1
|
Zhang Z, Liu J, Li T, Fu Z, Mao J, Li X, Ren S. High-efficient and selective separation of dysprosium and neodymium from polyethylene glycol 200 solution by non-aqueous solvent extraction with P350. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
2
|
Han G, Lv J, Chen M. ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture. MEMBRANES 2023; 13:389. [PMID: 37103816 PMCID: PMC10141737 DOI: 10.3390/membranes13040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Mixed matrix membranes (MMMs) with nano-fillers dispersed in polymer matrix have been proposed as alternative pervaporation membrane materials. They possess both promising selectivity benefiting from the fillers and economical processing capabilities of polymers. ZIF-67 was synthesized and incorporated into the sulfonated poly (aryl ether sulfone) (SPES) matrix to prepare SPES/ZIF-67 mixed matrix membranes with different ZIF-67 mass fractions. The as-prepared membranes were used for pervaporation separation of methanol/methyl tert-butyl ether mixtures. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and laser particle size analysis results show that ZIF-67 is successfully synthesized, and the particle size is mainly between 280 nm and 400 nm. The membranes were characterized by SEM, atomic force microscope (AFM), water contact angle, thermogravimetric analysis (TGA), mechanical property testing and positron annihilation technique (PAT), sorption and swelling experiments, and the pervaporation performance was also investigated. The results reveal that ZIF-67 particles disperse uniformly in the SPES matrix. The roughness and hydrophilicity are enhanced by ZIF-67 exposed on the membrane surface. The mixed matrix membrane has good thermal stability and mechanical properties, which can meet the requirements of pervaporation operation. The introduction of ZIF-67 effectively regulates the free volume parameters of the mixed matrix membrane. With increasing ZIF-67 mass fraction, the cavity radius and free volume fraction increase gradually. When the operating temperature is 40 °C, the flow rate is 50 L·h-1 and the mass fraction of methanol in feed is 15%, the mixed matrix membrane with ZIF-67 mass fraction of 20% shows the best comprehensive pervaporation performance. The total flux and separation factor reach 0.297 kg·m-2·h-1 and 2123, respectively.
Collapse
Affiliation(s)
- Guanglu Han
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jie Lv
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou 450001, China; (J.L.); (M.C.)
| | - Mohan Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou 450001, China; (J.L.); (M.C.)
| |
Collapse
|
3
|
Gupta O, Roy S, Rao L, Mitra S. Graphene Oxide-Carbon Nanotube (GO-CNT) Hybrid Mixed Matrix Membrane for Pervaporative Dehydration of Ethanol. MEMBRANES 2022; 12:membranes12121227. [PMID: 36557134 PMCID: PMC9783890 DOI: 10.3390/membranes12121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
The pervaporation process is an energy-conservative and environmentally sustainable way for dehydration studies. It efficiently separates close boiling point and azeotrope mixtures unlike the distillation process. The separation of ethanol and water is challenging as ethanol and water form an azeotrope at 95.6 wt.% of ethanol. In the last few decades, various polymers have been used as candidates in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration but have not been able to achieve an enhanced performance both in terms of flux and selectivity. Composite membranes comprising of poly (vinyl alcohol) (PVA) incorporated with carboxylated carbon nanotubes (CNT-COOH), graphene oxide (GO) and GO-CNT-COOH mixtures were fabricated for the dehydration of ethanol by pervaporation (PV). The membranes were characterized with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Raman spectroscopy, Raman imaging, contact angle measurement, and water sorption to determine the effects of various nanocarbons on the intermolecular interactions, surface hydrophilicity, and degrees of swelling. The effects of feed water concentration and temperature on the dehydration performance were investigated. The incorporation of nanocarbons led to an increase in the permeation flux and separation factor. At a feed water concentration of 10 wt.%, a permeation flux of 0.87 kg/m2.h and a separation factor of 523 were achieved at 23 °C using a PVA-GO-CNT-COOH hybrid membrane.
