1
|
Kaur A, Kumar S, Goel RK. Adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy. Epilepsy Res 2023; 198:107246. [PMID: 37925976 DOI: 10.1016/j.eplepsyres.2023.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
2
|
Müller B, Castro LJ, Rebholz-Schuhmann D. Ontology-based identification and prioritization of candidate drugs for epilepsy from literature. J Biomed Semantics 2022; 13:3. [PMID: 35073996 PMCID: PMC8785029 DOI: 10.1186/s13326-021-00258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug repurposing can improve the return of investment as it finds new uses for existing drugs. Literature-based analyses exploit factual knowledge on drugs and diseases, e.g. from databases, and combine it with information from scholarly publications. Here we report the use of the Open Discovery Process on scientific literature to identify non-explicit ties between a disease, namely epilepsy, and known drugs, making full use of available epilepsy-specific ontologies.
Results
We identified characteristics of epilepsy-specific ontologies to create subsets of documents from the literature; from these subsets we generated ranked lists of co-occurring neurological drug names with varying specificity. From these ranked lists, we observed a high intersection regarding reference lists of pharmaceutical compounds recommended for the treatment of epilepsy. Furthermore, we performed a drug set enrichment analysis, i.e. a novel scoring function using an adaptive tuning parameter and comparing top-k ranked lists taking into account the varying length and the current position in the list. We also provide an overview of the pharmaceutical space in the context of epilepsy, including a final combined ranked list of more than 70 drug names.
Conclusions
Biomedical ontologies are a rich resource that can be combined with text mining for the identification of drug names for drug repurposing in the domain of epilepsy. The ranking of the drug names related to epilepsy provides benefits to patients and to researchers as it enables a quick evaluation of statistical evidence hidden in the scientific literature, useful to validate approaches in the drug discovery process.
Collapse
|
3
|
Leo A, De Caro C, Mainardi P, Tallarico M, Nesci V, Marascio N, Striano P, Russo E, Constanti A, De Sarro G, Citraro R. Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression. Neuropharmacology 2021; 198:108782. [PMID: 34492286 DOI: 10.1016/j.neuropharm.2021.108782] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
The Microbiota-Gut-Brain axis (MGBA) is a bidirectional communication pathway between gut bacteria and the central nervous system (CNS) (including the intestine) that exerts a profound influence on neural development, neuroinflammation, activation of stress response and neurotransmission, in addition to modulating complex behaviours, such as sociability and anxiety. Several MGBA modulating approaches are possible, such as probiotic administration. A reasonable pharmacological approach would also be the contemporarily administration of both prebiotics and postbiotics. To test this hypothesis, we probed the effects of α-lactalbumin (ALAC; a prebiotic in the dose range of 125-500 mg/kg) and sodium butyrate (NaB; a postbiotic in the dose range of 30-300 mg/kg) alone and in combination. We used two animal behavioural models of idiopathic autism, (BTBR mice) and anxiety/depression (chronic unexpected mild stress - CUMS mice) respectively, using several standard behavioural paradigms such as Three-chamber social interaction test, Marble burying assay, depression-, anxiety- and memory-tests. In BTBR autistic mice, we found that both ALAC and NaB improve animal sociability, and memory in the passive avoidance (PA); drug combination was more effective in almost all tests also reducing immobility time in the forced swimming test (FST), which was not affected by single drug administration. Similarly, in the CUMS mice, single drug administration was effective in improving: 1) depressive-like behaviour in the FST and sucrose preference test; 2) memory and learning in the PA, novel object recognition and Morris water maze tests. Drug combination was again more effective than single drug administration in most cases; however, in the CUMS model, neither single drug or combination was effective in the elevated plus maze test for anxiety. Our results suggest that in both models, ALAC and NaB combination is more effective in improving some pathological aspects of animal behaviour than single administration and that the prebiotic/postbiotic approach should be considered a reasonable approach for the manipulation of the MGBA to improve efficacy.
