSFV antibody levels in rabbits. Three different clones of Nbs were successfully isolated using a phage display system in alpaca, and an Nb1-AviTag fusion protein was successfully expressed using an Escherichia coli expression system. The purified Nb1-AviTag fusion protein was then biotinylated in vitro to obtain Nb1-biotin. A novel bELISA was developed for the detection of CSFV antibodies in clinical serum using Nb1-biotin as a probe. The cutoff value of bELISA was 32.18%, the sensitivity of bELISA was higher than that of the bELISA kit with IDEXX antibody, and the coincidence rate was 94.7%. A rapid, low-cost, highly sensitive and highly specific CSFV E2 antibody-based bELISA method was successfully established and can be used for the serological evaluation of CSFV E2 subunit vaccines and the ELISA-based diagnosis of CSFV infection. IMPORTANCE Currently, the epidemic situation of classical swine fever (CSF) is sporadic, and cases of atypical swine fever are on the rise in China. Therefore, it is necessary to accurately eliminate suspected cases by using highly sensitive and specific diagnostic techniques. In our study, a rapid, low-cost, highly sensitivity, highly reliable and reproducible, and highly specific classical swine fever virus (CSFV) E2 antibody-based blocking ELISA method was successfully established by using the phage display system and the Nb1-AviTag fusion expression platform. It provides a new technique for serological evaluation of CSFV vaccines and ELISA-based diagnosis of CSFV infection.
Collapse
|
5
|
Xia YJ, Xu L, Zhao JJ, Li YX, Wu RZ, Song XP, Zhao QZ, Liu YB, Wang Q, Zhang QY. Development of a quadruple PCR-based gene microarray for detection of vaccine and wild-type classical swine fever virus, African swine fever virus and atypical porcine pestivirus. Virol J 2022; 19:201. [PMID: 36447230 PMCID: PMC9708128 DOI: 10.1186/s12985-022-01933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF), African swine fever (ASF), and atypical porcine pestivirus (APPV) are acute, virulent, and contagious viral diseases currently hampering the pig industry in China, which result in mummification or stillbirths in piglets and mortality in pigs. Diagnostic assays for the differentiation of infection and vaccination of CSFV, in addition to the detection of ASFV and APPV, are urgently required for better prevention, control, and elimination of these viral diseases in China. METHODS A quadruple PCR-based gene microarray assay was developed in this study to simultaneously detect wild-type and vaccine CSFV strains, ASFV and APPV according to their conserved regions. Forty-two laboratory-confirmed samples, including positive samples of 10 other swine viral diseases, were tested using this assay to confirm its high specificity. RESULTS This assay's limit of detections (LODs) for the wild-type and vaccine CSFV were 6.98 and 6.92 copies/µL. LODs for ASFV and APPV were 2.56 × 10 and 1.80 × 10 copies/µL, respectively. When compared with standard RT-PCR or qPCR for CSFV (GB/T 26875-2018), ASFV (MARR issue No.172), or APPV (CN108611442A) using 219 clinical samples, the coincidence was 100%. The results showed that this assay with high sensitivity could specifically distinguish ASFV, APPV, and CSFV, including CSFV infection and immunization. CONCLUSION This assay provides a practical, simple, economic, and reliable test for the rapid detection and accurate diagnosis of the three viruses and may have good prospects for application in an epidemiological investigation, prevention, and control and elimination of these three diseases.
