1
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhong MM, Xie JH, Feng Y, Zhang SH, Xia JN, Tan L, Chen NX, Su XL, Zhang Q, Feng YZ, Guo Y. Causal effects of the gut microbiome on COVID-19 susceptibility and severity: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1173974. [PMID: 37720222 PMCID: PMC10502427 DOI: 10.3389/fimmu.2023.1173974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) caused a global pandemic, with potential severity. We aimed to investigate whether genetically predicted gut microbiome is associated with susceptibility and severity of COVID-19 risk. Methods Mendelian randomization (MR) analysis of two sets with different significance thresholds was carried out to infer the causal relationship between the gut microbiome and COVID-19. SNPs associated with the composition of the gut microbiome (n = 5,717,754) and with COVID-19 susceptibility (n = 14,328,058), COVID-19 severity (n = 11,707,239), and COVID-19 hospitalization (n = 12,018,444) from publicly available genome-wide association studies (GWAS). The random-effect inverse variance weighted (IVW) method was used to determine causality. Three more MR techniques-MR Egger, weighted median, and weighted mode-and a thorough sensitivity analysis were also used to confirm the findings. Results IVW showed that 18 known microbial taxa were causally associated with COVID-19. Among them, six microbial taxa were causally associated with COVID-19 susceptibility; seven microbial taxa were causally associated with COVID-19 severity ; five microbial taxa were causally associated with COVID-19 hospitalization. Sensitivity analyses showed no evidence of pleiotropy or heterogeneity. Then, the predicted 37 species of the gut microbiome deserve further study. Conclusion This study found that some microbial taxa were protective factors or risky factors for COVID-19, which may provide helpful biomarkers for asymptomatic diagnosis and potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Hao Xie
- Institute of Artificial Intelligence & Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Jiang-Nan Xia
- School of Architecture and Art, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
4
|
Wang M, Zhang Y, Li C, Chang W, Zhang L. The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. Front Immunol 2023; 14:1180336. [PMID: 37205106 PMCID: PMC10185909 DOI: 10.3389/fimmu.2023.1180336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Poeta M, Nunziata F, Del Bene M, Morlino F, Salatto A, Scarano SM, Cioffi V, Amitrano M, Bruzzese E, Guarino A, Lo Vecchio A. Diarrhea Is a Hallmark of Inflammation in Pediatric COVID-19. Viruses 2022; 14:v14122723. [PMID: 36560726 PMCID: PMC9783993 DOI: 10.3390/v14122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen with enteric tropism. We compared the clinical, biochemical and radiological features of children hospitalized for acute SARS-CoV-2 infection, classified in two groups based on the presence of diarrhea. Logistic regression analyses were used to investigate the variables associated with diarrhea. Overall, 407 children were included in the study (226 males, 55.5%, mean age 3.9 ± 5.0 years), of whom 77 (18.9%) presented with diarrhea, which was mild in most cases. Diarrhea prevalence was higher during the Alpha (23.6%) and Delta waves (21.9%), and in children aged 5-11 y (23.8%). Other gastrointestinal symptoms were most commonly reported in children with diarrhea (p < 0.05). Children with diarrhea showed an increased systemic inflammatory state (higher C-reactive protein, procalcitonin and ferritin levels, p < 0.005), higher local inflammation as judged by mesenteric fat hyperechogenicity (adjusted Odds Ratio 3.31, 95%CI 1.13-9.70) and a lower chance of previous immunosuppressive state (adjusted Odds Ratio 0.19, 95%CI 0.05-0.70). Diarrhea is a frequent feature of pediatric COVID-19 and is associated with increased systemic inflammation, which is related to the local mesenteric fat inflammatory response, confirming the implication of the gut not only in multisystem inflammatory syndrome but also in the acute phase of the infection.
