1
|
Hao X, Gao Z, Hu M. Anti-tumor role and molecular mechanism of vanillic acid. Discov Oncol 2025; 16:20. [PMID: 39775208 PMCID: PMC11711440 DOI: 10.1007/s12672-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vanillic Acid (VA) is an aromatic acid extracted from traditional Chinese medicine such as Angelica sinensis and Panax ginseng, which has demonstrated potent anti-cancer activity, inhibiting the onset and progression of various malignant tumors. This review highlights the principal mechanism by which VA exerts its anticancer activity, including apoptosis induction, specifically promoting the generation of intracellular reactive oxygen species (ROS), which in turn triggers mitochondrial apoptosis. Furthermore, VA disrupts the cancer cell cycle, arresting most cancer cells at the G1 phase, curtails cell migration, invasion, angiogenesis, and potentiates the therapeutic efficacy of chemotherapeutic drugs, all while minimizing adverse reactions. This paper offers a comprehensive review of VA's anti-tumor effects and underlying mechanisms, aiming to provide some references for scientists and clinical physicians in the research of anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Xunxing Hao
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shangdong, China
| | - Zhixiao Gao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingzhe Hu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Barahuie F, Dorniani D, Saifullah B, Arulselvan P, Hussein MZ, Jaganathan R, Amin El-Fagaih FM, Pratiwi AR. Impacts of designed vanillic acid-polymer-magnetic iron oxide nanocomposite on breast cancer cells. Heliyon 2024; 10:e32863. [PMID: 38994094 PMCID: PMC11237972 DOI: 10.1016/j.heliyon.2024.e32863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
The engineered nano-vehicle was constructed using magnetic iron oxide nanoparticles (MIONs) and chitosan (CTS) to stabilize anticancer agent vanillic acid (VNA) which was loaded on CTS-coated MIONs nanocarrier, and more importantly, to achieve sustained VNA release and subsequent proper anticancer activity. The new thermally stable VNA-CTS- MIONs nanocomposite was spherical with a middle diameter of 6 nm and had a high drug loading of about 11.8 %. The MIONs and resulting nanocomposite were composed of pure magnetite and therefore, were superparamagnetic with saturation magnetizations of 53.3 and 45.7 emu.g-1, respectively. The release profiles of VNA from VNA-CTS-MIONs nanocomposite in different pH values were sustained and showed controlled pH-responsive delivery of the loaded VNA with 89 % and 74 % percentage release within 2354 and 4046 min at pH 5 and 7.4, respectively, as well as were in accordance with the pseudo-second-order model. The VNA-CTS-MIONs nanocomposite treatment at diverse concentrations remarkably decreased the viability and promoted ROS accumulation and apoptosis in the MDA-MB-231 breast cancer cells. Hence, it can be a propitious candidate for the management of breast cancer in the future.
Collapse
Affiliation(s)
- Farahnaz Barahuie
- Faculty of Industry & Mining (Khash), University of Sistan and Baluchestan, Zahedan, Iran
| | - Dena Dorniani
- Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Bullo Saifullah
- Department of Human and Rehabilitation Sciences, The Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | | | - Ravindran Jaganathan
- Microbiology Unit, Preclinical Department, Faculty of Medicine, University Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh-30450, Perak, Malaysia
| | - Fawzi Mohamed Amin El-Fagaih
- Department of Chemical and Petrochemical Engineering, The College of Engineering & Architecture, Initial Campus, Birkat Al Mouz Nizwa, Oman
| | | |
Collapse
|
4
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
6
|
Yang Y, Wang P, Ji Z, Xu X, Zhang H, Wang Y. Polysaccharide‑platinum complexes for cancer theranostics. Carbohydr Polym 2023; 315:120997. [PMID: 37230639 DOI: 10.1016/j.carbpol.2023.120997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zengrui Ji
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
7
|