Collapse
Affiliation(s)
- Ying-ju Xia
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Lu Xu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Jun-jie Zhao
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Yuan-xi Li
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Rui-zhi Wu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Xiang-peng Song
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qi-zu Zhao
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Ye-bing Liu
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qin Wang
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| | - Qian-yi Zhang
- grid.418540.cChina Institute of Veterinary Drug Control, Beijing, 100081 People’s Republic of China
| |
Collapse
|
6
|
Tang Q, Ge L, Tan S, Zhang H, Yang Y, Zhang L, Deng Z. Epidemiological Survey of Four Reproductive Disorder Associated Viruses of Sows in Hunan Province during 2019–2021. Vet Sci 2022; 9:vetsci9080425. [PMID: 36006340 PMCID: PMC9416293 DOI: 10.3390/vetsci9080425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive disorders have been considered as the major factors that threaten pig industries worldwide. In this study, 407 aborted-fetus samples were obtained from 89 pig farms in Hunan province, to investigate the prevalence of four viruses associated with porcine reproductive disease, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), and classical swine fever virus (CSFV). Meanwhile, the target gene sequences of representative PRRSV (ORF5), PCV2 (ORF2), CSFV (E2), and PRV (gE) strains were amplified, sequenced, and analyzed. The results showed that the positive rates of PRRSV, PCV2, PRV, and CSFV among the collected samples were 26.29% (107/407), 52.83% (215/407), 6.39% (26/407), and 12.29% (50/407), respectively. Moreover, co-infection with two and three pathogens were frequently identified, with PCV2/PRRSV, PRRSV/CSFV, PRRSV/PRV, PCV2/CSFV, PCV2/PRV, and PRRSV/PCV2/CSFV mix infection rates of 9.09%, 3.19%, 2.95%, 3.69%, 2.21%, and 0.49%, respectively. Moreover, ORF5-based phylogenetic analysis showed that 9, 4, and 24 of 37 PRRSV strains belonged to the PRRSV2 lineages 1, 5, and 8, respectively. ORF2-based phylogenetic analysis revealed that PCV2d and PCV2b were prevalent in Hunan province, with the proportions of 87.5% (21/24) and 12.5% (3/24), respectively. An E2-based phylogenetic tree showed that all 13 CSFV strains were clustered with 2.1 subgenotypes, these isolates were composed of 2.1b (10/13) and 2.1c (3/13) sub-subgenotypes. A gE-based phylogenetic tree showed that all six PRV strains belonged to the genotype II, which were genetically closer to variant PRV strains. Collectively, the present study provides the latest information on the epidemiology and genotype diversity of four viruses in sows with reproductive diseases in Hunan province, China, which would contribute to developing effective strategies for disease control.
Collapse
Affiliation(s)
- Qiwu Tang
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Lingrui Ge
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Shengguo Tan
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Hai Zhang
- Animal Epidemic Prevention Station of Xiangxi Autonomous Prefecture, JiShou City 416000, China
| | - Yu Yang
- Animal Disease Prevention and Control Center, Wangcheng District, Changsha 410128, China
| | - Lei Zhang
- Subdistrict Office of Nanzhuangping Street, Yongding District, Zhangjiajie 427000, China
| | - Zaofu Deng
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
- Correspondence:
| |
Collapse
|
7
|
Nguyen NH, Thi Phuong BN, Nguyen TQ, Do Tien D, Nguyen Thi MD, Nguyen MN. Genotypic diversity of CSFV field strains: A silent risk reduces vaccination efficacy of CSFV vaccines in Vietnam. Virology 2022; 571:39-45. [DOI: 10.1016/j.virol.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
8
|
ADAM17 Is an Essential Factor for the Infection of Bovine Cells with Pestiviruses. Viruses 2022; 14:v14020381. [PMID: 35215974 PMCID: PMC8875743 DOI: 10.3390/v14020381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The entry of BVDV into bovine cells was studied using CRIB cells (cells resistant to infection with bovine viral diarrhea virus [BVDV]) that have evolved from MDBK cells by a spontaneous loss of susceptibility to BVDV. Recently, larger genetic deletions were reported but no correlation of the affected genes and the resistance to BVDV infection could be established. The metalloprotease ADAM17 was reported as an essential attachment factor for the related classical swine fever virus (CSFV). To assess whether ADAM17 might be involved in the resistance of CRIB-1 cells to pestiviruses, we analyzed its expression in CRIB-1 and MDBK cells. While ADAM17 protein was detectable in MBDK cells, it was absent from CRIB-1 cells. No functional full-length ADAM17 mRNA could be detected in CRIB cells and genetic analysis revealed the presence of two defective alleles. Transcomplementation of functional ADAM17 derived from MDBK cells in CRIB-1 cells resulted in a nearly complete reversion of their resistance to pestiviral infection. Our results demonstrate that ADAM17 is a key cellular factor for the pestivirus resistance of CRIB-1 cells and establishes its essential role for a broader range of pestiviruses.