Collapse
Affiliation(s)
- Marco Poeta
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Nunziata
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Margherita Del Bene
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Morlino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Maria Scarano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Michele Amitrano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-4232
| |
Collapse
|
6
|
Palomino-Kobayashi LA, Ymaña B, Ruiz J, Mayanga-Herrera A, Ugarte-Gil MF, Pons MJ. Zonulin, a marker of gut permeability, is associated with mortality in a cohort of hospitalised peruvian COVID-19 patients. Front Cell Infect Microbiol 2022; 12:1000291. [PMID: 36147602 PMCID: PMC9485714 DOI: 10.3389/fcimb.2022.1000291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023] Open
Abstract
Zonulin has previously been related to intestinal permeability in various inflammatory diseases, and more recently to the physiopathology of severe COVID-19 infections. We analysed serum samples from a previous study of a Peruvian cohort of hospitalised COVID-19 patients, for the quantification of zonulin by sandwich ELISA. Comparisons with clinical data, haematological and biochemical parameters and cytokine/chemokine levels were made. We found higher baseline zonulin levels in deceased patients, and zonulin was associated with fatal outcome in multivariable analyses, even after adjustment for age, gender, and obesity. There were also positive correlations between zonulin, creatinine, D-dimer values and prothrombin time, while inverse correlations were found for Sa/FiO2 ratio and CCL5 (RANTES). Further longitudinal studies are recommended to analyse the variation of zonulin levels over time as well as their relationship with long-COVID.
Collapse
Affiliation(s)
| | - Barbara Ymaña
- Grupo Enfermedades Infecciosas Emergentes. Universidad Científica del Sur, Lima, Peru
| | - Joaquim Ruiz
- Grupo Enfermedades Infecciosas Emergentes. Universidad Científica del Sur, Lima, Peru
| | - Ana Mayanga-Herrera
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Peru
| | - Manuel F. Ugarte-Gil
- Grupo Peruano de Estudio de Enfermedades Autoinmunes Sistémicas, Universidad Científica del Sur, Lima, Peru,Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Maria J. Pons
- Grupo Enfermedades Infecciosas Emergentes. Universidad Científica del Sur, Lima, Peru,*Correspondence: Maria J. Pons,
| |
Collapse
|
7
|
Hidayati N, Hadi F, Suratmi, Maghfiroh IL, Andarini E, Setiawan H, Sandi YDL. Nursing diagnoses in hospitalized patients with COVID-19 in Indonesia. BELITUNG NURSING JOURNAL 2022; 8:44-52. [PMID: 37521083 PMCID: PMC10386809 DOI: 10.33546/bnj.1828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 08/01/2023] Open
Abstract
Background The COVID-19 pandemic has become a global public health issue, and the roles of nurses are very much needed in providing nursing services in the current situation. The enforcement of appropriate nursing diagnoses for patients with COVID-19 is also fundamental in determining proper nursing care to help the patients achieve maximum health. Objective This study aimed to describe and analyze nursing diagnoses in patients with COVID-19 treated in the isolation rooms and ICUs. Methods This study used a secondary data analysis from hospital medical record data of patients with COVID-19 from early December 2020 to the end of February 2021. Data were selected using a cluster random sampling technique and analyzed using descriptive statistics. Results The results showed that the signs and symptoms of the patients with COVID-19 that often appeared were fever, cough, shortness of breath, and decreased consciousness. The common nursing diagnoses in the hospitalized patients with COVID-19 were hyperthermia, ineffective airway clearance, gas exchange disorder, self-care deficit, spontaneous ventilation disorder, spontaneous circulation disorder, knowledge deficit, and shock risk. Conclusion This study offers an insight into nursing practices in the hospital setting, which can be used as a basis for nurses to perform complete nursing assessments and nursing diagnoses during the pandemic.
