1
|
Khasawneh AI, Himsawi N, Sammour A, Safieh HA, Burayzat S, Al-Momani H, Alotaibi MR, Al Shboul S, Saleh T. Molecular characterization of human respiratory syncytial virus strains circulating among hospitalized children in Jordan. BMC Infect Dis 2024; 24:1347. [PMID: 39592984 PMCID: PMC11600855 DOI: 10.1186/s12879-024-10185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human Respiratory Syncytial Virus (HRSV) is a primary cause of severe pediatric respiratory infections, particularly in infants and young children, often resulting in hospitalization. The virus possesses a high degree of mutagenic potential, contributing to significant antigenic diversity, which complicates immune responses and poses challenges for vaccine development and disease management. This study was conducted in Jordan from 2022 to 2023 to epidemiologically determine the prevalence and molecular characteristics of RSV. METHODS A total of 288 nasopharyngeal (NP) swabs were collected from hospitalized children at Prince Hamza Hospital, Amman, Jordan. All samples were screened for common viral and bacterial respiratory pathogens using PCR. A partial segment of the G gene of RSV was amplified for molecular characterization and phylogenetic tree analysis. RESULTS Viral and/or bacterial infection was identified in 71.9% (207/288) of the tested specimens. Among these, 35 samples (12.2%, 35/288) tested positive for RSV. Specific subgroup PCR analysis identified (25, 71.4%) RSV-A, (4, 11.4%) RSV-B, and (6, 17.1%) could not be identified using our set of primers. Phylogenetic tree analysis revealed that RSV-A ON1 and RSV-B BA9 genotype strains predominate in Jordan. We observed multiple substitutions in our studied sample which would drive variation in the level of antigenicity and pathogenicity of RSV. Glycosylation sites identified were consistent with previously reported studies. CONCLUSION This study provides updated epidemiological data on the strains circulating in Amman, Jordan and their molecular characteristics. Continuous RSV surveillance informs vaccine development, guides public health interventions, and enables timely administration of prophylactic treatments, reducing the burden of RSV-related illness.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ashraf Sammour
- Department of Anatomy, Physiology & Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hazem Abu Safieh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salma Burayzat
- Department of Pediatrics and Neonatology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hafez Al-Momani
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
2
|
Jelley L, Douglas J, O'Neill M, Berquist K, Claasen A, Wang J, Utekar S, Johnston H, Bocacao J, Allais M, de Ligt J, Tan CE, Seeds R, Wood T, Aminisani N, Jennings T, Welch D, Turner N, McIntyre P, Dowell T, Trenholme A, Byrnes C, Thomas P, Webby R, French N, Huang QS, Winter D, Geoghegan JL. Spatial and temporal transmission dynamics of respiratory syncytial virus in New Zealand before and after the COVID-19 pandemic. Nat Commun 2024; 15:9758. [PMID: 39528493 PMCID: PMC11555088 DOI: 10.1038/s41467-024-53998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of acute respiratory infection. In 2020, RSV was eliminated from New Zealand due to non-pharmaceutical interventions (NPI) used to control the spread of SARS-CoV-2. However, in 2021, following a brief quarantine-free travel agreement with Australia, there was a large-scale nationwide outbreak of RSV that led to reported cases more than five-times higher than typical seasonal patterns. We generated 1470 viral genomes of both RSV-A and RSV-B sampled between 2015-2022 from across New Zealand. Using a phylodynamics approach, we used these data to better understand RSV transmission patterns in New Zealand prior to 2020, and how RSV became re-established in the community following the relaxation of COVID-19 restrictions. We found that in 2021, there was a large epidemic of RSV due to an increase in importations, leading to several large genomic clusters of both RSV-A ON1 and RSV-B BA9 genotypes. However, while a number of viral importations were detected, there was also a major reduction in RSV genetic diversity compared to pre-pandemic years. These data reveal the impact of NPI used during the COVID-19 pandemic on other respiratory infections and highlight the important insights that can be gained from viral genomes.