Collapse
Affiliation(s)
- Antonio Leo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmen De Caro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paolo Mainardi
- People's University for Food and Health Studies, Genoa, Italy
| | - Martina Tallarico
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valentina Nesci
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nadia Marascio
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) 'G. Gaslini' Institute, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, Genoa, Italy
| | - Emilio Russo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, University College London School of Pharmacy, London, UK.
| | - Giovambattista De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
5
|
5-Hydroxytryptophan as adjuvant therapy in treatment of moderate to severe obsessive-compulsive disorder: a double-blind randomized trial with placebo control. Int Clin Psychopharmacol 2020; 35:254-262. [PMID: 32541380 DOI: 10.1097/yic.0000000000000321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On the basis of numerous previous studies, the serotonergic system plays a role in the pathogenesis of obsessive-compulsive disorder (OCD) and effective agents in this pathway, such as 5-hydroxytryptophan, can potentially contribute to treatment of patients with this disorder. Evaluating the efficacy of 5-hydroxytryptophan in treating OCD was the aim of the present randomized, double-blind, placebo-controlled 12-week trial. In a 12-week, randomized double-blind study, 60 patients with a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition diagnosis of moderate to severe OCD and a Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score of >21 were randomly assigned to receive either fluoxetine plus placebo or fluoxetine plus 5-hydroxytryptophan (100 mg twice daily). All patients, regardless of their treatment group, received fluoxetine at 20 mg/day for the initial 4 weeks of the study followed by 60 mg/day of fluoxetine for the rest of the trial course. Symptoms were assessed using the Y-BOCS at baseline and weeks 4, 8 and 12. General linear model repeated measure showed significant effects for time × treatment interaction on total Y-BOCS (F = 12.07, df = 2.29, P-value <0.001), obsession (F = 8.25, df = 1.91, P-value = 0.001) and compulsion subscale scores (F = 6.64, df = 2.01, P-value = 0.002). 5-Hydroxytryptophan augmentation therapy demonstrated higher partial and complete treatment response rate (P = 0.032 and P = 0.001, respectively) according to the Y-BOCS total scores. The results of this study confirm that 5-hydroxytryptophan may be effective as an augmentative agent in treatment of moderate-to-severe OCD.
Collapse
|
6
|
Kumar S, Goel RK. Pharmacokinetic, pharmacodynamic, and neurochemical investigations of lamotrigine-pentylenetetrazole kindled mice to ascertain it as a reliable model for clinical drug-resistant epilepsy. Animal Model Exp Med 2020; 3:245-255. [PMID: 33024946 PMCID: PMC7529331 DOI: 10.1002/ame2.12131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pentylenetetrazole kindling has long been used for the screening of investigational antiseizure drugs. The presence of lamotrigine, at a very low dose, does not hamper kindling in mice; rather it modifies this epileptogenesis process into drug-resistant epilepsy. The lamotrigine-pentylenetetrazole kindled mice show resistance to lamotrigine, phenytoin, and carbamazepine. It may also be possible that other licensed antiseizure drugs, like the mentioned drugs, remain ineffective in this model; therefore, this was the subject of this study. METHODS Swiss albino mice were kindled with pentylenetetrazole for 35 days in the presence of either methylcellulose vehicle or lamotrigine (subtherapeutic dose, ie, 5 mg/kg). Vehicle vs lamotrigine-kindled mice were compared in terms of (a) resistance/response toward nine antiseizure drugs applied as monotherapies and two drug combinations; (b) lamotrigine bioavailability in blood and brain; (c) blood-brain barrier integrity; and (d) amino acids and monoamines in the cerebral cortex and hippocampus. RESULTS Lamotrigine vs vehicle-kindled mice are similar (or not significantly different P > .05 from each other) in terms of (a) response toward drug combinations; (b) lamotrigine bioavailability; and (c) blood-brain barrier integrity except for, significantly (P < .05) reduced taurine and increased glutamate in the cerebral cortex and hippocampus. Aside from these, lamotrigine-kindled mice show significant (P < .05) resistant to lamotrigine (15 mg/kg), levetiracetam (40 mg/kg); carbamazepine (40 mg/kg), zonisamide (100 mg/kg), gabapentin (224 mg/kg), pregabalin (30 mg/kg), phenytoin (35 mg/kg), and topiramate (300 mg/kg). CONCLUSION Lamotrigine-pentylenetetrazole kindling takes longer to develop (~5 weeks) in comparison to lamotrigine-amygdale (~4 weeks) and lamotrigine-corneal (~2 weeks) kindling models. However, drug screening through this model may yield superior drugs with novel antiseizure mechanisms.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmaceutical Sciences & Drug Research Punjabi University Patiala Punjab India
