1
|
Teixeira KS, Custódio MGF, Sgorlon G, Roca TP, Queiroz JADS, Passos-Silva AM, Ribeiro J, Vieira D. Haplotypic Distribution of SARS-CoV-2 Variants in Cases of Intradomiciliary Infection in the State of Rondônia, Western Amazon. Bioinform Biol Insights 2024; 18:11779322241266354. [PMID: 39574519 PMCID: PMC11580058 DOI: 10.1177/11779322241266354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/09/2024] [Indexed: 11/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high transmissibility profile which favors the accumulation of mutations along its genome, providing the emergence of new variants. In this context, haplotype studies have allowed mapping specific regions and combining approaches and tracking phylogenetic changes. During the COVID-19 pandemic, it was notorious that home environments favored the circulation of SARS-CoV-2, in this study we evaluated 1,407 individuals positive for SARS-CoV-2, in which we located 53 families in the period from June 2021 to February 2023. The epidemiological data were collected in E-SUS notifica and SIVEP-gripe. Then, the genetic material was extracted using the commercial kit and the viral load was evaluated and the viral genomes were sequenced using the Illumina MiSeq methodology. In addition, the circulation of 3 variants and their respective subvariants was detected. The delta variant represented the highest number of cases with 45%, the Omicron variant 43% and the lowest number with 11% of cases the Gamma variants. There were cases of families infected by different subvariants, thus showing different sources of infection. The haplotype network showed a distribution divided into 6 large clusters that were established according to the genetic characteristics observed by the algorithm and 224 Parsimony informative sites were found. In addition, 92% of subjects were symptomatic and 8% asymptomatic. The secondary attack rate of this study was 8.32%. Therefore, we can infer that the home environment favors the spread of SARS-CoV-2, so it is of paramount importance to carry out genomic surveillance in specific groups such as intradomiciliary ones.
Collapse
Affiliation(s)
- Karolaine Santos Teixeira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação—PIBITI/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Gabriella Sgorlon
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia – UNIR/FIOCRUZ/RO, Porto Velho, Brazil
- Rede Genômica FIOCRUZ, Rio de Janeiro, Brazil
| | - Tárcio Peixoto Roca
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz/IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jackson Alves da Silva Queiroz
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia – UNIR/FIOCRUZ/RO, Porto Velho, Brazil
- Rede Genômica FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Maisa Passos-Silva
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia – UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| | - Jessiane Ribeiro
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—FIOCRUZ/RO, Porto Velho, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia – UNIR/FIOCRUZ/RO, Porto Velho, Brazil
- Rede Genômica FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Uyar Y, Mart Kömürcü SZ, Artik Y, Cesur NP, Tanrıverdi A, Şanlı K. The evaluation of SARS-CoV-2 mutations at the early stage of the pandemic in Istanbul population. Ann Clin Microbiol Antimicrob 2024; 23:93. [PMID: 39390548 PMCID: PMC11468081 DOI: 10.1186/s12941-024-00750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Determination of SARS-CoV-2 variant is significant to prevent the spreads of COVID-19 disease. METHODS We aimed to evaluate the variants of SARS-CoV-2 rate in positive patients in Kanuni Sultan Suleyman Training and Research Hospital (KSS-TRH), Istanbul, Türkiye between 1st January and 30th November 2021 by using RT-PCR method. RESULTS Herein, 825,169 patients were evaluated (male:58.53% and female:41.47%) whether COVID-19 positive or not [( +):21.3% and (-):78.7%] and 175,367 patient was described as positive (53.2%-female and 46.8%-male) by RT-PCR. COVID-19 positive rate is observed highest in the 6-15- and 66-75-year age range. The frequencies were obtained as SARS-CoV-2 positive (without mutation of B.1.1.7 [B.1.1.7 (U.K), E484K, L452R, B.1.351 (S. Africa/Brazil) spike mutations] as 66.1% (n: 115,899), B.1.1.7 Variant as 23.2% (n:40,686), Delta mutation (L452R) variant as 9.8% (n:17,182), B.1.351 variant as 0.8% (n:1370) and E484K as 0.1% (n: 230). In April 2021, general SARS-CoV-2 and B.1.1.7 variant were dominantly observed. Up to July 2021, B.1.617.2 (Delta variant/ Indian variant) and E484K has been not observed. B.1.351 variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. African/Brazil variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. When the gender type is compared within the variants, women were found to be more prevalent in all varieties. CONCLUSIONS The meaning of these mutations is very important to understand the transmission capacity of the COVID-19 disease, pandemic episode, and diagnosis of the virus with mutation types. Understanding the variant type is important for monitoring herd immunity and the spread of the disease.