Collapse
Affiliation(s)
- Lauren Jelley
- Institute of Environmental Science and Research, Wellington, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Meaghan O'Neill
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Klarysse Berquist
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Ana Claasen
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jing Wang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Srushti Utekar
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Helen Johnston
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Judy Bocacao
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Margot Allais
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Joep de Ligt
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Chor Ee Tan
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Ruth Seeds
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Tim Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Nayyereh Aminisani
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Tineke Jennings
- Regional Public Health, Te Whatu Ora - Health New Zealand Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - David Welch
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | - Nikki Turner
- Department of General Practice and Primary Care, University of Auckland, Auckland, New Zealand
| | - Peter McIntyre
- Department of Primary Health Care and General Practice, University of Otago, Dunedin, New Zealand
| | - Tony Dowell
- Department of Primary Health Care and General Practice, University of Otago, Dunedin, New Zealand
| | - Adrian Trenholme
- Te Whatu Ora-Health New Zealand Counties Manukau, Auckland, New Zealand
| | - Cass Byrnes
- Te Whatu Ora-Health New Zealand Counties Manukau, Auckland, New Zealand
| | - Paul Thomas
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard Webby
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nigel French
- Tāwharau Ora/School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - David Winter
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jemma L Geoghegan
- Institute of Environmental Science and Research, Wellington, New Zealand.
| |
Collapse
|
3
|
Poshtiban A, Wick M, Bangert M, Damm O. Burden of respiratory syncytial virus (RSV) infection in Germany: a systematic review. BMC Infect Dis 2024; 24:844. [PMID: 39164625 PMCID: PMC11337829 DOI: 10.1186/s12879-024-09758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory infection and hospitalizations among infants, young children, and the elderly. This systematic literature review aimed to summarize the epidemiological and economic burden estimates of RSV infection at any age in Germany. METHODS We conducted a systematic literature search to identify full-text articles published from 2003 to 2023 and reporting data on the epidemiological or economic burden of RSV in Germany. Based on pre-specified eligibility criteria, data on incidence, rates of hospital and intensive care unit (ICU) admission, clinical manifestation, underlying conditions, seasonality, health care resource use and costs were extracted. RESULTS After screening 315 full-text articles, we included 42 articles in the review. The characteristics of the included studies were heterogenous regarding study population, setting, age groups and RSV-related outcome measures. The most frequently reported epidemiological outcome measures were RSV detection rate (n = 33), followed by clinical manifestation (n = 19), seasonality (n = 18), and underlying conditions of RSV infection (n = 13). RSV detection rates were reported across heterogenous study populations, ranging from 5.2 to 55.4% in pediatric inpatient cases and from 2.9 to 14% in adult inpatient cases. All articles that reported RSV detection rates across several age groups demonstrated the highest burden in infants and young children. Few articles reported RSV-related outcome measures distinctively for the outpatient setting. Health care resource use, such as hospital length of stay, ICU admission rate and treatment of patients with RSV infection were described in 23 articles, of which only one study quantified associated costs from 1999 to 2003 for children ≤ 3 years. In-hospital ICU admission rates varied between 3.6 and 45%, depending on population characteristics as age and underlying conditions. CONCLUSIONS This systematic review revealed that RSV imposes substantial disease burden in infants, young children, and the elderly in Germany, whereby infants are particularly affected. To date, there has been limited exploration of the impact of RSV infection on healthy children or the elderly in Germany. Given their notably high reported burden in studies, the medical and economic RSV burden in these groups should move more into focus.
Collapse
Affiliation(s)
- Anahita Poshtiban
- Sanofi-Aventis Deutschland GmbH, Lützowstr. 107, 10785, Berlin, Germany.