| | - Rajesh K Goel
- Department of Pharmaceutical Sciences & Drug Research Punjabi University Patiala Punjab India
| |
Collapse
|
7
|
De Caro C, Leo A, Nesci V, Ghelardini C, di Cesare Mannelli L, Striano P, Avagliano C, Calignano A, Mainardi P, Constanti A, Citraro R, De Sarro G, Russo E. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep 2019; 9:13983. [PMID: 31562378 PMCID: PMC6764994 DOI: 10.1038/s41598-019-50542-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
We studied the effects of intestinal inflammation on pentylenetetrazole (PTZ)-induced seizures in mice and the effects thereon of some antiepileptic and anti-inflammatory treatments to establish if a link may exist. The agents tested were: alpha-lactoalbumin (ALAC), a whey protein rich in tryptophan, effective in some animal models of epilepsy and on colon/intestine inflammation, valproic acid (VPA), an effective antiepileptic drug in this seizure model, mesalazine (MSZ) an effective aminosalicylate anti-inflammatory treatment against ulcerative colitis and sodium butyrate (NaB), a short chain fatty acid (SCFA) normally produced in the intestine by gut microbiota, important in maintaining gut health and reducing gut inflammation and oxidative stress. Intestinal inflammation was induced by dextran sulfate sodium (DSS) administration for 6 days. Drug treatment was started on day 3 and lasted 11 days, when seizure susceptibility to PTZ was measured along with intestinal inflammatory markers (i.e. NF-κB, Iκ-Bα, COX-2, iNOS), histological damage, disease activity index (DAI) and SCFA concentration in stools. DSS-induced colitis increased seizure susceptibility and while all treatments were able to reduce intestinal inflammation, only ALAC and NaB exhibited significant antiepileptic properties in mice with induced colitis, while they were ineffective as antiepileptics at the same doses in control mice without colitis. Interestingly, in DSS-treated mice, VPA lost part of its antiepileptic efficacy in comparison to preventing seizures in non-DSS-treated mice while MSZ remained ineffective in both groups. Our study demonstrates that reducing intestinal inflammation through ALAC or NaB administration has specific anticonvulsant effects in PTZ-treated mice. Furthermore, it appears that intestinal inflammation may reduce the antiepileptic effects of VPA, although we confirm that it decreases seizure threshold in this group. Therefore, we suggest that intestinal inflammation may represent a valid antiepileptic target which should also be considered as a participating factor to seizure incidence in susceptible patients and also could be relevant in reducing standard antiepileptic drug efficacy.
Collapse
Affiliation(s)
- Carmen De Caro
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Valentina Nesci
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genoa, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - Rita Citraro
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Chair of Pharmacology, Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
8
|
Yang J, Phi JH. The Present and Future of Vagus Nerve Stimulation. J Korean Neurosurg Soc 2019; 62:344-352. [PMID: 31085961 PMCID: PMC6514309 DOI: 10.3340/jkns.2019.0037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is one of the major chronic neurological diseases affecting many patients. Resection surgery is the most effective therapy for medically intractable epilepsy, but it is not feasible in all patients. Vagus nerve stimulation (VNS) is an adjunctive neuromodulation therapy that was approved in 1997 for the alleviation of seizures; however, efforts to control epilepsy by stimulating the vagus nerve have been studied for over 100 years. Although its exact mechanism is still under investigation, VNS is thought to affect various brain areas. Hence, VNS has a wide indication for various intractable epileptic syndromes and epilepsyrelated comorbidities. Moreover, recent studies have shown anti-inflammatory effects of VNS, and the indication is expanding beyond epilepsy to rheumatoid arthritis, chronic headaches, and depression. VNS yields a more than 50% reduction in seizures in approximately 60% of recipients, with an increase in reduction rates as the follow-up duration increases. The complication rate of VNS is 3–6%, and infection is the most important complication to consider. However, revision surgery was reported to be feasible and safe with appropriate measures. Recently, noninvasive VNS (nVNS) has been introduced, which can be performed transcutaneously without implantation surgery. Although more clinical trials are being conducted, nVNS can reduce the risk of infection and subsequent device failure. In conclusion, VNS has been demonstrated to be beneficial and effective in the treatment of epilepsy and various diseases, and more development is expected in the future.