Collapse
Affiliation(s)
- Nur Hidayati
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | - Farhan Hadi
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | - Suratmi
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | | | - Esti Andarini
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Henri Setiawan
- School of Nursing, Fujian Medical University, Fujian, China
- Department of Nursing, STIKes Muhammadiyah Ciamis, West Java, Indonesia
| | - Yudisa Diaz Lutfi Sandi
- Department of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Akademi Keperawatan Pemerintah Kabupaten Ngawi, East Java, Indonesia
| |
Collapse
|
8
|
Mediterranean Diet a Potential Strategy against SARS-CoV-2 Infection: A Narrative Review. Medicina (B Aires) 2021; 57:medicina57121389. [PMID: 34946334 PMCID: PMC8704657 DOI: 10.3390/medicina57121389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/08/2023] Open
Abstract
Mediterranean Diet represents the traditional eating habits of populations living around the Mediterranean Sea, and it is associated with a lower risk of overall mortality and cancer incidence and cardiovascular diseases. Severe acute respiratory syndrome coronavirus 2 is a new pandemic, and represents a significant and critical threat to global human health. In this study, we aimed to review the possible effects of Mediterranean Diet against the risk of the coronavirus disease 2019. Several vitamins, minerals, fatty acids, and phytochemicals with their potential anti-COVID-19 activity are presented. Different risk factors may increase or reduce the probability of contracting the disease. Mediterranean Diet has also a positive action on inflammation and immune system and could have a protective effect against severe acute respiratory syndrome coronavirus 2. Further studies are needed to corroborate the benefits of the Mediterranean Diet protective role on infection with SARS-CoV-2.
Collapse
|
9
|
Gryczyńska W, Litvinov N, Bitew B, Bartosz Z, Kośmider W, Bogdański P, Skrypnik D. Excess Body Mass-A Factor Leading to the Deterioration of COVID-19 and Its Complications-A Narrative Review. Viruses 2021; 13:v13122427. [PMID: 34960696 PMCID: PMC8708912 DOI: 10.3390/v13122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
Currently, the world is facing two serious pandemics: obesity and COVID-19. It is well-established that the prevalence of obesity has risen dramatically, causing a deterioration in the health quality of the population and increasing susceptibility for the unfavourable course of acute infections. It has been observed that excess body mass significantly influences the COVID-19 outcome. The aim of this review is to present the latest scientific reports on the impact of excess body mass on the course and complications of COVID-19. The Web of Science, PubMed, and Google Scholar databases were searched. Only studies reporting patients stated to be COVID-19 positive based on the results of a nasopharyngeal swab and the ribonucleic acid test were included. It is shown that thromboembolic and ischemic complications, namely stroke, disseminated intravascular coagulation, severe hyperglycaemia, and leukoencephalopathy are more likely to appear in COVID-19 positive patients with obesity compared to non-obese subjects. COVID-19 complications such as cardiomyopathy, dysrhythmias, endothelial dysfunction, acute kidney injury, dyslipidaemia, lung lesions and acute respiratory distress syndrome have a worse outcome among obese patients.
Collapse
Affiliation(s)
- Weronika Gryczyńska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.G.); (N.L.); (B.B.); (Z.B.); (W.K.)
| | - Nikita Litvinov
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.G.); (N.L.); (B.B.); (Z.B.); (W.K.)
| | - Bezawit Bitew
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.G.); (N.L.); (B.B.); (Z.B.); (W.K.)
- Ethiopian Medical Students’ Association, Zambia Street, Addis Ababa P.O. Box 9302, Ethiopia
| | - Zuzanna Bartosz
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.G.); (N.L.); (B.B.); (Z.B.); (W.K.)
| | - Weronika Kośmider
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (W.G.); (N.L.); (B.B.); (Z.B.); (W.K.)
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland;
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland;
- Correspondence:
| |
Collapse
|
10
|
Coffey JC, Byrnes KG, Walsh DJ, Cunningham RM. Update on the mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol 2021; 7:96-106. [PMID: 34822760 DOI: 10.1016/s2468-1253(21)00179-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Over the past 5 years, systematic investigation of the mesenteric organ has expanded and shown that the mesentery is the organ in and on which all abdominal digestive organs develop and remain connected to. In turn, this observation has clarified the anatomical foundation of the abdomen and the fundamental order at that level. Findings related to the shape and development of the mesentery have illuminated its function, advancing our understanding of the pathobiology, diagnosis, and treatment of several abdominal and systemic diseases. Inclusion of the mesentery in surgical resections alters the course of benign and malignant diseases. Mesenteric-based scoring systems can enhance the radiological interpretation of abdominal disease. Emerging findings reconcile observations across scientific and clinical fields and have been assimilated into reference curricula and practice guidelines. This Review summarises the developmental, anatomical, and clinical advances made since the mesentery was redesignated as an organ in 2016.