Collapse
Affiliation(s)
| | | | | | - Somenath Mitra
- Correspondence: ; Tel.: +1-973-596-5611; Fax: +1-973-596-3586
| |
Collapse
|
4
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Eremin Y, Grekhov A, Belogorlov A. Percolation Effects in Mixed Matrix Membranes with Embedded Carbon Nanotubes. MEMBRANES 2022; 12:membranes12111100. [PMID: 36363655 PMCID: PMC9693230 DOI: 10.3390/membranes12111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 05/29/2023]
Abstract
Polymeric membranes with embedded nanoparticles, e.g., nanotubes, show a significant increase in permeability of the target component while maintaining selectivity. However, the question of the reasons for this behavior of the composite membrane has not been unequivocally answered to date. In the present work, based on experimental data on the permeability of polymer membranes based on Poly(vinyl trimethylsilane) (PVTMS) with embedded CNTs, an approach to explain the abnormal behavior of such composite membranes is proposed. The presented model considered the mass transfer of gases and liquids through polymeric membranes with embedded CNTs as a parallel transport of gases through the polymeric matrix and a "percolation" cluster-bound regions around the embedded CNTs. The proposed algorithm for modeling parameters of a percolation cluster of embedded tubular particles takes into account an agglomeration and makes it possible to describe the threshold increase and subsequent decrease permeability with increasing concentration of embedded particles. The numerical simulation of such structures showed: an increase in the particle length leads to a decrease in the percolation concentration in a matrix of finite size, the power of the percolation cluster decreases significantly, but the combination of these effects leads to a decrease in the influence of the introduced particles on the properties of the matrix in the vicinity of the percolation threshold; an increase in the concentration of embedded particles leads to an increase in the probability of the formation of agglomerates and the characteristic size of the elements that make up the percolation cluster, the influence of individual particles decreases and the characteristics of the percolation transition determine the ratio of the sizes of agglomerates and matrix; and an increase in the lateral linear dimensions of the matrix leads to a nonlinear decrease in the proportion of the matrix, which is affected by the introduced particles, and the transport characteristics of such MMMs deteriorate.
Collapse
Affiliation(s)
- Yury Eremin
- Molecular Physics Department, National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway 31, 119991 Moscow, Russia
| | - Alexey Grekhov
- Molecular Physics Department, National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway 31, 119991 Moscow, Russia
| | - Anton Belogorlov
- Molecular Physics Department, National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway 31, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospekt, 29, 119991 Moscow, Russia
- Research Institute for Graphite-Based Structural Materials “NIIgrafit” (JSC “NIIgrafit”), 111524 Moscow, Russia
| |
Collapse
|
6
|
Medesety P, Chaitanya K, Gade HM, Jaiswal V, Wanjari PP. Carbon nanotube assisted highly selective separation of organic liquid mixtures. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Li Z, Hu K, Feng X. Co-depositing polyvinylamine and dopamine to enhance membrane performance for concentration of KAc solutions via sweeping air pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. MEMBRANES 2022; 12:membranes12030312. [PMID: 35323787 PMCID: PMC8956067 DOI: 10.3390/membranes12030312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.