Collapse
|
9
|
Yao J, Su L, Wang Q, Gao L, Xie J, He Y, Shu X, Song C, Chai J, Zhang Y, Yang S. Epidemiological investigation and phylogenetic analysis of Classical Swine Fever virus in Yunnan province from 2015 to 2021. J Vet Sci 2022; 23:e57. [PMID: 35920121 PMCID: PMC9346530 DOI: 10.4142/jvs.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Classical swine fever virus (CSFV), the causative agent of classical swine fever (CFS), is a highly contagious disease that poses a serious threat to Chinese pig populations. Objectives Many provinces of China, such as Shandong, Henan, Hebei, Heilongjiang, and Liaoning provinces, have reported epidemics of CSFV, while the references to the epidemic of CSFV in Yunnan province are rare. This study examined the epidemic characteristics of the CSFV in Yunnan province. Methods In this study, 326 tissue samples were collected from different regions in Yunnan province from 2015 to 2021. A reverse transcription-polymerase chain reaction (RT-PCR), sequences analysis, and phylogenetic analysis were performed for the pathogenic detection and analysis of these 326 clinical specimens. Results Approximately 3.37% (11/326) of specimens tested positive for the CSFV by RT-PCR, which is lower than that of other regions of China. Sequence analysis of the partial E2 sequences of eleven CSFV strains showed that they shared 89.0–100.0% nucleotide (nt) and 95.0–100.0% amino acid (aa) homology, respectively. Phylogenetic analysis showed that these novel isolates belonged to the subgenotypes 2.1c and 2.1d, with subgenotype 2.1c being predominant. Conclusions The CSFV was sporadic in China’s Yunnan province from 2015 to 2021. Both 2.1c and 2.1d subgenotypes were found in this region, but 2.1c was dominant.
Collapse
Affiliation(s)
- Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science & Veterinary Institute, Kunming 650224, China
| | - Linlin Su
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiaoping Wang
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science & Veterinary Institute, Kunming 650224, China
| | - Jiarui Xie
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science & Veterinary Institute, Kunming 650224, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science & Veterinary Institute, Kunming 650224, China
| | - Xianghua Shu
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlian Song
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Chai
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yifang Zhang
- College of Animal Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shibiao Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science & Veterinary Institute, Kunming 650224, China
| |
Collapse
|
10
|
Genetic diversity and molecular characterization of classical swine fever virus envelope protein genes E2 and E rns circulating in Vietnam from 2017 to 2019. INFECTION GENETICS AND EVOLUTION 2021; 96:105140. [PMID: 34781037 DOI: 10.1016/j.meegid.2021.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Classical swine fever virus (CSFV) is an RNA virus that incurs severe economic costs to swine industries worldwide. This study was conducted to investigate the genetic diversity among CSFV strains circulating in Vietnam, with a focus on their genetic variants relative to four vaccine strains. Samples from clinical cases were collected from different provinces of Central and Southern Vietnam from 2017 to 2019. 21 CSFV-positive samples were selected for amplification and sequencing of the full-length Erns and E2 genes. Phylogenetic analyses of these two genes showed that most CSFV strains circulating in Central and Southern Vietnam from 2017 to 2019 belong to subgroup 2.1c, whereas the remaining strains cluster into subgroup 2.2. All CSFV field strains in this study were genetically distant from group 1 strains. Analysis of the E2 and Erns genes indicated that all CSFV field strains have low sequence identity with the vaccine strains (80-83.5% and 82.3-86% sequence identity for E2 and Erns, respectively). Likewise, amino acid-level sequence analysis showed 87.3-91.1% and 87.6-91.6% sequence identity for E2 and Erns, respectively. Together, our findings indicate that CSFV strains circulating in Vietnam belong to subtypes 2.2 and 2.1c, and we also provide novel insights into the epidemiology, molecular characteristics, genetic diversity, and evolution of these circulating CSFV strains.
Collapse
|
11
|
Yang Z, He B, Lu Z, Mi S, Jiang J, Liu Z, Tu C, Gong W. Mammalian birnaviruses identified in pigs infected by classical swine fever virus. Virus Evol 2021; 7:veab084. [PMID: 34659797 PMCID: PMC8516818 DOI: 10.1093/ve/veab084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023] Open
Abstract
Currently, the Birnaviridae family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998–2019), and the viral loads of PBRV in clinical samples were 105.08–107.95 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the Birnaviridae family with 45.8–61.6 per cent and 46.2–63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as Mambirnavirus genus is proposed.