Collapse
Affiliation(s)
- Jeyul Yang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
9
|
Mamalyga ML, Mamalyga LM. Role of Monoaminergic Systems of the CNS in Different Periods after Status Epilepticus and Its Relation to Cerebral Hemodynamics. Bull Exp Biol Med 2019; 167:17-23. [DOI: 10.1007/s10517-019-04451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 10/26/2022]
|
10
|
Abstract
Serotonin (5-hydroxytrytamine (5-HT)) plays an important role in experimental seizures. Recently, we reported the depletion of 5-HT by parachlorophynylalanine (PCPA) in whole brain to enhance 6-Hz psychomotor seizures in mice. In the present work, we investigated the effect of 5-HT depletion in cortex and hippocampus, brain regions relevant for epilepsy, on behavioral and ultra-structural changes following 6-Hz psychomotor seizures in mice. In addition, we studied the effect of sodium valproate (SVP) on behavioral, biochemical, and ultra-structural effects induced by 6 Hz. Behavioral changes induced by 6 Hz stimulation were characterized as the increased duration of Straub's tail, stun position, twitching of vibrissae, forelimb clonus, and increased rearing and grooming. PCPA administration further enhanced while SVP reduced these behaviors in mice. The 6-Hz psychomotor seizure induced ultra-structural changes in both cortex and hippocampus in mice treated with PCPA. Furthermore, PCPA administrations followed by 6Hz-induced seizures were accompanied by reduced hippocampal and cortical 5-HT. SVP attenuated the PCPA-induced ultra-structural changes and alterations of 5-HT content in the mouse brain. The study suggests the involvement of 5-HT in the 6 Hz psychomotor seizures and in the mechanisms of action of SVP against such seizures in mice.
Collapse
Affiliation(s)
- K Jahan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - K K Pillai
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - D Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
11
|
Damasceno S, Menezes NBD, Rocha CDS, Matos AHBD, Vieira AS, Moraes MFD, Martins AS, Lopes-Cendes I, Godard ALB. Transcriptome of the Wistar audiogenic rat (WAR) strain following audiogenic seizures. Epilepsy Res 2018; 147:22-31. [DOI: 10.1016/j.eplepsyres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
12
|
Jahan K, Pillai KK, Vohora D. DSP-4 induced depletion of brain noradrenaline and increased 6-hertz psychomotor seizure susceptibility in mice is prevented by sodium valproate. Brain Res Bull 2018; 142:263-269. [PMID: 30098387 DOI: 10.1016/j.brainresbull.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022]
Abstract
The central neurotransmitters assume a noteworthy part in the pathophysiology of epilepsy, noradrenaline is one of them. However, its role in 6 Hz induced psychomotor seizures is not known. The present study was, therefore, designed to investigate the role of noradrenaline (NA) in 6 Hz-induced psychomotor seizures in Swiss albino mice using N-2-Chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a well-known depletor of NA. The vehicle and DSP-4 treated mice were given 6 Hz stimulation. A sham treatment was utilized as a comparator and sodium valproate (SVP) was utilized as a reference anti-epileptic medication. Behavioral changes instigated by 6 Hz stimulation were described as the increased duration of Straub's tail, stun position, twitching of vibrissae, forelimb clonus and increased rearing and grooming. DSP-4 administration further amplified the seizures and behavioral changes while pretreatment with SVP reduced the same in mice. Further, SVP pre-treatment also attenuated the ultra-structural changes observed in cortex and hippocampus of mice treated with DSP-4 and 6 Hz. Finally, the neurochemical estimation of NA in cortex and hippocampus confirmed the depletion of NA following DSP-4 and 6 Hz seizures. SVP pretreatment (but not post-treatment) protected the mice from 6 Hz seizures and attenuated the DSP-4 induced alterations of nor-adrenaline content in the mouse brain. The study indicates low brain NA content to enhance pharmacoresistant seizures in mice and demonstrates that SVP mediated protection against 6 Hz results possibly via modulation of NA content.