| | - Moritz Wick
- Sanofi-Aventis Deutschland GmbH, Lützowstr. 107, 10785, Berlin, Germany
| | | | - Oliver Damm
- Sanofi-Aventis Deutschland GmbH, Lützowstr. 107, 10785, Berlin, Germany
| |
Collapse
|
4
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
5
|
Jelley L, Douglas J, O'Neill M, Berquist K, Claasen A, Wang J, Utekar S, Johnston H, Bocacao J, Allais M, de Ligt J, Ee Tan C, Seeds R, Wood T, Aminisani N, Jennings T, Welch D, Turner N, McIntyre P, Dowell T, Trenholme A, Byrnes C, Webby R, French N, Winter D, Huang QS, Geoghegan JL. Spatial and temporal transmission dynamics of respiratory syncytial virus in New Zealand before and after the COVID-19 pandemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310412. [PMID: 39072023 PMCID: PMC11275701 DOI: 10.1101/2024.07.15.24310412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Human respiratory syncytial virus (RSV) is a major cause of acute respiratory infection. In 2020, RSV was effectively eliminated from the community in New Zealand due to non-pharmaceutical interventions (NPI) used to control the spread of COVID-19. However, in April 2021, following a brief quarantine-free travel agreement with Australia, there was a large-scale nationwide outbreak of RSV that led to reported cases more than five times higher, and hospitalisations more than three times higher, than the typical seasonal pattern. In this study, we generated 1,471 viral genomes of both RSV-A and RSV-B sampled between 2015 and 2022 from across New Zealand. Using a phylodynamics approach, we used these data to better understand RSV transmission patterns in New Zealand prior to 2020, and how RSV became re-established in the community following the relaxation of COVID-19 restrictions. We found that in 2021, there was a large epidemic of RSV in New Zealand that affected a broader age group range compared to the usual pattern of RSV infections. This epidemic was due to an increase in RSV importations, leading to several large genomic clusters of both RSV-A ON1 and RSV-B BA9 genotypes in New Zealand. However, while a number of importations were detected, there was also a major reduction in RSV genetic diversity compared to pre-pandemic seasonal outbreaks. These genomic clusters were temporally associated with the increase of migration in 2021 due to quarantine-free travel from Australia at the time. The closest genetic relatives to the New Zealand RSV genomes, when sampled, were viral genomes sampled in Australia during a large, off-season summer outbreak several months prior, rather than cryptic lineages that were sustained but not detected in New Zealand. These data reveal the impact of NPI used during the COVID-19 pandemic on other respiratory infections and highlight the important insights that can be gained from viral genomes.
Collapse
Affiliation(s)
- Lauren Jelley
- Institute of Environmental Science and Research, Wellington, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- Department of Physics, University of Auckland, New Zealand
| | - Meaghan O'Neill
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Klarysse Berquist
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Ana Claasen
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jing Wang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Srushti Utekar
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Helen Johnston
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Judy Bocacao
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Margot Allais
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Joep de Ligt
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Chor Ee Tan
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Ruth Seeds
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Tim Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Nayyereh Aminisani
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Tineke Jennings
- Regional Public Health, Te Whatu Ora - Health New Zealand Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - David Welch
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- School of Computer Science, University of Auckland, New Zealand
| | - Nikki Turner
- Department of General Practice and Primary Care, University of Auckland, Auckland, New Zealand
| | - Peter McIntyre
- Department of Primary Health Care and General Practice, University of Otago, Dunedin, New Zealand
| | - Tony Dowell
- Department of Primary Health Care and General Practice, University of Otago, Dunedin, New Zealand
| | - Adrian Trenholme
- Te Whatu Ora-Health New Zealand Counties Manukau, Auckland, New Zealand
| | - Cass Byrnes
- Te Whatu Ora-Health New Zealand Counties Manukau, Auckland, New Zealand
| | - Richard Webby
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, USA
| | - Nigel French
- Tāwharau Ora/School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David Winter
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jemma L Geoghegan
- Institute of Environmental Science and Research, Wellington, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Bender W, Zhang Y, Corbett A, Chu C, Grier A, Wang L, Qiu X, McCall MN, Topham DJ, Walsh EE, Mariani TJ, Scheuermann R, Caserta MT, Anderson CS. Association of disease severity and genetic variation during primary Respiratory Syncytial Virus infections. BMC Med Genomics 2024; 17:165. [PMID: 38898440 PMCID: PMC11188216 DOI: 10.1186/s12920-024-01930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) disease in young children ranges from mild cold symptoms to severe symptoms that require hospitalization and sometimes result in death. Studies have shown a statistical association between RSV subtype or phylogenic lineage and RSV disease severity, although these results have been inconsistent. Associations between variation within RSV gene coding regions or residues and RSV disease severity has been largely unexplored. METHODS Nasal swabs from children (< 8 months-old) infected with RSV in Rochester, NY between 1977-1998 clinically presenting with either mild or severe disease during their first cold-season were used. Whole-genome RSV sequences were obtained using overlapping PCR and next-generation sequencing. Both whole-genome phylogenetic and non-phylogenetic statistical approaches were performed to associate RSV genotype with disease severity. RESULTS The RSVB subtype was statistically associated with disease severity. A significant association between phylogenetic clustering of mild/severe traits and disease severity was also found. GA1 clade sequences were associated with severe disease while GB1 was significantly associated with mild disease. Both G and M2-2 gene variation was significantly associated with disease severity. We identified 16 residues in the G gene and 3 in the M2-2 RSV gene associated with disease severity. CONCLUSION These results suggest that phylogenetic lineage and the genetic variability in G or M2-2 genes of RSV may contribute to disease severity in young children undergoing their first infection.