Collapse
Affiliation(s)
- Zhe Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shijiang Mi
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jianfeng Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Zhongdi Liu
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Wenjie Gong
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
12
|
Wang X, Yang Y, Yang X, Liu X, Wang X, Gao L, Yang C, Lan R, Bi J, Zhao Q, Yang G, Wang J, Lin Y, Liu J, Yin G. Classical swine fever virus infection suppresses claudin-1 expression to facilitate its replication in PK-15 cells. Microb Pathog 2021; 157:105012. [PMID: 34062228 DOI: 10.1016/j.micpath.2021.105012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.
Collapse
Affiliation(s)
- Xiangmin Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yu'ai Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- Institute of Science and Technology, Chuxiong Normal University, 546 Lucheng South Rd, Chuxiong, 675000, Yunnna, China
| | - Qian Zhao
- Center for Animal Disease Control and Prevention, Chuxiong, 675000, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
13
|
Microfilaments and microtubules alternately coordinate the multi-step endosomal trafficking of Classical Swine Fever Virus. J Virol 2021; 95:JVI.02436-20. [PMID: 33627389 PMCID: PMC8139654 DOI: 10.1128/jvi.02436-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.
Collapse
|
14
|
Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018. Viruses 2021; 13:v13040664. [PMID: 33921513 PMCID: PMC8069065 DOI: 10.3390/v13040664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.
Collapse
|
15
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
16
|
Wang Q, Liu H, Xu L, Li J, Wu H, Yang C, Chen X, Deng Y, Sun Y, Tu C, Chen N, Gong W, Chen G. Different clinical presentations of subgenotype 2.1 strain of classical swine fever infection in weaned piglets and adults, and long-term cross-protection conferred by a C-strain vaccine. Vet Microbiol 2020; 253:108915. [PMID: 33309157 DOI: 10.1016/j.vetmic.2020.108915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Classical swine fever is an important swine disease in China, and sporadic outbreaks with mild clinical signs despite compulsory vaccination have raised questions about the virulence and pathogenicity of prevalent subgenotype 2.1 strains, and the ability of C-strain vaccines to cross-protect against them. To investigate this, three field isolates were evaluated in experimentally infected piglets and compared with the highly virulent reference Shimen strain. Clinical signs for the field strains ranged from mild to severe, and mortality ranged from 0 to 80 %. These data show differences in virulence among the subgenotype 2.1 field isolates and support the use of field strain GD191 as a genotype 2 challenge virus to assess efficacy of C-strain vaccines. In contrast to the historical genotype 1 strain, which caused acute infection with significant virus shedding in non-vaccinated animals, the subgenotype 2.1 GD191 strain produced different clinical manifestations in weaned piglets and adults. Adult pigs showed subclinical infection with viral shedding, whereas weaned piglets showed overt signs of infection. Efficacy of, and duration of immunity conferred by a C-strain vaccine were assessed using the reference Shimen strain and field isolate GD191 at 12 and 15 months after vaccination. A robust antibody response and sterilising protection were seen in all vaccinated animals and lasted up to 15 months post-vaccination. This study confirms that C-strain vaccines confer both clinical and virological protection against the historical genotype 1 Shimen strain and cross-protection against the prevalent genotype 2 field strain.
Collapse
Affiliation(s)
- Qin Wang
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Huanhuan Liu
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China
| | - Lu Xu
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Junping Li
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Huawei Wu
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Chenghuai Yang
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Xiaochun Chen
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Yong Deng
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Yanyong Sun
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Guanghua Chen
- Office International des Epizooties/National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China.