Collapse
Affiliation(s)
- Kausar Jahan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Krishna K Pillai
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Abstract
α-Lactalbumin is a whey protein that constitutes approximately 22% of the proteins in human milk and approximately 3.5% of those in bovine milk. Within the mammary gland, α-lactalbumin plays a central role in milk production as part of the lactose synthase complex required for lactose formation, which drives milk volume. It is an important source of bioactive peptides and essential amino acids, including tryptophan, lysine, branched-chain amino acids, and sulfur-containing amino acids, all of which are crucial for infant nutrition. α-Lactalbumin contributes to infant development, and the commercial availability of α-lactalbumin allows infant formulas to be reformulated to have a reduced protein content. Likewise, because of its physical characteristics, which include water solubility and heat stability, α-lactalbumin has the potential to be added to food products as a supplemental protein. It also has potential as a nutritional supplement to support neurological function and sleep in adults, owing to its unique tryptophan content. Other components of α-lactalbumin that may have usefulness in nutritional supplements include the branched-chain amino acid leucine, which promotes protein accretion in skeletal muscle, and bioactive peptides, which possess prebiotic and antibacterial properties. This review describes the characteristics of α-lactalbumin and examines the potential applications of α-lactalbumin for human health.
Collapse
Affiliation(s)
- Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urban-Champaign, Urbana, Illinois, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - John D Fernstrom
- Department of Psychiatry and the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Jahan K, Pillai KK, Vohora D. Parachlorophenylalanine-induced 5-HT depletion alters behavioral and brain neurotransmitters levels in 6-Hz psychomotor seizure model in mice. Fundam Clin Pharmacol 2017; 31:403-410. [PMID: 28295557 DOI: 10.1111/fcp.12283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2025]
Abstract
The present study was designed to investigate the role of serotonin and other neurotransmitters namely dopamine (DA), histamine, nor-epinephrine (NE), glutamate, and γ-aminobutyric acid (GABA) in the 6-Hz-induced psychomotor seizures in Swiss albino mice. Parachlorophenylalanine (PCPA, 300 mg/kg/day, i.p for 3 days)-treated mice were given 6-Hz stimulation. Sodium valproate (SVP) (200 mg/kg/day, p.o for 3 days) was used as a reference antiepileptic drug. The behavioral changes induced by 6 Hz including increased rearing and grooming, Straub's tail, behavioral arrest, stun position were amplified by PCPA. The 6-Hz-induced seizures were accompanied by reduced brain 5-HT, DA, NE, histamine, GABA, and enhanced glutamate levels. PCPA facilitated further reduction of endogenous 5-HT and DA levels but not NE, histamine, GABA, and glutamate levels. Pre- and post-treatment with SVP protected the mice from 6-Hz seizures and attenuated PCPA-induced changes in the levels of 5-HT and DA in the mice brain suggesting the protective effect of SVP in the pharmacoresistant model of epilepsy involving mainly serotonergic mechanism. However, the study also suggests modulation of other neurotransmitters both in 6-Hz psychomotor seizures and in the action of SVP against such seizures.