Collapse
Affiliation(s)
- William Bender
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Yun Zhang
- J. Craig Venter Institute, San Diego, CA, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chinyi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward E Walsh
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Mary T Caserta
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher S Anderson
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
7
|
Korsun N, Trifonova I, Madzharova I, Alexiev I, Uzunova I, Ivanov I, Velikov P, Tcherveniakova T, Christova I. Resurgence of respiratory syncytial virus with dominance of RSV-B during the 2022-2023 season. Front Microbiol 2024; 15:1376389. [PMID: 38628867 PMCID: PMC11019023 DOI: 10.3389/fmicb.2024.1376389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of upper and lower respiratory tract infections. This study aimed to explore the prevalence of respiratory syncytial virus (RSV) and other respiratory viruses in Bulgaria, characterize the genetic diversity of RSV strains, and perform amino acid sequence analyses of RSV surface and internal proteins. Methods Clinical and epidemiological data and nasopharyngeal swabs were prospectively collected from patients with acute respiratory infections between October 2020 and May 2023. Real-time PCR for 13 respiratory viruses, whole-genome sequencing, phylogenetic, and amino acid analyses were performed. Results This study included three epidemic seasons (2020-2021, 2021-2022, and 2022-2023) from week 40 of the previous year to week 20 of the following year. Of the 3,047 patients examined, 1,813 (59.5%) tested positive for at least one viral respiratory pathogen. RSV was the second most detected virus (10.9%) after SARS-CoV-2 (22%). Coinfections between RSV and other respiratory viruses were detected in 68 cases, including 14 with SARS-CoV-2. After two seasons of low circulation, RSV activity increased significantly during the 2022-2023 season. The detection rates of RSV were 3.2, 6.6, and 13.7% in the first, second, and third seasons, respectively. RSV was the most common virus found in children under 5 years old with bronchiolitis (40%) and pneumonia (24.5%). RSV-B drove the 2022-2023 epidemic. Phylogenetic analysis indicated that the sequenced RSV-B strains belonged to the GB5.0.5a and GB5.0.6a genotypes. Amino acid substitutions in the surface and internal proteins, including the F protein antigenic sites were identified compared to the BA prototype strain. Conclusion This study revealed a strong resurgence of RSV in the autumn of 2022 after the lifting of anti-COVID-19 measures, the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, and relatively low genetic diversity in circulating RSV strains.