| |
Collapse
|
17
|
Hao G, Zhang H, Chen H, Qian P, Li X. Comparison of the Pathogenicity of Classical Swine Fever Virus Subgenotype 2.1c and 2.1d Strains from China. Pathogens 2020; 9:pathogens9100821. [PMID: 33036431 PMCID: PMC7600237 DOI: 10.3390/pathogens9100821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and devastating disease. The traditional live attenuated C-strain vaccine is widely used to control disease outbreaks in China. Since 2000, subgenotype 2.1 has become dominant in China. Here, we isolated subgenotype 2.1c and 2.1d strains from CSF-suspected pigs. The genetic variations and pathogenesis of subgenotype 2.1c and 2.1d strains were investigated experimentally. We aimed to evaluate and compare the replication characteristics and clinical signs of subgenotype 2.1c and 2.1d strains with those of the typical highly virulent CSFV SM strain. In PK-15 cells, the three CSFV isolates exhibited similar replication levels but significantly lower replication levels compared with the CSFV SM strain. The experimental animal infection model showed that the pathogenicity of subgenotype 2.1c and 2.1d strains was less than that of the CSFV SM strain. According to the clinical scoring system, subgenotype 2.1c (GDGZ-2019) and 2.1d (HBXY-2019 and GXGG-2019) strains were moderately virulent. This study showed that the pathogenicity of CSFV field strains will aid in the understanding of CSFV biological characteristics and the related epidemiology.
Collapse
Affiliation(s)
- Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (P.Q.); (X.L.); Tel.: +86-27-87282608 (P.Q.)
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (P.Q.); (X.L.); Tel.: +86-27-87282608 (P.Q.)
| |
Collapse
|
18
|
Tu F, Yang X, Xu S, Chen D, Zhou L, Ge X, Han J, Zhang Y, Guo X, Yang H. Development of a fluorescent probe-based real-time reverse transcription recombinase-aided amplification assay for the rapid detection of classical swine fever virus. Transbound Emerg Dis 2020; 68:2017-2027. [PMID: 32979245 DOI: 10.1111/tbed.13849] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Abstract
Classical swine fever (CSF), which is caused by the CSF virus (CSFV), remains one of the most economically important diseases of the global swine industry. Rapid and reliable detection of CSFV is critical for controlling CSF. In this study, a novel fluorescent probe-based real-time reverse transcription recombinase-aided amplification (rRT-RAA) assay, targeting a highly conserved position within the 5' non-translated region (5'NTR) among all CSFV genotypes, was developed for the detection of CSFV. The assay is highly specific to CSFV and does not cross react with other important viruses. Sensitivity analysis revealed that the assay could detect two 50% tissue culture infectious dose (TCID50 ) of CSFV RNA per reaction at 95% probability, which is comparable to that of a documentary reverse transcription quantitative PCR (RT-qPCR) assay for CSFV. The rRT-RAA assay exhibited good reproducibility, with intra- and inter-assay coefficient of variation values of <8.0%. Of the 135 samples (including 102 clinical tissue samples and 33 different cell culture isolates of CSFV), 50 and 52 samples were tested positive for CSFV by rRT-RAA and RT-qPCR, respectively. The coincidence rate between the two assays was 98.5% (133/135). Further linear regression analysis showed a significant correlation between the rRT-RAA and RT-qPCR assays with an R2 value of 0.8682. Interestingly, the amplification products of the rRT-RAA assay could be directly observed with naked eyes under a portable blue light imager, making it possible for an on-site testing. Our results indicate that the rRT-RAA assay is a robust diagnostic tool for the rapid detection of CSFV.
Collapse
Affiliation(s)
- Fei Tu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xintan Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Xing C, Jiang J, Lu Z, Mi S, He B, Tu C, Liu X, Gong W. Isolation and characterization of Getah virus from pigs in Guangdong province of China. Transbound Emerg Dis 2020; 67:2249-2253. [PMID: 32277601 DOI: 10.1111/tbed.13567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022]
Abstract
Getah virus (GETV) is a mosquito-borne virus that is widely distributed in Asian countries including China, in which the first case of equine GETV infection was reported in Guangdong province in August 2018. In this study, GETVs were detected in two classical swine fever virus-positive samples collected from swine herds in Foshan city, Guangdong province, 2018. Infection of porcine PK-15 cells produced rapid cytopathic effects (CPEs), including shrinking, rounding and detaching, and peak titre of 109.3 TCID50 /ml occurred at 24 hr post-infection. Electron microscopy and ultra-thin sectioning revealed spherical GETV particles of 70 nm diameter with an isometric interior and are found to be lining the outer membrane of infected cells. Whole-genome analysis showed that the two GETV isolates are identical to each other and cluster with Group III strains of GETV, sharing 96.1%-99.7% nucleotide sequence identity with all available reference strains. The most closely relative of the obtained GETV isolates was porcine strain HNJZ-S2 from Henan province (99.7%), with 98.6% sequence identity shared with equine GETV strain GZ201808 first identified in Guangdong province, indicating different sources for porcine and equine GETV infections in this region. No evidence of GETV infection was found in 497 archived porcine samples collected between 1990 and 2018 in Guangdong province.