Collapse
Affiliation(s)
- J Calvin Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; School of Medicine, University of Limerick, Limerick, Ireland.
| | - Kevin G Byrnes
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Dara John Walsh
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | | |
Collapse
|
11
|
Serek P, Oleksy-Wawrzyniak M. The Effect of Bacterial Infections, Probiotics and Zonulin on Intestinal Barrier Integrity. Int J Mol Sci 2021; 22:11359. [PMID: 34768787 PMCID: PMC8583036 DOI: 10.3390/ijms222111359] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal barrier plays an extremely important role in maintaining the immune homeostasis of the gut and the entire body. It is made up of an intricate system of cells, mucus and intestinal microbiota. A complex system of proteins allows the selective permeability of elements that are safe and necessary for the proper nutrition of the body. Disturbances in the tightness of this barrier result in the penetration of toxins and other harmful antigens into the system. Such events lead to various digestive tract dysfunctions, systemic infections, food intolerances and autoimmune diseases. Pathogenic and probiotic bacteria, and the compounds they secrete, undoubtedly affect the properties of the intestinal barrier. The discovery of zonulin, a protein with tight junction regulatory activity in the epithelia, sheds new light on the understanding of the role of the gut barrier in promoting health, as well as the formation of diseases. Coincidentally, there is an increasing number of reports on treatment methods that target gut microbiota, which suggests that the prevention of gut-barrier defects may be a viable approach for improving the condition of COVID-19 patients. Various bacteria-intestinal barrier interactions are the subject of this review, aiming to show the current state of knowledge on this topic and its potential therapeutic applications.
Collapse
Affiliation(s)
- Paweł Serek
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
12
|
Manik M, Singh RK. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J Med Virol 2021; 94:869-877. [PMID: 34672376 PMCID: PMC8662021 DOI: 10.1002/jmv.27405] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
Balanced immune regulation is crucial for recognizing an invading pathogen, its killing, and elimination. Toll‐like receptors (TLRs) are the key regulators of the innate immune system. It helps in identifying between self and nonself‐molecule and eventually eliminates the nonself. Endosomal TLR, mainly TLR3, TLR7, TLR8, and membrane‐bound TLR4, has a role in the induction of cytokine storms. TLR7/8 recognizes the ssRNA SARS‐COV‐2 and when it replicates to dsRNA, it is recognized by TLR3 and drives the TRIF‐mediated inflammatory signaling like NF‐κB, MAPK. Such signaling leads to significant transcription and translation of pro‐inflammatory genes, releasing inflammatory molecules into the systemic circulation, causing an imbalance in the system. So, whenever an imbalance occurs, a surge in the pro‐inflammatory mediators is observed in the blood, including cytokines like interleukin (IL)‐2, IL‐4, IL‐6, IL‐1β, IL‐8, interferon (IFN)‐γ, tumor necrosis factor (TNF)‐α. IL‐6 and IL‐1β are one of the driving factors for bringing the cytokine storm into the systemic circulation, which migrates into the other organs, causing multiple organ failures leading to the death of the individual with severe illness. The imbalanced and hyper responsive immune system leads to a surge leading to death of the infected patients in COVID‐19. It has been observed that cytokine surge is TLR induced, mainly through activation of TLR3, TLR4, TLR7, TLR8 receptors. The cytokine storm migrates into the other organ through systemic circulation. The inflammation and the organ damage occur due to the TLR mediated NF‐κB, MAPK pathway. Hence blocking these specific TLRs may alleviate the chance of SARS‐COV‐2 infection.