Collapse
Affiliation(s)
- Neli Korsun
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina Trifonova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivaylo Alexiev
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Ivan Ivanov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | - Petar Velikov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | | | - Iva Christova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
8
|
Riccò M, Parisi S, Corrado S, Marchesi F, Bottazzoli M, Gori D. Respiratory Syncytial Virus Infections in Recipients of Bone Marrow Transplants: A Systematic Review and Meta-Analysis. Infect Dis Rep 2024; 16:317-355. [PMID: 38667752 PMCID: PMC11050314 DOI: 10.3390/idr16020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is a common cause of respiratory tract infections. Usually associated with infants and children, an increasing amount of evidence suggests that RSV can cause substantial morbidity and mortality in immunocompromised individuals, including recipients of bone marrow transplantation (BMT). The present systematic review was therefore designed in accordance with the PRISMA guidelines to collect available evidence about RSV infections in BMT recipients. Three medical databases (PubMed, Embase, and MedRxiv) were therefore searched for eligible observational studies published up to 30 September 2023 and collected cases were pooled in a random-effects model. Heterogeneity was assessed using I2 statistics. Reporting bias was assessed by means of funnel plots and regression analysis. Overall, 30 studies were retrieved, including 20,067 BMT cases and 821 RSV infection episodes. Of them, 351 were lower respiratory tract infections, and a total of 78 RSV-related deaths were collected. A pooled attack rate of 5.40% (95% confidence interval [95%CI] 3.81 to 7.60) was identified, with a corresponding incidence rate of 14.77 cases per 1000 person-years (95%CI 9.43 to 20.11), and a case fatality ratio (CFR) of 7.28% (95%CI 4.94 to 10.60). Attack rates were higher in adults (8.49%, 95%CI 5.16 to 13.67) than in children (4.79%, 95%CI 3.05 to 7.45), with similar CFR (5.99%, 95%CI 2.31 to 14.63 vs. 5.85%, 95%CI 3.35 to 10.02). By assuming RSV attack rates as a reference group, influenza (RR 0.518; 95%CI 0.446 to 0.601), adenovirus (RR 0.679, 95%CI 0.553 to 0.830), and human metapneumovirus (RR 0.536, 95%CI 0.438 to 0.655) were associated with a substantially reduced risk for developing corresponding respiratory infection. Despite the heterogeneous settings and the uneven proportion of adult and pediatric cases, our study has identified high attack rates and a substantial CFR of RSV in recipients of BMT, stressing the importance of specifically tailored preventive strategies and the need for effective treatment options.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | | | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Kim T, Choi SH. Epidemiology and Disease Burden of Respiratory Syncytial Virus Infection in Adults. Infect Chemother 2024; 56:1-12. [PMID: 38527779 PMCID: PMC10990889 DOI: 10.3947/ic.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Respiratory syncytial virus (RSV) constitutes a significant cause of respiratory illness and mortality among older adults, a demographic that is expanding with considerable impact on healthcare systems worldwide. The actual burden of RSV in this population may still be underestimated, owing to factors such as low awareness and suboptimal diagnostic sensitivity in adults, the lack of robust RSV surveillance systems, and the infrequent use of diagnostic testing. Recent advancements in respiratory virus detection have spurred further exploration into appropriate preventive and therapeutic strategies. The recent approval of two vaccines highlights the critical need for the precise estimation of the RSV disease burden to optimize the effectiveness and cost-efficiency of immunization programs. This narrative review aimed to summarize the existing knowledge of the RSV burden in adults with a particular focus on older adults, incorporating data from Korea. Overall, current estimates indicate that the annual RSV attack rate in the general adult population ranges from 1 - 7%, increasing to approximately 4 - 10% among elderly and high-risk groups. The in-hospital mortality rate can be estimated to be around 7 - 10%, rising up to 40% among intensive care unit-admitted patients. To elucidate RSV's disease burden, further continuing research, including population-based studies, is necessary.