Collapse
|
9
|
Dmitrenko M, Chepeleva A, Liamin V, Mazur A, Semenov K, Solovyev N, Penkova A. Novel Mixed Matrix Membranes Based on Polyphenylene Oxide Modified with Graphene Oxide for Enhanced Pervaporation Dehydration of Ethylene Glycol. Polymers (Basel) 2022; 14:polym14040691. [PMID: 35215603 PMCID: PMC8877255 DOI: 10.3390/polym14040691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Ethylene glycol (EG) is widely used in various economic and industrial fields. The demand for its efficient separation and recovery from water is constantly growing. To improve the pervaporation characteristics of a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membrane in dehydration of ethylene glycol, the modification with graphene oxide (GO) nanoparticles was used. The effects of the introduction of various GO quantities into the PPO matrix on the structure and physicochemical properties were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), swelling experiments, and contact angle measurements. Two types of membranes based on PPO and PPO/GO composite were developed: dense membranes and supported membranes on a fluoroplast substrate (MFFC). Transport properties of the developed membranes were evaluated in the pervaporation dehydration of EG in a wide concentration range (10–90 wt.% and 10–30 wt.% water for the dense and supported membranes, respectively). The supported PPO/GO(0.7%)/MFFC membrane demonstrated the best transport properties in pervaporation dehydration of EG (10–30 wt.% water) at 22 °C: permeation flux ca. 15 times higher compared to dense PPO membrane—180–230 g/(m2·h)), 99.8–99.6 wt.% water in the permeate. The membrane is suitable for the promising industrial application.
Collapse
Affiliation(s)
- Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
- Correspondence: ; Tel.: +7-(812)-363-6000 (ext. 3367)
| | - Anastasia Chepeleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Vladislav Liamin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Anton Mazur
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Konstantin Semenov
- Pavlov First Saint Petersburg State Medical University, L’va Tolstogo Ulitsa 6-8, 197022 Saint Petersburg, Russia;
| | - Nikolay Solovyev
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland;
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| |
Collapse
|
10
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero‐Lattice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Ziyi Hu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
11
|
Choi S, Chaudhari S, Shin H, Cho K, Lee D, Shon M, Nam S, Park Y. Polydopamine-modified halloysite nanotube-incorporated polyvinyl alcohol membrane for pervaporation of water-isopropanol mixture. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Zhao D, Li M, Jia M, Zhou S, Zhao Y, Peng W, Xing W. Asymmetric poly (vinyl alcohol)/Schiff base network framework hybrid pervaporation membranes for ethanol dehydration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew Chem Int Ed Engl 2021; 61:e202114479. [PMID: 34939272 DOI: 10.1002/anie.202114479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Metal-organic framework membranes are frequently used in gas separations, but rare in pervaporation for liquid chemical upgrading, especially for separating water from polyols, due to lack of highly compact and robust micro-architecture. Here, we report hetero-lattice intergrown membranes in which amino-MIL-101 (Cr) particles embedded into the micro-gaps of MIL-53 (Al) rod arrays after secondary growth. By means of high-resolution TEM and two-dimensional topologic simulation, the connection between these two distinct MOF lattices at molecular-level and their crystallographic geometry harmony is identified, which leads to a close-knit structure at crystal boundaries of membranes. Typically, the membrane shows a separation factor as high as 13,000 for 90/10 ethanediol/water solution in pervaporation, yields polymer-grade ethanediol, and saves ca. 32% of energy consumption vs. vacuum distillation. It has a highly robust micro-architecture, with great tolerance to high pressure, durability against ultrasonic therapy and long-term separation stability over 600 h.
Collapse
Affiliation(s)
- Yuecheng Wang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yujie Ban
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Ziyi Hu
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yang Zhao
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Mingyuan Zheng
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Science and Technology on Applied Catalysis, CHINA
| | - Weishen Yang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA
| | - Tao Zhang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| |
Collapse
|
14
|
Removal of Heavy Metals from Wastewater Using Novel Polydopamine-Modified CNTs-Based Composite Membranes. Processes (Basel) 2021. [DOI: 10.3390/pr9122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The presence of major heavy metals including Pb2+, Cu2+, Co2+, Ni2+, Hg2+, Cr6+, Cd2+, and Zn2+ in water is of great concern because they cannot degrade or be destroyed. They are toxic even at very low concentrations. Therefore, it is necessary to remove such toxicants from water. In the current study, polydopamine carbon nanotubes (PD-CNTs) and polysulfone (PS) composite membranes were prepared. The structural and morphological features of the prepared PDCN composite membranes were studied using FTIR, XRD, SEM, and EDS. The potential application of PDCNs for heavy metal removal was studied for the removal of Pb2+, Cr6+, and Cd2+ from wastewater. The maximum removal efficiency of 96.1% was obtained for Cr6+ at 2.6 pH using a composite membrane containing 1.0% PD-CNTs. The removal efficiencies decreased by 64.1 and 73.4, respectively, by enhancing the pressure from 0.50 up to 0.85 MPa. Under the same circumstances, the percentages of Pb+2 removal at 0.49 bar by the PDCNS membranes containing 0.5% and 1.0% PD-CNT were 70 and 90.3, respectively, and decreased to 54.3 and 57.0, respectively, upon increasing the pressure to 0.85 MPa. The results showed that PDCNS membranes have immense potential for the removal of heavy metals from water.