Monteiro-Alfredo T, dos Santos JM, Antunes KÁ, Cunha J, da Silva Baldivia D, Pires AS, Marques I, Abrantes AM, Botelho MF, Monteiro L, Gonçalves AC, Botelho WH, Paula de Araújo Boleti A, Cabral C, Oliveira PJ, Lucas dos Santos E, Matafome P, de Picoli Souza K. Acrocomia aculeata associated with doxorubicin: cardioprotection and anticancer activity. Front Pharmacol 2023; 14:1223933. [PMID: 37654604 PMCID: PMC10466431 DOI: 10.3389/fphar.2023.1223933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used in the clinic, whose side effects include cardiotoxicity, associated with decreased antioxidant defenses and increased oxidative stress. The association of Dox with natural antioxidants can extend its use if not interfering with its pharmacological potential. In this study, we aimed to understand the effects and mechanisms of the aqueous extract of Acrocomia aculeata leaves (EA-Aa) in cancer cells and the co-treatment with Dox, in in vitro and in vivo models. It was found that EA-Aa showed a relevant decrease in the viability of cancer cells (K562 and MCF-7) and increased apoptosis and death. The Dox cytotoxic effect in co-treatment with EA-Aa was increased in cancer cells. The therapeutic association also promoted a change in cell death, leading to a higher rate of apoptosis compared to the Dox group, which induced necrosis. In addition, in non-cancer cells, EA-Aa enhanced red blood cell (RBC) redox state with lower hemolysis and malondialdehyde (MDA) content and had no in vitro nor in vivo toxicity. Furthermore, EA-Aa showed antioxidant protection against Dox-induced cytotoxicity in H9c2 cells (cardiomyoblast), partially mediated by the NRF2 pathway. In vivo, EA-Aa treatment showed a relevant decrease in MDA levels in the heart, kidney, and brain, evaluated in C57Bl/6 mice induced to cardiotoxicity by Dox. Together, our results proved the effectiveness of EA-Aa in potentiating Dox anticancer effects, with antioxidant and cardioprotective activity, suggesting EA-Aa as a potential Dox pharmacological adjuvant.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Kátia Ávila Antunes
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Janielle Cunha
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Salomé Pires
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Inês Marques
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Margarida Abrantes
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Maria Filomena Botelho
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Lúcia Monteiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
| | - Wellington Henrique Botelho
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Célia Cabral
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo Matafome
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
8
|
Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A, Marisetti AL, Gupta MM, Kazmi I, Alzarea SI, Almalki WH, Gupta G. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond) 2023; 18:1383-1398. [PMID: 37702303 DOI: 10.2217/nnm-2023-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.
Collapse
Affiliation(s)
- Nikita Kaushal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Kamini Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
| |
Collapse
|
9
|
Zhu M, Tang X, Zhu Z, Gong Z, Tang W, Hu Y, Cheng C, Wang H, Sarwar A, Chen Y, Liu F, Huo J, Wang X, Zhang Y. STING activation in macrophages by vanillic acid exhibits antineoplastic potential. Biochem Pharmacol 2023; 213:115618. [PMID: 37211172 DOI: 10.1016/j.bcp.2023.115618] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The host stimulator of interferon genes (STING) signaling pathway is a major innate immune sensing pathway, and the stimulation of this pathway within antigen-presenting cells shows promise in targeting immune-suppressed tumors. Macrophages resident in tumors exhibit anti-inflammatory properties and enhance tumor growth and development. Polarizing such macrophages towards a pro-inflammatory phenotype is an effective strategy for tumor suppression. In the present study, we observed that the STING pathway was inactivated in breast and lung carcinomas, and a positive correlation existed between STING and macrophage markers in these tumors. We found that vanillic acid (VA) could stimulate the STING/TBK1/IRF3 pathway. VA mediated the production of type I IFN and promoted macrophage polarization into the M1 phenotype; this activity was dependent on STING activation. A direct-contact co-culture model and a transwell co-culture model revealed that macrophages with VA-induced STING activation exhibited anti-proliferative effects on SKBR3 and H1299 cells, although a STING antagonist and M2 macrophage-related cytokines alleviated this anti-proliferative effect. Further investigation indicated that phagocytosis and apoptosis-inducing effects were the major mediators of the anti-tumor effect of VA-treated macrophages. Mechanistically, VA promoted the polarization of macrophages to a M1 phenotype via IL-6R/JAK signaling, resulting in enhanced phagocytosis and apoptosis-induction effects. Additionally, STING activation-induced IFNβ production also participated in the apoptosis mediated by VA-treated macrophage in SKBR3 and H1299 cells. Mouse models with 4 T1 tumors confirmed the anti-tumor properties of VA in vivo and revealed the infiltration of VA-induced cytotoxic T cells into the tumors. These data suggest that VA is an effective agonist of STING and provides a new perspective for cancer immunotherapy.