Collapse
Affiliation(s)
- Kausar Jahan
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Krishna K Pillai
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| |
Collapse
|
15
|
The effect of sertraline and 8-OH-DPAT on the PTZ_induced seizure threshold: Role of the nitrergic system. Seizure 2017; 45:119-124. [DOI: 10.1016/j.seizure.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
|
16
|
Gerez M, Suárez E, Serrano C, Castanedo L, Tello A. The crossroads of anxiety: distinct neurophysiological maps for different symptomatic groups. Neuropsychiatr Dis Treat 2016; 12:159-75. [PMID: 26848265 PMCID: PMC4723020 DOI: 10.2147/ndt.s89651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite the devastating impact of anxiety disorders (ADs) worldwide, long-lasting debates on causes and remedies have not solved the clinician's puzzle: who should be treated and how? Psychiatric classifications conceptualize ADs as distinct entities, with strong support from neuroscience fields. Yet, comorbidity and pharmacological response suggest a single "serotonin dysfunction" dimension. Whether AD is one or several disorders goes beyond academic quarrels, and the distinction has therapeutic relevance. Addressing the underlying dysfunctions should improve treatment response. By its own nature, neurophysiology can be the best tool to address dysfunctional processes. PURPOSE To search for neurophysiological dysfunctions and differences among panic disorder (PD), agoraphobia-social-specific phobia, obsessive-compulsive disorder (OCD) and generalized anxiety disorder. METHODS A sample population of 192 unmedicated patients and 30 aged-matched controls partook in this study. Hypothesis-related neurophysiological variables were combined into ten independent factors: 1) dysrhythmic patterns, 2) delta, 3) theta, 4) alpha, 5) beta (whole-head absolute power z-scores), 6) event-related potential (ERP) combined latency, 7) ERP combined amplitude (z-scores), 8) magnitude, 9) site, and 10) site of hyperactive networks. Combining single variables into representative factors was necessary because, as in all real-life phenomena, the complexity of interactive processes cannot be addressed through single variables and the multiplicity of potentially implicated variables would demand an extremely large sample size for statistical analysis. RESULTS The nonparametric analysis correctly classified 81% of the sample. Dysrhythmic patterns, decreased delta, and increased beta differentiated AD from controls. Shorter ERP latencies were found in several individual patients, mostly from the OCD group. Hyperactivities were found at the right frontorbital-striatal network in OCD and at the panic circuit in PD. CONCLUSIONS Our findings support diffuse cortical instability in AD in general, with individual differences in information processing deficits and regional hyperactivities in OCD and PD. Study limitations and the rationale behind the variable selection and combination strategy will be discussed before addressing the therapeutic implications of our findings.
Collapse
Affiliation(s)
- Montserrat Gerez
- Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Enrique Suárez
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Carlos Serrano
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Lauro Castanedo
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
| | - Armando Tello
- Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| |
Collapse
|
17
|
Hahn E, Burrell B. Pentylenetetrazol-induced seizure-like behavior and neural hyperactivity in the medicinal leech. INVERTEBRATE NEUROSCIENCE 2015; 15:177. [PMID: 25572075 DOI: 10.1007/s10158-014-0177-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/03/2014] [Indexed: 11/26/2022]
Abstract
This study examined the capacity of a known pro-epileptic drug, pentylenetetrazol (PTZ), to elicit seizure-like activity in the medicinal leech, Hirudo verbana. During in vivo experiments, PTZ elicited increased motor activity in a concentration-dependent manner with the highest concentration (10 mM) eliciting episodes of highly uncoordinated exploratory and swimming behavior. Co-application of the anti-epileptic drug, phenytoin, failed to reduce the absolute amount of PTZ-induced motor behavior, but was able to prevent expression of abnormal exploratory and swimming behaviors. During in vitro experiments in which extracellular recordings of connective nerve activity were made, bath application of 1 μM PTZ in Mg(2+)-free saline elicited a significant increase in spontaneous activity. This PTZ-induced increase in activity was completely inhibited by phenytoin. Interestingly, PTZ-induced hyperactivity was also blocked by co-application of the endocannabinoid 2-arachidonoyl glycerol and the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. These findings suggest that the leech can be a useful system in which to study potential anti-epileptic treatments.