Collapse
|
15
|
Malatjie KI, Mbuli BS, Moutloali RM, Ngila CJ. An In Situ Incorporation of Acrylic Acid and ZnO Nanoparticles into Polyamide Thin Film Composite Membranes for Their Effect on Membrane pH Responsive Behavior. MEMBRANES 2021; 11:membranes11120910. [PMID: 34940411 PMCID: PMC8704247 DOI: 10.3390/membranes11120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022]
Abstract
This paper focuses on an in situ interfacial polymerization modification of polyamide thin film composite membranes with acrylic acid (AA) and zinc oxide (ZnO) nanoparticles. Consequent to this modification, the modified polyamide thin film composite (PA–TFC) membranes exhibited enhanced water permeability and Pb (II) heavy metal rejection. For example, the 0.50:1.50% ZnO/AA modified membranes showed water permeability of 29.85 ± 0.06 L·m−2·h−1·kPa−1 (pH 3), 4.16 ± 0.39 L·m−2·h−1·kPa−1 (pH 7), and 2.80 ± 0.21 L·m−2·h−1·kPa−1 1 (pH 11). This demonstrated enhanced pH responsive properties, and improved water permeability properties against unmodified membranes (2.29 ± 0.59 L·m−2·h−1·kPa−1, 1.79 ± 0.27 L·m−2·h−1·kPa−1, and 0.90 ± 0.21 L·m−2·h−1·kPa−1, respectively). Furthermore, the rejection of Pb (II) ions by the modified PA–TFC membranes was found to be 16.11 ± 0.12% (pH 3), 30.58 ± 0.33% (pH 7), and 96.67 ± 0.09% (pH 11). Additionally, the membranes modified with AA and ZnO/AA demonstrated a significant pH responsiveness compared to membranes modified with only ZnO nanoparticles and unmodified membranes. As such, this demonstrated the swelling behavior due to the inherent “gate effect” of the modified membranes. This was illustrated by the rejection and water permeation behavior, hydrophilic properties, and ion exchange capacity of the modified membranes. The pH responsiveness for the modified membranes was due to the –COOH and –OH functional groups introduced by the AA hydrogel and ZnO nanoparticles.
Collapse
Affiliation(s)
- Kgolofelo I. Malatjie
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (K.I.M.); (R.M.M.); (C.J.N.)
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Bhekani S. Mbuli
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (K.I.M.); (R.M.M.); (C.J.N.)
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| | - Richard M. Moutloali
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (K.I.M.); (R.M.M.); (C.J.N.)
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Catherine J. Ngila
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (K.I.M.); (R.M.M.); (C.J.N.)