Collapse
Affiliation(s)
- Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongying Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanbin Chen
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuemei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi Province 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
10
|
Ibrahim IM. Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead. Cureus 2023; 15:e33636. [PMID: 36788847 PMCID: PMC9912363 DOI: 10.7759/cureus.33636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/12/2023] Open
Abstract
Various colon-targeted oral delivery systems have been explored so far to treat colorectal diseases, including timed-release systems, prodrugs, pH-based polymer coatings, and microflora-triggered systems. Among them, the microbially triggered system has gained attention. Among various oral colon-targeted delivery systems discussed, the polysaccharide-based colon-targeted delivery system has been found to be quite promising as polysaccharides remain unaffected by gastric as well as upper intestine milieu and are only digested by colonic bacteria upon reaching the colon. The major bottleneck associated with this delivery is that non-suitability of this system during the diseased state due to decrease in bacterial count at that time. This causes the failure of delivery system to release the drug even at colonic site as the polysaccharide matrix/coat cannot be digested properly due to lack of bacteria. The co-administration of probiotics is reported to compensate for the bacterial loss besides facilitating site-specific release. However, this research is also limited at the preclinical level. Hence, efforts are required to make this technology scalable and clinically applicable. This article entails in detail various oral colon-targeted delivery systems prepared so far, as well as the limitations and benefits of polysaccharide-based oral colon-targeted delivery systems.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
11
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Vishwas S, Kumar R, Khursheed R, Ramanunny AK, Kumar R, Awasthi A, Corrie L, Porwal O, Arshad MF, Alshammari MK, Alghitran AA, Qumayri AN, Alkhaldi SM, Alshammari AK, Chellappan DK, Gupta G, Collet T, Adams J, Dua K, Gulati M, Singh SK. Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks. Curr Neuropharmacol 2023; 21:1558-1574. [PMID: 35950245 PMCID: PMC10472810 DOI: 10.2174/1570159x20666220810105421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.
Collapse
Affiliation(s)
- Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | | | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, KRG, Iraq
| | - Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | | | - Abdulrahman A. Alghitran
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Ashwaq N. Qumayri
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh Region 76312, Saudi Arabia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Trudi Collet
- Innovative Medicines Group, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
13
|
Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Makeen HA, Albratty M. Potential role of nutraceuticals via targeting a Wnt/β-catenin and NF-κB pathway in treatment of osteoarthritis. J Food Biochem 2022; 46:e14427. [PMID: 36165556 DOI: 10.1111/jfbc.14427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is a disease due to the aging of the articular cartilage, a post-mitotic tissue that stays functioning until primary homeostatic processes fail. Because of pain and disability, OA significantly influences national healthcare expenses and patient quality of life. It is a whole-joint illness characterized by inflammatory and oxidative signaling pathways and significant epigenetic alterations that cause cartilage extracellular matrix degradation. The canonical Wnt pathway (Wnt/β-catenin pathway) and nuclear factor kappa B (NF-κB) signaling pathways may function in joint tissues by modulating the activity of synovial cells, osteoblasts, and chondrocytes. However, finding innovative ways to treat osteoarthritis and get the joint back to average balance is still a struggle. Nutraceuticals are dietary supplements that promote joint health by balancing anabolic and catabolic signals. New therapeutic methods for OA treatment have been developed based on many research findings that show nutraceuticals have strong anti-inflammation, antioxidant, anti-bone resorption, and anabolic properties. For the treatment of osteoarthritis, we explore the possible involvement of nutraceuticals that target the Wnt/β-catenin and NF-κB pathways. PRACTICAL APPLICATIONS: In keeping with the aging population, osteoarthritis is becoming more widespread. In this extensive research, we studied the role of the Wnt/β-catenin and NF-κB pathway in OA formation and progression. Nutraceuticals that target these OA-related signaling pathways are a viable therapy option. Wnt/β-catenin and NF-κB signaling pathway are inhibited by polyphenols, flavonoids, alkaloids, and vitamins from the nutraceutical category, making them possible therapeutic drugs for OA therapy.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|