Collapse
Affiliation(s)
- Yavuz Uyar
- Cerrahpaşa Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpaşa, 34147, Istanbul, Türkiye.
| | - Selen Zeliha Mart Kömürcü
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Yakup Artik
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Nevra Pelin Cesur
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Arzu Tanrıverdi
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Kamuran Şanlı
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Başakşehir Çam and Sakura City Hospital, Başakşehir, 34480, Istanbul, Türkiye
| |
Collapse
|
3
|
Goldswain H, Penrice-Randal R, Donovan-Banfield I, Duffy CW, Dong X, Randle N, Ryan Y, Rzeszutek AM, Pilgrim J, Keyser E, Weller SA, Hutley EJ, Hartley C, Prince T, Darby AC, Aye Maung N, Nwume H, Hiscox JA, Emmett SR. SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection. Genome Med 2024; 16:89. [PMID: 39014481 PMCID: PMC11251137 DOI: 10.1186/s13073-024-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND SARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals. METHODS We investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing. RESULTS A change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection. CONCLUSIONS Data from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity.
Collapse
Affiliation(s)
- Hannah Goldswain
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Craig W Duffy
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Xiaofeng Dong
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | | | - Jack Pilgrim
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 3BX, UK
| | - Emma Keyser
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Simon A Weller
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Emma J Hutley
- Centre for Defence Pathology, Royal Centre for Defence Medicine, OCT Centre, Birmingham, B15 2WB, UK
| | - Catherine Hartley
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Alistair C Darby
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Niall Aye Maung
- British Army, Hunter House, St Omer Barracks, Aldershot, Hampshire, GU11 2BG, UK
| | - Henry Nwume
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Julian A Hiscox
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK.
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Connexis North Tower, 1 Fusionopolis Way, Singapore, #20-10138632, Singapore.
| | - Stevan R Emmett
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| |
Collapse
|
4
|
Manuto L, Bado M, Cola M, Vanzo E, Antonello M, Mazzotti G, Pacenti M, Cordioli G, Sasset L, Cattelan AM, Toppo S, Lavezzo E. Immune System Deficiencies Do Not Alter SARS-CoV-2 Evolutionary Rate but Favour the Emergence of Mutations by Extending Viral Persistence. Viruses 2024; 16:447. [PMID: 38543811 PMCID: PMC10974344 DOI: 10.3390/v16030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable environment for intra-host viral evolution and have been linked to the emergence of new viral variants which strongly challenged containment measures and some therapeutic treatments. To assess whether impaired immunity could lead to the increased instability of viral genomes, longitudinal nasopharyngeal swabs were collected from eight immunocompromised patients and fourteen non-immunocompromised subjects, all undergoing SARS-CoV-2 infection. Intra-host viral evolution was compared between the two groups through deep sequencing, exploiting a probe-based enrichment method to minimise the possibility of artefactual mutations commonly generated in amplicon-based methods, which heavily rely on PCR amplification. Although, as expected, immunocompromised patients experienced significantly longer infections, the acquisition of novel intra-host viral mutations was similar between the two groups. Moreover, a thorough analysis of viral quasispecies showed that the variability of viral populations in the two groups is comparable not only at the consensus level, but also when considering low-frequency mutations. This study suggests that a compromised immune system alone does not affect SARS-CoV-2 within-host genomic variability.