Collapse
Affiliation(s)
- Moumita Manik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Rakesh K Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Trovato CM, Montuori M, Pietropaoli N, Oliva S. COVID-19 and celiac disease: A pathogenetic hypothesis for a celiac outbreak. Int J Clin Pract 2021; 75:e14452. [PMID: 34145702 PMCID: PMC8420168 DOI: 10.1111/ijcp.14452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A growing body of evidence supports the intestinal trophism of SARS-CoV-2, with ciliated cells and intestinal enterocytes being target cells because of the high expression of ACE2 and TMPRSS2. Indeed, COVID-19 promotes a "cytokine storm" in the intestinal mucosa: the resulting epithelial damage leads to increased barrier permeability, allowing the passage of gliadin in the intestinal lamina. METHODS Based on current literature, we hypothesize the role of COVID-19 as a potential trigger factor for celiac disease in predisposed patients. CONCLUSIONS Genetically predisposed patients could be more likely to develop celiac disease following SARS-CoV-2 infection, making COVID-19 a candidate culprit for a potential outbreak of celiac disease in the forthcoming future.
Collapse
Affiliation(s)
- Chiara Maria Trovato
- Pediatric Gastroenterology and Liver UnitMaternal and Child Health DepartmentSapienza University of RomeRomeItaly
- Hepatology Gastroenterology and Nutrition Unit"Bambino Gesù" Children HospitalRomeItaly
| | - Monica Montuori
- Pediatric Gastroenterology and Liver UnitMaternal and Child Health DepartmentSapienza University of RomeRomeItaly
| | - Nicoletta Pietropaoli
- Pediatric Gastroenterology and Liver UnitMaternal and Child Health DepartmentSapienza University of RomeRomeItaly
| | - Salvatore Oliva
- Pediatric Gastroenterology and Liver UnitMaternal and Child Health DepartmentSapienza University of RomeRomeItaly
| |
Collapse
|
14
|
Johnson SD, Olwenyi OA, Bhyravbhatla N, Thurman M, Pandey K, Klug EA, Johnston M, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Mohan M, Singh K, Byrareddy SN. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol 2021; 27:4763-4783. [PMID: 34447225 PMCID: PMC8371510 DOI: 10.3748/wjg.v27.i29.4763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence and rapid spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases resulting in over 4 million deaths worldwide with no clear end in sight for the coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed individuals experience mild to moderate symptoms, including fever, cough, fatigue, and loss of smell and taste. However, many individuals develop pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 can also infiltrate the central nervous system, which may damage the blood-brain barrier and the neuron's synapses. Resultant inflammation and neurodegeneration in the brain stem can further prevent efferent signaling to cranial nerves, leading to the loss of anti-inflammatory signaling and normal respiratory and gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes resulting in gut damage followed by microbial dysbiosis and translocation of bacteria and their byproducts across the damaged epithelial barrier. As a result, this exacerbates pro-inflammatory responses both locally and systemically, resulting in impaired clinical outcomes. Recent evidence has highlighted the complex interactions that mutually modulate respiratory, neurological, and gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 potentially disrupts the gut-brain-lung axis. We further highlight targeting specific responses to SARS-CoV-2 for the development of novel, urgently needed therapeutic interventions. Finally, we propose a prospective related to the individuals from Low- and Middle-Income countries. Here, the underlying propensity for heightened gut damage/microbial translocation is likely to result in worse clinical outcomes during this COVID-19 pandemic.
Collapse
Affiliation(s)
- Samuel D Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Omalla A Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Namita Bhyravbhatla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kabita Pandey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Elizabeth A Klug
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Morgan Johnston
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, United States
| | - Kamal Singh
- Department of Molecular Microbiology and Immunology and Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
15
|
Is there any role of intermittent fasting in the prevention and improving clinical outcomes of COVID-19?: intersection between inflammation, mTOR pathway, autophagy and calorie restriction. Virusdisease 2021; 32:625-634. [PMID: 34104708 PMCID: PMC8177033 DOI: 10.1007/s13337-021-00703-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is provoking a global public health crisis. Even though the academic world is intensively pursuing new therapies, there is still no “game changer” in the management of COVID 19. The Mammalian Target of Rapamycin (mTOR) is an ancient signaling system that has been proposed as a molecular tool used by coronaviruses and other RNA and DNA viruses in order to replicate and persist in the host cell. In recent years, Intermittent Fasting (IF), a practice consisting on a strict calorie restriction during a prolonged period of time during the day, has gained popularity due to its potential benefits in multiple health systems and in regulating inflammation. IF inhibits the mTOR pathway which is similar to the effects of Rapamycin in some animal models. mTOR inhibition and promotion of autophagy could potentially be the link between the possible direct benefits of IF in COVID-19 due to the interruption of the viral cycle (protein synthesis). Besides, IF has shown to be a strong anti-inflammatory in multiple prior studies, and may play a role in attenuating COVID -19 severity. This review hypothesizes the possible intersection between viral, immunological, and metabolic pathways related to mTOR and the potential mechanisms through which IF may improve clinical outcomes. Future prospective randomized controlled clinical trials to evaluate intermittent fasting (IF) regimens in order to prevent and treat moderate to severe forms of COVID-19 in humans are needed.