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
16
|
Preparation of Organic Crystal Seed and Its Application in Improving the Functional Period of Biodegradable Agricultural Film. CRYSTALS 2021. [DOI: 10.3390/cryst11070826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
White pollution caused by agricultural films has recently attracted great attention. In some areas, the content of micro plastic in the soil has reached 30 kg/ha. The most effective way to solve this problem is to replace traditional polyethylene agricultural films with degradable agricultural films. The consistency between the degradation rate and the crop growth period has become the biggest obstacle for the wide application of such novel agricultural films. In this paper, crystallinity regulation is used to adjust the functional period of degradable agricultural films. In addition, an organic nucleating agent of polyethylenimine (PEI) is selected by doping it to poly(butylene adipate-co-terephthalate) (PBAT) polymers using a double-screw extruder. The PBAT doped with 1 wt% PEI films revealed a significant increase in mechanical properties, water holding capacity, and crystallinity compared with the pure PBAT film. There was a 31.9% increase in tensile strength, a 30.5% increase in elongation at break, a 29.6% increase in tear resistance, a 30.9% decrease in water vapor permeability, and a 3.1% increase in crystallinity. Furthermore, the induction period of PBAT doped with 1 wt% PEI under photoaging (without soil) was about 160 h longer than PBAT film, and the experienced biodegradation in soil (without light) was 1 week longer than PBAT film. Experimental results exhibited that the change of degradation degree was linearly proportional to the degree of crystallinity. This study proposes a convenient, low-cost, and effective method to adjust the crystallinity and change the degradation rate.
Collapse
|
17
|
Novel stand-alone PVA mixed matrix membranes conjugated with graphene oxide for highly improved reverse osmosis performance. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Ahmadi M, Ansaloni L, Hillestad M, Deng L. Solvent Regeneration by Thermopervaporation in Subsea Natural Gas Dehydration: An Experimental and Simulation Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Luca Ansaloni
- Department of Sustainable Energy Technology, SINTEF Industry, Oslo 0373, Norway
| | - Magne Hillestad
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| |
Collapse
|
19
|
Raeisi Z, Moheb A, Arani MN, Sadeghi M. Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Liang S, Song Y, Zhang Z, Mu B, Li R, Li Y, Yang H, Wang M, Pan F, Jiang Z. Construction of graphene oxide membrane through non-covalent cross-linking by sulfonated cyclodextrin for ultra-permeable butanol dehydration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Liu Y, Pan F, Wang M, Cao C, Zhang Z, Wang H, Liu X, Li Y, Jiang Z. Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. J Colloid Interface Sci 2021; 589:486-499. [PMID: 33486284 DOI: 10.1016/j.jcis.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022]
Abstract
This paper reports a novel thin-film nanocomposite (TFN) membrane with a dense, flat, and hydrophilic polyamide (PA) layer. The atypical PA structure was obtained by the cross-linking reaction of graphene oxide quantum dots containing amino groups (NH2-GOQDs) with triacyl chloride and polyamide oligomers. And the resulting TFN membrane showed a flat (small-scale ridge structure) and smooth surface. Meanwhile, the introduction of oxygen-containing and amino functional groups increased surface hydrophilicity. The reaction of amino groups on the NH2-GOQDs with acid chloride groups and the carboxyl groups (in the linear part of the polyamide) enhanced the degree of cross-linking of the PA layer, forming a compact surface. Owning to the dense surface structure, excellent hydrophilicity, and small water transmission distance, the optimized TFN membrane exhibited an enhanced water flux of 26.57 L⋅m-2⋅h-1 with a low reverse salt flux of 6.0 g⋅m-2⋅h-1. Furthermore, nano-indentation/scratch results showed the interface adhesion between substrate and PA layer was improved due to the physical anchoring of NH2-GOQDs in the substrate. And in the long-term FO test, the TFN membrane showed stable selectivity. This work proves that the targeted structural design of the PA layer at the nanoscale will have a positive impact on desalination field.