Collapse
Affiliation(s)
- Elizabeth Hahn
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University South Dakota, Vermillion, SD, 57069, USA
| | | |
Collapse
|
18
|
Arora T, Bhowmik M, Khanam R, Vohora D. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and CREB pathway. Behav Brain Res 2013; 247:146-152. [PMID: 23473877 DOI: 10.1016/j.bbr.2013.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
The serotonergic system is suggested to be dysregulated in obsessive compulsive disorder (OCD) as selective serotonin reuptake inhibitors have emerged as the mainstay in the treatment of this disorder. Oxcarbazepine (OXC), a second generation antiepileptic drug, enhances hippocampal serotonin (5-HT) levels. The aim of the present study was to screen the anti-OCD effects of OXC on marble burying behaviour (MBB) and 8-OHDPAT-induced disruption of alternation, two most studied paradigms of OCD, in rodents. Here we show that 8-OHDPAT (2.8 mg/kg) significantly increases spontaneous alternation behaviour (SAB) score in a T-maze. Fluoxetine (FLX), an SSRI on chronic administration (10mg/kg, 21 days) restored the increase in SAB induced by 8-OHDPAT in mice which is in line with the findings earlier reported for rats. Hence, we present the first mouse model of OCD induced by 2.8 mg/kg of 8-OHDPAT. Chronic administration (21 days) of OXC (20 and 40 mg/kg) also restored the SAB disrupted by 8-OHDPAT which was comparable to FLX. Likewise in MBB test, FLX and OXC significantly reduced the number of marbles buried. 8-OHDPAT induced OCD was associated with a concomitant decrease in basal 5-HT levels (88%) and depletion of basal CREB (32%) in the frontal cortex. Chronic treatment with FLX and OXC effectively mitigated the lowering effects of 8-OHDPAT on cortical 5-HT, and enabled an efficient recovery in basal CREB levels. Our results on FLX and OXC provide the indication that their anti-OCD effects in part, might be elicited through modulation of 5HT levels and CREB pathway.
Collapse
Affiliation(s)
- Tushar Arora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | |
Collapse
|
19
|
5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: involvement of nitric oxide. Epilepsy Res 2012; 101:217-27. [PMID: 22578701 DOI: 10.1016/j.eplepsyres.2012.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 03/21/2012] [Accepted: 04/07/2012] [Indexed: 01/05/2023]
Abstract
Citalopram is a selective serotonin reuptake inhibitor (SSRI), widely used in the treatment of depressive disorders. It has been shown that citalopram affects seizure susceptibility. Although the exact mechanism of these effects are not yet fully understood, recent data suggest that 5HT(3) receptors and nitric oxide (NO) might participate in the central effects of SSRIs. In this study in a mouse model of clonic seizure induced by pentylenetetrazole we investigated whether 5-HT(3) receptors are involved in the effects of citalopram on seizure threshold. In our experiments, citalopram at lower doses (0.5 and 1mg/kg, i.p) significantly increased the seizure threshold and at higher doses (≥25mg/kg) showed proconvulsive effects. Moreover, mCPBG (a 5-HT(3) receptor agonist) at low and non-effective doses augmented while non-effective doses of tropisetron prevented the anticonvulsive properties of citalopram. On the other hand, Low doses of nitric oxide synthase inhibitors l-NAME and 7-NI alone or in combination with lower doses of 5-HT(3) receptor agonist enhanced the anticonvulsive property of citalopram, while l-arginine (NO precursor) alone or in combination with tropisetron blocked the protective effect of citalopram. In summary, our findings demonstrate that 5-HT(3) receptor mediates the anticonvulsant properties of low doses of citalopram, whereas it seems that the proconvulsive effect is mostly mediated through the NO pathway and can be totally blocked by NOS inhibitors. This could propose a new approach toward finding the mechanism of citalopram activity, curtailing the adverse effects of citalopram and perhaps managing the convulsions as a vicious consequence of citalopram overdose.