Collapse
Affiliation(s)
- Taeeun Kim
- Division of Infectious Diseases, Department of Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Ramzali M, Salimi V, Cheraghali F, Hosseini SD, Yasaghi M, Samadizadeh S, Rastegar M, Nakstad B, Tahamtan A. Epidemiology and clinical features of respiratory syncytial virus (RSV) infection in hospitalized children during the COVID-19 pandemic in Gorgan, Iran. Health Sci Rep 2024; 7:e1787. [PMID: 38186938 PMCID: PMC10764657 DOI: 10.1002/hsr2.1787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Background and Aims Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection in infants and young children. Given the altered circulation patterns of respiratory viruses during the coronavirus disease pandemic-2019 (COVID-19), the study aimed to evaluate epidemiology and clinical features of RSV infections in hospitalized children during the COVID-19 pandemic in Gorgan, northeastern Iran. Molecular epidemiology studies on respiratory viral infections are necessary to monitor circulating viruses, disease severity, and clinical symptoms, in addition to early warning of new outbreaks. Methods Overall, 411 respiratory swab samples from hospitalized children from October 2021 to March 2022 were collected at Taleghani Children's Hospital, Gorgan, Iran. The incidence of RSV, as well as the circulating subgroups and genotypes, were investigated and confirmed using PCR methods. Additionally, all samples tested for severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2) and influenza, and demographic and clinical data were analyzed using SPSS software. Results The share of RSV, SARS-CoV-2, and influenza among hospitalized children with acute lower respiratory infections (ALRI) were 27%, 16.5%, and 4.1%, respectively. The RSV subgroup A (genotype ON1) was dominant over subgroup B (genotype BA9), with more severe clinical symptoms. Compared with the prepandemic era there were high numbers of hospitalized SARS-CoV-2 positive children and low numbers of other respiratory viruses. Despite this, the prevalence of ALRI-related RSV-disease among hospitalized children in our specialized pediatric center was higher than COVID-19 disease in the same cohort. Conclusions Studying the epidemiology of respiratory viruses and determining the circulating strains can contribute to effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Mahnaz Ramzali
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Vahid Salimi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Fatemeh Cheraghali
- Department of Pediatrics, School of Medicine, Taleghani Children's HospitalGolestan University of Medical SciencesGorganIran
| | - Seyedeh Delafruz Hosseini
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yasaghi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Saeed Samadizadeh
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Mostafa Rastegar
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Britt Nakstad
- Department of Pediatric and Adolescent HealthUniversity of BotswanaGaboroneBotswana
- Division of Paediatric and Adolescent Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Alireza Tahamtan
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
11
|
Jallow MM, Diagne MM, Sagne SN, Tall F, Diouf JBN, Boiro D, Mendy MP, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Loucoubar C, Fall G, Barry MA, Dia N. Respiratory syncytial virus in pediatric patients with severe acute respiratory infections in Senegal: findings from the 2022 sentinel surveillance season. Sci Rep 2023; 13:20404. [PMID: 37990112 PMCID: PMC10663443 DOI: 10.1038/s41598-023-47015-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In 2022, many regions around the world experienced a severe respiratory syncytial virus (RSV) epidemic with an earlier-than-usual start and increased numbers of paediatric patients in emergency departments. Here we carried out this study to describe the epidemiology and genetic characteristics of RSV infection in patients hospitalized with severe acute respiratory infections in 2022. Samples were tested for RSV by multiplex real time reverse transcription polymerase chain reaction. Subsequently, a subset of RSV positive samples was selected for NGS sequencing. RSV was detected in 16.04%, among which RSV-A was confirmed in 7.5% and RSV-B in 76.7%. RSV infection were more identified in infants aged ≤ 11 months (83.3%) and a shift in the circulation pattern was observed, with highest incidences between September-November. Phylogenetic analyses revealed that all RSV-A strains belonged to GA2.3.5 genotype and all RSV-B strains to GB5.0.5a genotype. Three putative N-glycosylation sites at amino acid positions 103, 135, 237 were predicted among RSV-A strains, while four N-linked glycosylation sites at positions 81, 86, 231 and 294 were identified in RSV-B strains. Globally, our findings reveal an exclusive co-circulation of two genetic lineages of RSV within the pediatric population in Senegal, especially in infants aged ≤ 11 months.