Collapse
|
16
|
Battaglini D, Robba C, Fedele A, Trancǎ S, Sukkar SG, Di Pilato V, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Ball L, Brunetti I, Torres Martí A, Rocco PRM, Pelosi P. The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:671714. [PMID: 34150807 PMCID: PMC8211890 DOI: 10.3389/fmed.2021.671714] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Andrea Fedele
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Sebastian Trancǎ
- Department of Anesthesia and Intensive Care II, Clinical Emergency County Hospital of Cluj, Iuliu Hatieganu, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Anaesthesia and Intensive Care 1, Clinical Emergency County Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Nicolò Patroniti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Antoni Torres Martí
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Division of Animal Experimentation, Department of Pulmonology, Hospital Clinic, Barcelona, Spain
- Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut d'investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19-Network, Ministry of Science, Technology, Innovation and Communication, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
17
|
Ilias I, Goulas S, Zabuliene L. Polycystic ovary syndrome: Pathways and mechanisms for possible increased susceptibility to COVID-19. World J Clin Cases 2021; 9:2711-2720. [PMID: 33969054 PMCID: PMC8058679 DOI: 10.12998/wjcc.v9.i12.2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In 75% of women with polycystic ovary syndrome (PCOS), insulin action is impaired. In obesity, visceral adipose tissue becomes dysfunctional: Chronic inflammation is favored over storage, contributing to the development of metabolic complications. PCOS, metabolic syndrome (MetSy) and non-alcoholic fatty liver disease (NAFLD) apparently share common pathogenic factors; these include abdominal adiposity, excess body weight and insulin resistance. Alterations in the gut microbiome have been noted in women with PCOS compared to controls; these may lead to deterioration of the intestinal barrier, increased gut mucosal permeability and immune system activation, hyperinsulinemia and glucose intolerance, which hamper normal ovarian function and follicular development (all being hallmarks of PCOS). It has been proposed that PCOS may entail higher susceptibility to coronavirus disease 2019 (COVID-19) via its associated comorbidities (NAFLD, obesity, MetSy and alterations in the gut microbiome). Studies have found an association between acute respiratory distress syndrome (seen in severe cases of COVID-19) and the intestinal microbiome. Furthermore, apparently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can gain entry to the gastrointestinal tract via locally-expressed angiotensin converting enzyme type 2 receptors. Excess body weight is associated with more severe COVID-19 and increased mortality. Although robust links between SARS-CoV-2 infection and PCOS/NAFLD/gut microbiome/metabolic consequences are yet to be confirmed, it seems that strategies for adapting the intestinal microbiome could help reduce the severity of COVID-19 in women with PCOS with or without NAFLD, MetSy or obesity.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Spyridon Goulas
- Department of Gastroenterology Unit, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| |
Collapse
|
18
|