Collapse
|
23
|
Dewulf B, Batchu NK, Binnemans K. Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:19032-19039. [PMID: 33457111 PMCID: PMC7807624 DOI: 10.1021/acssuschemeng.0c07207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Neodymium and dysprosium can be efficiently separated by solvent extraction, using the neutral extractant Cyanex 923, if the conventional aqueous feed phase is largely replaced by the green polar organic solvent polyethylene glycol 200 (PEG 200). While pure aqueous and pure PEG 200 solutions in the presence of LiCl or HCl were not able to separate the two rare earth elements, high separation factors were observed when extraction was performed from PEG 200 chloride solutions with addition of small amounts of water. This addition of water bridges the gap between traditional hydrometallurgy and novel solvometallurgy and overcomes the challenges faced in both methods. The effect of different variables was investigated: water content, chloride concentration, type of chloride salt, Cyanex 923 concentration, scrubbing agent. A Job plot revealed the extraction stoichiometry is DyCl3·4L, where L is Cyanex 923. The McCabe-Thiele diagram for dysprosium extraction showed that complete extraction of this metal can be achieved by a 3-stage counter-current solvent extraction process, leaving neodymium behind in the raffinate. Finally, a conceptual flow sheet for the separation of neodymium and dysprosium including extraction, scrubbing, stripping, and regeneration steps was presented. The nonaqueous solvent extraction process presented in this paper can contribute to efficient recycling of rare earths from end-of-life neodymium-iron-boron (NdFeB) magnets.
Collapse
Affiliation(s)
- Brecht Dewulf
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Nagaphani Kumar Batchu
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| |
Collapse
|
24
|
Halakoo E, Feng X. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Synergistic effect of polyvinyl alcohol sub-layer and graphene oxide condiment from active layer on desalination behavior of forward osmosis membrane. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Rostovtseva V, Pulyalina A, Rudakova D, Vinogradova L, Polotskaya G. Strongly Selective Polymer Membranes Modified with Heteroarm Stars for the Ethylene Glycol Dehydration by Pervaporation. MEMBRANES 2020; 10:membranes10050086. [PMID: 32365736 PMCID: PMC7281401 DOI: 10.3390/membranes10050086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 11/18/2022]
Abstract
Hybrid membranes based on poly (2,6-dimethyl-1,4-phenylene oxide) modified with heteroarm stars (HAS) were developed to separate ethylene glycol/water mixtures by pervaporation. The HAS consist of a small branching center fullerene C 60 and twelve arms of different nature, six arms of nonpolar polystyrene and six arms of polar poly-tert-butyl methacrylate. The changes of structure and physical properties with HAS inclusion were systematically studied using SEM, X-ray diffraction analysis, TGA, and contact angle measurements. Mass transfer of ethylene glycol and water through membranes was studied by sorption and pervaporation tests. It was found that the growth of HAS content up to 5 wt% in the membrane leads to an increase in the total flux and a strong increase in the separation factor. To evaluate intrinsic properties of the penetrant–membrane system, permeability and selectivity were calculated. Overall, utilizing star-shaped macromolecules as a filler can be a promising way to improve the separation performance of diffusion membranes.
Collapse
Affiliation(s)
- Valeriia Rostovtseva
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg 198504, Russia; (V.R.); (D.R.); (G.P.)
| | - Alexandra Pulyalina
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg 198504, Russia; (V.R.); (D.R.); (G.P.)
- Correspondence: ; Tel.: +7-8-124-284-805
| | - Daria Rudakova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg 198504, Russia; (V.R.); (D.R.); (G.P.)
| | - Ludmila Vinogradova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia;
| | - Galina Polotskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg 198504, Russia; (V.R.); (D.R.); (G.P.)