Collapse
Affiliation(s)
| | | | - Samba Niang Sagne
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Fatime Tall
- Hôpital Des Enfants Albert Royer de Fann, Dakar, Senegal
| | | | | | | | | | - Davy Kiori
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Sara Sy
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Déborah Goudiaby
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Gamou Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
12
|
Tramuto F, Maida CM, Mazzucco W, Costantino C, Amodio E, Sferlazza G, Previti A, Immordino P, Vitale F. Molecular Epidemiology and Genetic Diversity of Human Respiratory Syncytial Virus in Sicily during Pre- and Post-COVID-19 Surveillance Seasons. Pathogens 2023; 12:1099. [PMID: 37764907 PMCID: PMC10534943 DOI: 10.3390/pathogens12091099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is an important pathogen of acute respiratory tract infection of global significance. In this study, we investigated the molecular epidemiology and the genetic variability of hRSV over seven surveillance seasons between 2015 and 2023 in Sicily, Italy. hRSV subgroups co-circulated through every season, although hRSV-B mostly prevailed. After the considerable reduction in the circulation of hRSV due to the widespread implementation of non-pharmaceutical preventive measures during the COVID-19 pandemic, hRSV rapidly re-emerged at a high intensity in 2022-2023. The G gene was sequenced for genotyping and analysis of deduced amino acids. A total of 128 hRSV-A and 179 hRSV-B G gene sequences were obtained. The phylogenetic analysis revealed that the GA2.3.5a (ON1) and GB5.0.5a (BA9) genotypes were responsible for the hRSV epidemics in Sicily.; only one strain belonged to the genotype GB5.0.4a. No differences were observed in the circulating genotypes during pre- and post-pandemic years. Amino acid sequence alignment revealed the continuous evolution of the G gene, with a combination of amino acid changes specifically appearing in 2022-2023. The predicted N-glycosylation sites were relatively conserved in ON1 and BA9 genotype strains. Our findings augment the understanding and prediction of the seasonal evolution of hRSV at the local level and its implication in the monitoring of novel variants worth considering in better design of candidate vaccines.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Claudio Costantino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Giuseppe Sferlazza
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Adriana Previti
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| |
Collapse
|
13
|
Panatto D, Domnich A, Lai PL, Ogliastro M, Bruzzone B, Galli C, Stefanelli F, Pariani E, Orsi A, Icardi G. Epidemiology and molecular characteristics of respiratory syncytial virus (RSV) among italian community-dwelling adults, 2021/22 season. BMC Infect Dis 2023; 23:134. [PMID: 36882698 PMCID: PMC9990006 DOI: 10.1186/s12879-023-08100-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections worldwide. While historically RSV research has been focused on children, data on RSV infection in adults are limited. The goal of this study was to establish the prevalence of RSV in community-dwelling Italian adults and analyze its genetic variability during the 2021/22 winter season. METHODS In this cross-sectional study, a random sample of naso-/oropharyngeal specimens from symptomatic adults seeking for SARS-CoV-2 molecular testing between December 2021 and March 2022 were tested for RSV and other respiratory pathogens by means of reverse-transcription polymerase chain reaction. RSV-positive samples were further molecularly characterized by sequence analysis. RESULTS Of 1,213 samples tested, 1.6% (95% CI: 0.9-2.4%) were positive for RSV and subgroups A (44.4%) and B (55.6%) were identified in similar proportions. The epidemic peak occurred in December 2021, when the RSV prevalence was as high as 4.6% (95% CI: 2.2-8.3%). The prevalence of RSV detection was similar (p = 0.64) to that of influenza virus (1.9%). All RSV A and B strains belonged to the ON1 and BA genotypes, respectively. Most (72.2%) RSV-positive samples were also positive for other pathogens being SARS-CoV-2, Streptococcus pneumoniae and rhinovirus the most frequent. RSV load was significantly higher among mono-detections than co-detections. CONCLUSION During the 2021/22 winter season, characterized by the predominant circulation of SARS-CoV-2 and some non-pharmaceutical containment measures still in place, a substantial proportion of Italian adults tested positive for genetically diversified strains of both RSV subtypes. In view of the upcoming registration of vaccines, establishment of the National RSV surveillance system is urgently needed.
Collapse
Affiliation(s)
- Donatella Panatto
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy. .,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Piero Luigi Lai
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Matilde Ogliastro
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Federica Stefanelli
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Orsi
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy.,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giancarlo Icardi
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy.,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|