Collapse
|
20
|
Mamalyga ML. Monoamine metabolism in the brain of rats with chronic heart failure of non-ischemic origin. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712411040118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Errichiello L, Pezzella M, Santulli L, Striano S, Zara F, Minetti C, Mainardi P, Striano P. A proof-of-concept trial of the whey protein alfa-lactalbumin in chronic cortical myoclonus. Mov Disord 2011; 26:2573-5. [PMID: 22025266 DOI: 10.1002/mds.23908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/16/2011] [Accepted: 07/18/2011] [Indexed: 11/07/2022] Open
|
22
|
Citraro R, Scicchitano F, De Fazio S, Raggio R, Mainardi P, Perucca E, De Sarro G, Russo E. Preclinical activity profile of α-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res 2011; 95:60-9. [PMID: 21458955 DOI: 10.1016/j.eplepsyres.2011.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the potential anticonvulsant activity of α-lactalbumin (ALAC), a whey protein rich in tryptophan (TRP) relative to other large neutral amino acids (LNAAs), in rodent models of seizures and epilepsy. METHODS The effects of ALAC administered per os were evaluated by standard protocols against audiogenic seizures in Genetic Epilepsy Prone Rats (GEPR-9 rats), maximal electroshock (MES)-induced seizures in rats, pilocarpine-induced seizures in mice, spontaneous chronic seizures in mice exposed to pilocarpine-induced status epilepticus (SE), and absence seizures in WAG/Rij rats. In some models, carbamazepine (CBZ) was included as an active control. Plasma TRP/LNAAs ratios were measured by GC-MS. RESULTS Single doses of ALAC up to 500 or 6000 mg/kg were devoid of anticonvulsant activity in all models tested. Conversely, 5- and 12-day treatment with ALAC (250-1000 mg/kg/day) in GEPR rats reduced dose-dependently seizure scores and prolonged latency to clonus onset, with full persistence of the effect for up to 12h. ALAC (125-500 mg/kg/day for 15 days) protected against seizures induced by 250 mg/kg pilocarpine, but was less effective against higher pilocarpine doses. Similarly to CBZ, ALAC (125-500 mg/kg/day for 15 days) was also effective against spontaneous seizures in the post-pilocarpine SE model. ALAC (up to 6000 mg/kg/day for 12 days) did not prevent MES-induced seizures, although it reduced the duration of tonic extension at doses between 250 and 1000 mg/kg/day. Absence seizures in WAG/Rij rats were not significantly affected by ALAC. Plasma TRP/LNAAS ratios increased 2- to 3-fold after dosing with ALAC (250 mg/kg/day) for 7 and 14 days, respectively. CONCLUSIONS ALAC exerts significant protective activity against seizures in animal models, the effect being especially prominent against audiogenic seizures in GEPR-9 rats, seizures induced by low-dose pilocarpine in mice, and spontaneous seizures in mice exposed to pilocarpine-induced SE. This action is likely to be mediated by increased availability of TRP in the brain, with a consequent increase in 5-HT mediated transmission.
Collapse
Affiliation(s)
- Rita Citraro
- Chair of Pharmacology, Department of Experimental and Clinical Medicine, School of Medicine, University Magna Graecia of Catanzaro, Via T. Campanella 115, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hecimovic H, Stefulj J, Cicin-Sain L, Demarin V, Jernej B. Association of serotonin transporter promoter (5-HTTLPR) and intron 2 (VNTR-2) polymorphisms with treatment response in temporal lobe epilepsy. Epilepsy Res 2010; 91:35-8. [PMID: 20655708 DOI: 10.1016/j.eplepsyres.2010.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/25/2010] [Accepted: 06/20/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is the most common epilepsy and about 30% of patients have poorly controlled seizures. Neurobiology underlying responsiveness to medical treatment in TLE patients is unclear and there are currently no biological tests to predict course of the disease. Animal and human studies repeatedly suggested serotonergic dysfunction in subjects with TLE. We investigated association of serotonin transporter (5-HTT) gene polymorphisms with medical treatment response in patients with TLE. METHODS We analyzed 5-HTT gene linked polymorphic region (5-HTTLPR) in promoter and variable number of tandem repeats in the second intron of the 5-HTT gene (VNTR-2) in 101 consecutive subjects with TLE. RESULTS TLE patients with the combination of transcriptionally more efficient genotypes, i.e. 5-HTTLPR L/L and VNTR-2 12/12, had increased seizure refractoriness to antiepileptic medication therapy and shorter periods of seizure freedom, than subjects with other combinations of the 5-HTT genotypes. There were no other clinical or demographic differences among patient groups based on the 5-HTT genotypes. CONCLUSION Combination of the 5-HTT genotypes linked with higher 5-HTT gene expression was found to be associated with worse response to optimal drug therapy. Further studies should determine potential role of this 5-HTT genotype polymorphism in epileptogenesis.
Collapse
Affiliation(s)
- Hrvoje Hecimovic
- Zagreb Epilepsy Center, Department of Neurology, University Hospital, Vinogradska 29, HR-10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
24
|
Gholipour T, Ghasemi M, Riazi K, Ghaffarpour M, Dehpour AR. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide. Seizure 2009; 19:17-22. [PMID: 19942458 DOI: 10.1016/j.seizure.2009.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022] Open
Abstract
There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.
Collapse
Affiliation(s)
- Taha Gholipour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | |
Collapse
|