Collapse
Affiliation(s)
- Laura Manuto
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Martina Bado
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Marco Cola
- Department of Medicine, DIMED, University of Padova, 35128 Padova, Italy;
| | - Elena Vanzo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Maria Antonello
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Giorgia Mazzotti
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Monia Pacenti
- Unit of Microbiology and Virology, University Hospital of Padova, 35128 Padova, Italy;
| | - Giampaolo Cordioli
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Lolita Sasset
- Unit of Infectious Diseases, University Hospital of Padova, 35128 Padova, Italy;
| | - Anna Maria Cattelan
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
- Unit of Infectious Diseases, University Hospital of Padova, 35128 Padova, Italy;
| | - Stefano Toppo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| |
Collapse
|
5
|
Equestre M, Marcantonio C, Marascio N, Centofanti F, Martina A, Simeoni M, Suffredini E, La Rosa G, Bonanno Ferraro G, Mancini P, Veneri C, Matera G, Quirino A, Costantino A, Taffon S, Tritarelli E, Campanella C, Pisani G, Nisini R, Spada E, Verde P, Ciccaglione AR, Bruni R. Characterization of SARS-CoV-2 Variants in Military and Civilian Personnel of an Air Force Airport during Three Pandemic Waves in Italy. Microorganisms 2023; 11:2711. [PMID: 38004723 PMCID: PMC10672769 DOI: 10.3390/microorganisms11112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated SARS-CoV-2 variants circulating, from November 2020 to March 2022, among military and civilian personnel at an Air Force airport in Italy in order to classify viral isolates in a potential hotspot for virus spread. Positive samples were subjected to Next-Generation Sequencing (NGS) of the whole viral genome and Sanger sequencing of the spike coding region. Phylogenetic analysis classified viral isolates and traced their evolutionary relationships. Clusters were identified using 70% cut-off. Sequencing methods yielded comparable results in terms of variant classification. In 2020 and 2021, we identified several variants, including B.1.258 (4/67), B.1.177 (9/67), Alpha (B.1.1.7, 9/67), Gamma (P.1.1, 4/67), and Delta (4/67). In 2022, only Omicron and its sub-lineage variants were observed (37/67). SARS-CoV-2 isolates were screened to detect naturally occurring resistance in genomic regions, the target of new therapies, comparing them to the Wuhan Hu-1 reference strain. Interestingly, 2/30 non-Omicron isolates carried the G15S 3CLpro substitution responsible for reduced susceptibility to protease inhibitors. On the other hand, Omicron isolates carried unusual substitutions A1803V, D1809N, and A949T on PLpro, and the D216N on 3CLpro. Finally, the P323L substitution on RdRp coding regions was not associated with the mutational pattern related to polymerase inhibitor resistance. This study highlights the importance of continuous genomic surveillance to monitor SARS-CoV-2 evolution in the general population, as well as in restricted communities.