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia;
| |
Collapse
|
27
|
Wang Y, Li L, Zhang X, Li J, Wang J, Li N. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Wu Y, Li C, Fan F, Liang J, Yang Z, Wei X, Chen S. PVAm Nanofibers Fabricated by Rotary Jet Wet Spinning and Applied to Bisphenol A Recognition. ACS OMEGA 2019; 4:21361-21369. [PMID: 31867531 PMCID: PMC6921610 DOI: 10.1021/acsomega.9b02964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Poly(vinylamine) (PVAm) is an important polymer with the highest content of primary amine groups of any polymer. PVAm has a great potential in selective separation and smart materials. It is difficult to fabricate pure PVAm nanofibers by electrospinning and rotary jet spinning (RJS) without additional polymers. In this work, rotary jet wet spinning (RJWS) was applied to fabricate molecular imprinting nanofibers (MINFs) with polyelectrolyte for the first time. Initially, optimal parameters of spinning are investigated, including coagulation bath, solution viscosity, and rotation speed. The PVAm aqueous solution is sensitive to alcohol. To demonstrate RJWS application, PVAm-based MINFs for bisphenol A (one endocrine disruptor) recognition are prepared by adding dummy template, cross-linking, and template elution. The association constant (8.6 mg/L), equilibrium time (30 min), and binding sites utilization rate (80%) of MINFs are evaluated. Its adsorption amount and selectivity are little lower than those of MIPs prepared by bulk polymerization; however, its adsorption speed is faster than that of MIPs.
Collapse
Affiliation(s)
- Yingzhu Wu
- School
of Textile Materials and Engineering and School of Biotechnology and Health
Sciences, Wuyi University, Jiangmen 529020, P. R. China
- PCFM
Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chen Li
- School
of Textile Materials and Engineering and School of Biotechnology and Health
Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Fei Fan
- School
of Textile Materials and Engineering and School of Biotechnology and Health
Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jiahao Liang
- School
of Textile Materials and Engineering and School of Biotechnology and Health
Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Zihang Yang
- School
of Textile Materials and Engineering and School of Biotechnology and Health
Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Xiaoqun Wei
- Guangdong
Provincial Key Laboratory of Food Quality and Safety, College of Food
Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shuixia Chen
- PCFM
Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
29
|
Unlu D. Recovery of cutting oil from wastewater by pervaporation process using natural clay modified PVA membrane. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2404-2411. [PMID: 32245932 DOI: 10.2166/wst.2020.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the pervaporative dehydration of the cutting oil 'diethylene glycol' (DEG) through a hydrophilic PVA membrane was investigated at various operation temperatures in the range of 333-363 K with a feed mixture containing 0.5-2.0 wt% water. The pervaporation (PV) performance of poly(vinyl alcohol) (PVA) is enhanced by the addition of natural clay kaolin into the pristine membrane. The thermal stability of the membranes was analyzed by thermal gravimetric analysis (TGA). The morphological analysis of the membranes was performed by scanning electron microscope (SEM). Separation success was determined by calculation of flux, selectivity, and PSI. These values were investigated as functions of the clay amount, feed concentration and feed temperature. The obtained results show that PV is an effective method for recycling waste cutting oil from wastewater.
Collapse
|
30
|
Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117246] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Li M, Brant JA. Effects of aluminogermanate imogolite nanotube orientation on mass transport across polyamide nanocomposite membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Selim A, Toth AJ, Fozer D, Haaz E, Valentínyi N, Nagy T, Keri O, Bakos LP, Szilágyi IM, Mizsey P. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Raeisi Z, Moheb A, Sadeghi M, Abdolmaleki A, Alibouri M. Titanate nanotubes–incorporated poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Swapna VP, Nambissan PMG, Thomas SP, Vayyaprontavida Kaliyathan A, Jose T, George SC, Thomas S, Stephen R. Free volume defects and transport properties of mechanically stable polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol)‐poly(ethylene oxide) blend membranes. POLYM INT 2019. [DOI: 10.1002/pi.5815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Selvin P Thomas