Collapse
Affiliation(s)
- Chaonan Xing
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Jianfeng Jiang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zongji Lu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Shijiang Mi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Biao He
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Changchun Tu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Xiufan Liu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Feng L, Chen L, Yun J, Cao X. Expression of recombinant classical swine fever virus E2 glycoprotein by endogenous Txnip promoter in stable transgenic CHO cells. Eng Life Sci 2020; 20:320-330. [PMID: 32774204 PMCID: PMC7401223 DOI: 10.1002/elsc.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
As the main immunogen that could stimulate neutralized antibody in pigs, recombinant E2 protein of CSFV was expressed in CHO-dhfr-cells driven by endogenous Txnip promoter from Chinese hamster. Different fragments of Txnip promoter were amplified by PCR from isolated genomic DNA of CHO cells and cloned into different expression vectors. Compared with CMV promoter, CHO-pTxnip-4-rE2 (F12) cell clone with the highest yield of rE2 protein was established by random insertion of the expression cassette driven by 860 bp sequences of Txnip promoter. In combination with treatment of 800 nM MTX for copy amplification of inserted expression cassette, the dynamic expression profile of rE2 protein was observed. Then inducible expression strategy of balance between viable cell density and product yield was conducted by mixed addition of 0.1 mM NADH and 0.1 mM ATP in culture medium at day 3 of batch-wise culture. It could be concluded that Txnip promoter would be a promising alternative promoter for recombinant antigen protein expression in transgenic cells.
Collapse
Affiliation(s)
- Lei Feng
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
- School of pharmacyJiangsu UniversityZhenjiangP. R. China
| | - Li Chen
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Junwen Yun
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Xinglin Cao
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| |
Collapse
|
22
|
Tong W, Zheng H, Li GX, Gao F, Shan TL, Zhou YJ, Yu H, Jiang YF, Yu LX, Li LW, Kong N, Tong GZ, Li JC. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res 2019; 173:104652. [PMID: 31751590 DOI: 10.1016/j.antiviral.2019.104652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Both classical swine fever (CSF) and pseudorabies are highly contagious, economically significant diseases of swine in China. Although vaccination with the C-strain against classical swine fever virus (CSFV) is widely carried out and severe outbreaks of CSF seldom occur in China, CSF is sporadic in many pig herds and novel sub-subgenotypes of CSFV endlessly emerge. Thus, new measures are needed to eradicate CSFV from Chinese farms. The emergence of a pseudorabies virus (PRV) variant also posed a new challenge for the control of swine pseudorabies. Here, the recombinant PRV strain JS-2012-ΔgE/gI-E2 expressing E2 protein of CSFV was developed by inserting the E2 expression cassette into the intergenic region between the gG and gD genes of the gE/gI-deletion PRV variant strain JS-2012-ΔgE/gI. The recombinant virus was stable when passaged in vitro. A single vaccination of JS-2012-ΔgE/gI-E2 via intramuscular injection fully protected against lethal challenges of PRV and CSFV. Vaccination of piglets with the recombinant JS-2012-ΔgE/gI-E2 in the presence of high levels of maternally derived antibodies (Abs) to PRV can provide partial protection against lethal challenge of CSFV. Vaccination of the recombinant PRV JS-2012-ΔgE/gI-E2 strain did not induce the production of Abs to the gE protein of PRV or to the CSFV proteins other than E2. Thus, JS-2012-ΔgE/gI-E2 appears to be a promising recombinant marker vaccine candidate against PRV and CSFV for the control and eradication of the PRV variant and CSFV.