Collapse
Affiliation(s)
- Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Cinzia Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Federica Centofanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Antonio Martina
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Matteo Simeoni
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Costantino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Stefania Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Elena Tritarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Carmelo Campanella
- Clinical Analysis and Molecular Biology Laboratory Rome, Institute of Aerospace Medicine, 00185 Rome, Italy;
| | - Giulio Pisani
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Enea Spada
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Paola Verde
- Aerospace Medicine Department, Aerospace Test Division, Militay Airport Mario De Bernardi, Pratica di Mare, 00040 Rome, Italy;
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| |
Collapse
|
6
|
Marascio N, Cilburunoglu M, Torun EG, Centofanti F, Mataj E, Equestre M, Bruni R, Quirino A, Matera G, Ciccaglione AR, Yalcinkaya KT. Molecular Characterization and Cluster Analysis of SARS-CoV-2 Viral Isolates in Kahramanmaraş City, Turkey: The Delta VOC Wave within One Month. Viruses 2023; 15:v15030802. [PMID: 36992510 PMCID: PMC10054778 DOI: 10.3390/v15030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 pandemic has seriously affected the population in Turkey. Since the beginning, phylogenetic analysis has been necessary to monitor public health measures against COVID-19 disease. In any case, the analysis of spike (S) and nucleocapsid (N) gene mutations was crucial in determining their potential impact on viral spread. We screened S and N regions to detect usual and unusual substitutions, whilst also investigating the clusters among a patient cohort resident in Kahramanmaraş city, in a restricted time span. Sequences were obtained by Sanger methods and genotyped by the PANGO Lineage tool. Amino acid substitutions were annotated comparing newly generated sequences to the NC_045512.2 reference sequence. Clusters were defined using phylogenetic analysis with a 70% cut-off. All sequences were classified as Delta. Eight isolates carried unusual mutations on the S protein, some of them located in the S2 key domain. One isolate displayed the unusual L139S on the N protein, while few isolates carried the T24I and A359S N substitutions able to destabilize the protein. Phylogeny identified nine monophyletic clusters. This study provided additional information about SARS-CoV-2 epidemiology in Turkey, suggesting local transmission of infection in the city by several transmission routes, and highlighting the necessity to improve the power of sequencing worldwide.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Merve Cilburunoglu
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Elif Gulsum Torun
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Federica Centofanti
- Department of Applied Clinical Sciences and Biotechnology, University of Aquila, 67100 L'Aquila, Italy
| | - Elida Mataj
- Instituti i Shendetit Publik (ISHP), 1000 Tirana, Albania
| | - Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Angela Quirino
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | | | - Kezban Tulay Yalcinkaya
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| |
Collapse
|
7
|
Suardana IBK, Mahardika BK, Pharmawati M, Sudipa PH, Sari TK, Mahendra NB, Mahardika GN. Whole-Genome Comparison of Representatives of All Variants of SARS-CoV-2, Including Subvariant BA.2 and the GKA Clade. Adv Virol 2023; 2023:6476626. [PMID: 36938489 PMCID: PMC10019969 DOI: 10.1155/2023/6476626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/10/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Since its discovery at the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into many variants, including the subvariant BA.2 and the GKA clade. Genomic clarification is needed for better management of the current pandemic as well as the possible reemergence of novel variants. The sequence of the reference genome Wuhan-Hu-1 and approximately 20 representatives of each variant were downloaded from GenBank and GISAID. Two representatives with no track of in-definitive nucleotides were selected. The sequences were aligned using muscle. The location of insertion/deletion (indel) in the genome was mapped following the open reading frame (ORF) of Wuhan-Hu-1. The phylogeny of the spike protein coding region was constructed using the maximum likelihood method. Amino acid substitutions in all ORFs were analyzed separately. There are two indel sites in ORF1AB, eight in spike, and one each in ORF3A, matrix (MA), nucleoprotein (NP), and the 3'-untranslated regions (3'UTR). Some indel sites and residues/substitutions are not unique, and some are variant-specific. The phylogeny shows that Omicron, Deltacron, and BA2 are clustered together and separated from other variants with 100% bootstrap support. In conclusion, whole-genome comparison of representatives of all variants revealed indel patterns that are specific to SARS-CoV-2 variants or subvariants. Polymorphic amino acid comparison across all coding regions also showed amino acid residues shared by specific groups of variants. Finally, the higher transmissibility of BA.2 might be due at least in part to the 48 nucleotide deletions in the 3'UTR, while the seem-to-be extinction of GKA clade is due to the lack of genetic advantages as a consequence of amino acid substitutions in various genes.