Favre G, Legueult K, Pradier C, Raffaelli C, Ichai C, Iannelli A, Redheuil A, Lucidarme O, Esnault V. Visceral fat is associated to the severity of COVID-19. Metabolism 2021; 115:154440. [PMID: 33246009 PMCID: PMC7685947 DOI: 10.1016/j.metabol.2020.154440] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Excess visceral fat (VF) or high body mass index (BMI) is risk factors for severe COVID-19. The receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is expressed at higher levels in the VF than in the subcutaneous fat (SCF) of obese patients. AIM To show that visceral fat accumulation better predicts severity of COVID-19 outcome compared to either SCF amounts or BMI. METHODS We selected patients with symptomatic COVID-19 and a computed tomography (CT) scan. Severe COVID-19 was defined as requirement for mechanical ventilation or death. Fat depots were quantified on abdominal CT scan slices and the measurements were correlated with the clinical outcomes. ACE 2 mRNA levels were quantified in fat depots of a separate group of non-COVID-19 subjects using RT-qPCR. RESULTS Among 165 patients with a mean BMI of 26.1 ± 5.4 kg/m2, VF was associated with severe COVID-19 (p = 0.022) and SCF was not (p = 0.640). Subcutaneous fat was not different in patients with mild or severe COVID-19 and the SCF/VF ratio was lower in patients with severe COVID-19 (p = 0.010). The best predictive value for severe COVID-19 was found for a VF area ≥128.5 cm2 (ROC curve), which was independently associated with COVID-19 severity (p < 0.001). In an exploratory analysis, ACE 2 mRNA positively correlated with BMI in VF but not in SCF of non-COVID-19 patients (r2 = 0.27 vs 0.0008). CONCLUSION Severe forms of COVID-19 are associated with high visceral adiposity in European adults. On the basis of an exploratory analysis ACE 2 in the visceral fat may be a trigger for the cytokine storm, and this needs to be clarified by future studies.
Collapse
Affiliation(s)
- Guillaume Favre
- University of Côte d'Azur, CNRS-UMR 7073 (LP2M), Department of Nephrology-Dialysis-Transplantation, Pasteur University Hospital, F-06002 CD1 Nice, France.
| | - Kevin Legueult
- University of Côte d'Azur, Department of Public Health, Archet University Hospital, F-06202 Nice, France
| | - Christian Pradier
- University of Côte d'Azur, Department of Public Health, Archet University Hospital, F-06202 Nice, France
| | - Charles Raffaelli
- Radiology Department, Pasteur University Hospital, F-06002 Nice, France
| | - Carole Ichai
- University of Côte d'Azur, Intensive Care Unit, Pasteur University Hospital, Nice F-06002, France
| | - Antonio Iannelli
- University of Côte d'Azur, INSERM-U1065, Digestive Surgery and Liver Transplantation Unit, Archet University Hospital, F-06202 Nice, France
| | - Alban Redheuil
- Sorbonne University, Pitié-Salpêtrière Hospital (AP-HP), ICT Cardiothoracic Imaging Unit & Radiology Department, LIB Biomedical Imaging Laboratory INSERM, CNRS, ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Olivier Lucidarme
- Sorbonne University, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, APHP, Pitié-Salpêtrière Hospital, F-750013 Paris, France
| | - Vincent Esnault
- University of Côte d'Azur, CNRS-UMR 7073 (LP2M), Department of Nephrology-Dialysis-Transplantation, Pasteur University Hospital, F-06002 CD1 Nice, France
| |
Collapse
|
19
|
Sharma L, Riva A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 2020; 8:E1744. [PMID: 33172188 PMCID: PMC7694956 DOI: 10.3390/microorganisms8111744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.
Collapse
Affiliation(s)
- Lakshya Sharma
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
| | - Antonio Riva
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
- Foundation for Liver Research, Institute of Hepatology, London SE5 9NT, UK
| |
Collapse
|
20
|
Zabuliene L, Ilias I. Obesity, abdominal organ size and COVID-19 severity. Med Hypotheses 2020; 144:110279. [PMID: 33254583 PMCID: PMC7494437 DOI: 10.1016/j.mehy.2020.110279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Ciurlionio 21, Vilnius LT-03101, Lithuania.
| | - Ioannis Ilias
- Endocrine Unit, Elena Venizelou Hospital, Athens GR-11521, Greece.
| |
Collapse
|
21
|
Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020; 34:14103-14119. [PMID: 32965736 PMCID: PMC7537138 DOI: 10.1096/fj.202001394rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michelle Sayuri Nishino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.,Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Carla Maximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|