Collapse
Affiliation(s)
- Wu Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Li-Wei Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Ji-Chang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Gong W, Li J, Wang Z, Sun J, Mi S, Xu J, Cao J, Hou Y, Wang D, Huo X, Sun Y, Wang P, Yuan K, Gao Y, Zhou X, He S, Tu C. Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2. Vet Microbiol 2019; 237:108403. [PMID: 31585656 DOI: 10.1016/j.vetmic.2019.108403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Classical swine fever (CSF) still threatens the swine industry in China, with genotype 2 isolates of CSFV dominating the epizootics. In 2018 the first E2 subunit marker vaccine against CSFV (Tian Wen Jing, TWJ-E2®), containing a baculovirus-expressed E2 glycoprotein of a genotype 1.1 vaccine strain, was officially licensed in China and commercialized. To evaluate the cross-protective efficacy of TWJ-E2 against different virulent genotype 2 Chinese field isolates (2.1b, 2.1c, 2.1 h, and 2.2), 4-week-old pigs were immunized with the TWJ-E2 vaccine according to the manufacturer's instructions and then challenged with genotype 2 strains. A group vaccinated with the conventional C-strain vaccine was included for comparison. TWJ-E2 vaccinated pigs developed higher levels of E2 and neutralizing antibodies than those receiving the commercial C-strain vaccine. All TWJ-E2 and C-strain vaccinated pigs survived challenge without development of fever, clinical signs or pathological lesions. In contrast, all unvaccinated control pigs displayed severe CSF disease with 40-100% mortalities by 24 days post challenge. None of the TWJ-E2 and C-strain vaccinated pigs developed viremia, viral shedding from tonsils, Erns protein in the sera, or viral RNA loads in different tissues after challenge, all of which were detected in the challenged unvaccinated controls. We conclude that vaccination of young pigs with TWJ-E2 provides complete immune protection against genotypically heterologous CSFVs and prevents viral shedding after challenge, with an efficacy at least comparable to that elicited by the conventional C-strain vaccine.
Collapse
Affiliation(s)
- Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jialun Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yuzhen Hou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Danyang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xinliang Huo
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yangyi Gao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China.
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
24
|
Coronado L, Rios L, Frías MT, Amarán L, Naranjo P, Percedo MI, Perera CL, Prieto F, Fonseca-Rodriguez O, Perez LJ. Positive selection pressure on E2 protein of classical swine fever virus drives variations in virulence, pathogenesis and antigenicity: Implication for epidemiological surveillance in endemic areas. Transbound Emerg Dis 2019; 66:2362-2382. [PMID: 31306567 DOI: 10.1111/tbed.13293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/08/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022]
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is considered one of the most important infectious diseases with devasting consequences for the pig industry. Recent reports describe the emergence of new CSFV strains resulting from the action of positive selection pressure, due mainly to the bottleneck effect generated by ineffective vaccination. Even though a decrease in the genetic diversity of the positively selected CSFV strains has been observed by several research groups, there is little information about the effect of this selective force on the virulence degree, antigenicity and pathogenicity of this type of strains. Hence, the aim of the current study was to determine the effect of the positive selection pressure on these three parameters of CSFV strains, emerged as result of the bottleneck effects induced by improper vaccination in a CSF-endemic area. Moreover, the effect of the positively selected strains on the epidemiological surveillance system was assessed. By the combination of in vitro, in vivo and immunoinformatic approaches, we revealed that the action of the positive selection pressure induces a decrease in virulence and alteration in pathogenicity and antigenicity. However, we also noted that the evolutionary process of CSFV, especially in segregated microenvironments, could contribute to the gain-fitness event, restoring the highly virulent pattern of the circulating strains. Besides, we denoted that the presence of low virulent strains selected by bottleneck effect after inefficient vaccination can lead to a relevant challenge for the epidemiological surveillance of CSF, contributing to under-reports of the disease, favouring the perpetuation of the virus in the field. In this study, B-cell and CTL epitopes on the E2 3D-structure model were also identified. Thus, the current study provides novel and significant insights into variation in virulence, pathogenesis and antigenicity experienced by CSFV strains after the positive selection pressure effect.
Collapse
Affiliation(s)
- Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, New Brunswick, Canada
| | - María Teresa Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Laymara Amarán
- National Laboratory for Veterinary Diagnostic (NLVD), La Habana, Cuba
| | | | - María Irian Percedo
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Carmen Laura Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Felix Prieto
- National Laboratory for Veterinary Diagnostic (NLVD), La Habana, Cuba
| | | | - Lester J Perez
- Department of Clinical Veterinary Medicine, College of Veterinary Science, University of Illinois, Urbana, IL, USA.,College of Veterinary Science, Veterinary Diagnostic Laboratory (VDL), University of Illinois, Urbana, IL, USA
| |
Collapse
|
25
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|