Collapse
Affiliation(s)
- Ida B. K. Suardana
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Bayu K. Mahardika
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| | - Made Pharmawati
- 3The Biology Study Program, The Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
| | - Putu H. Sudipa
- 4Veterinary Bacteriology and Mycology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Tri K. Sari
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Nyoman B. Mahendra
- 5The Department of Obstetrics and Genecology, The Faculty of Medicine, Udayana University, Kuta Selatan, Bali, Indonesia
| | - Gusti N. Mahardika
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| |
Collapse
|
8
|
Scaglione V, Rotundo S, Marascio N, De Marco C, Lionello R, Veneziano C, Berardelli L, Quirino A, Olivadese V, Serapide F, Tassone B, Morrone HL, Davoli C, La Gamba V, Bruni A, Cesana BM, Matera G, Russo A, Costanzo FS, Viglietto G, Trecarichi EM, Torti C. Lessons learned and implications of early therapies for coronavirus disease in a territorial service centre in the Calabria region: a retrospective study. BMC Infect Dis 2022; 22:793. [PMID: 36266619 PMCID: PMC9583059 DOI: 10.1186/s12879-022-07774-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Monoclonal antibodies (mAbs) and antivirals have been approved for early therapy of coronavirus disease (COVID-19), however, in the real-life setting, there are difficulties to prescribe these therapies within few days from symptom onset as recommended, and effectiveness of combined use of these drugs have been hypothesised in most-at-risk patients (such as those immunocompromised) but data supporting this strategy are limited. Methods We describe the real-life experience of SARS-CoV-2 antivirals and/or monoclonal antibodies (mAbs) and focus on the hospitalisation rate due to the progression of COVID-19. Clinical results obtained through our risk-stratification algorithm and benefits achieved through a strategic proximity territorial centre are provided. We also report a case series with an in-depth evaluation of SARS-CoV-2 genome in relationship with treatment strategy and clinical evolution of patients. Results Two hundred eighty-eight patients were analysed; 94/288 (32.6%) patients were treated with mAb monotherapy, 171/288 (59.4%) patients were treated with antivirals, and 23/288 (8%) patients received both mAbs and one antiviral drug. Haematological malignancies were more frequent in patients treated with combination therapy than in the other groups (p = 0.0003). There was a substantial increase in the number of treated patients since the opening of the centre dedicated to early therapies for COVID-19. The provided disease-management and treatment appeared to be effective since 98.6% patients recovered without hospital admission. Moreover, combination therapy with mAbs and antivirals seemed successful because all patients admitted to the hospital for COVID-19 did not receive such therapies, while none of the most-at-risk patients treated with combination therapy were hospitalized or reported adverse events. Conclusions A low rate of COVID-19 progression requiring hospital admission was observed in patients included in this study. The dedicated COVID-19 proximity territorial service appeared to strengthen the regional sanitary system, avoiding the overwhelming of other services. Importantly, our results also support early combination therapy: it is possible that this strategy reduces the emergence of escape mutants of SARS-CoV-2, thereby increasing efficacy of early treatment, especially in immunocompromised individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07774-9.
Collapse
Affiliation(s)
- Vincenzo Scaglione
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Salvatore Rotundo
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Nadia Marascio
- Chair of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University, Catanzaro, Italy
| | - Rosaria Lionello
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Græcia" University, Catanzaro, Italy
| | - Lavinia Berardelli
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Angela Quirino
- Chair of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University, Catanzaro, Italy
| | - Vincenzo Olivadese
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Bruno Tassone
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Helen Linda Morrone
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Chiara Davoli
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Valentina La Gamba
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Andrea Bruni
- Chair of Intensive Care, Department of Medical and Surgical Sciences, "Magna Græcia" University, Catanzaro, Italy
| | - Bruno Mario Cesana
- Unit of Medical Statistics, Biometrics and Bioinformatics "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Giovanni Matera
- Chair of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University, Catanzaro, Italy
| | - Alessandro Russo
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Græcia" University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Carlo Torti
- Chair of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Græcia" University, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | | |
Collapse
|