- Chemical Engineering Technology Department, Yanbu Industrial College and Advanced Materials Laboratory, Yanbu Research CenterRoyal Commission Yanbu Colleges and Institutes (RCYCI) Yanbu Kingdom of Saudi Arabia
| | - Abitha Vayyaprontavida Kaliyathan
- School of Chemical Sciences and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)Mahatma Gandhi University Kottayam India
| | - Thomasukutty Jose
- Centre for Nano Science and Technology, Department of Basic SciencesAmal Jyothi College of Engineering Kanjirapally India
| | - Soney C George
- Centre for Nano Science and Technology, Department of Basic SciencesAmal Jyothi College of Engineering Kanjirapally India
| | - Sabu Thomas
- School of Chemical Sciences and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)Mahatma Gandhi University Kottayam India
| | - Ranimol Stephen
- Department of ChemistrySt Joseph's College (Autonomous) Calicut India
| |
Collapse
|
36
|
Dudek G, Krasowska M, Turczyn R, Strzelewicz A, Djurado D, Pouget S. Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
A Study on DSLM Transporting the Rare Earth Metal La (III) with a Carrier of PC-88A. Int J Anal Chem 2018; 2018:9427676. [PMID: 30356393 PMCID: PMC6178153 DOI: 10.1155/2018/9427676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
This paper studies transmission behavior of La (III) in dispersed supported liquid membrane (DSLM) of dispersed phase constituted by dispersed supported liquid membrane solution and HCl solution with polyvinylidene fluoride membrane (PVDF) as support and kerosene as membrane solvent, with 2-ethyl hexyl phosphonic acid-single-2-ethyl hexyl ester (PC-88A) and two-(2-ethyl hexyl) phosphoric acid (D2EHPA) as mobile carrier. It also investigates the influence of La (III) transmission by the material liquid acidity, initial concentration of La (III), HCI concentration, membrane solution, and HCI solution volume ratio, resolving agent and carrier concentration, as well as concluding that the optimal transmission and separation conditions are dispersed phase of 4.00 mol/L HCl concentration, 30:30 volume ratio of membrane solution, and HCl solution, within 0.160 mol/L controlled carrier concentration and 4.00 pH value of material liquid. Under the optimal conditions, the La (III) initial concentration of material liquid phase is 8.00 × 10-5 mol/L mol/L, 125 min, and 93.9% migration rate. Under the condition of unchanged acidity of resolving phase, HCL, H2SO4, and HNO3 as resolving agent, at 125th min, the migration rates of La (III) are 93.9%, 94.0%, and 87.8%, respectively. HCl solution, H2SO4 solution, and HNO3 solution have a certain effect on the La (III) resolution, of which 4.00 mol/L HCl solution and 2.00 mol/L H2SO4 solution are better. The effect of HNO3 is slightly lower than HCl and H2SO4.
Collapse
|
39
|
Synthesis of polyamide thin-film nanocomposite membranes using surface modified imogolite nanotubes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z, Cao X. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
|
42
|
Wang S, Li S, Hou C, Ma G, Wang H, Wu J, Hao X, Zhang H. Functionalization of multiwalled carbon nanotubes by amidation and Michael addition reactions and the effect of the functional chains on the properties of waterborne polyurethane composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.46757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shaohui Wang
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Shasha Li
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Caiying Hou
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Guozhang Ma
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Hezhi Wang
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Jianbin Wu
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Xiaogang Hao
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Hui Zhang
- Department of Chemical and Biochemical Engineering; University of Western Ontario; London Ontario N6A 5B9 Canada
| |
Collapse
|
43
|
Wei Z, Liu Q, Wu C, Wang H, Wang H. Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Kwon Y, Chaudhari S, Kim C, Son D, Park J, Moon M, Shon M, Park Y, Nam S. Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture. RSC Adv 2018; 8:20669-20678. [PMID: 35542332 PMCID: PMC9080825 DOI: 10.1039/c8ra03474e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Ag-exchanged NaY zeolite (Ag-NaZ) particles were prepared by ion exchange and introduced to a polyvinyl alcohol (PVA) membrane cross-linked with polyacrylic acid (PAA) for the pervaporation dehydration of an isopropanol (IPA) aqueous mixture. The Ag-exchanged NaY zeolite particles were characterized by FE-SEM, EDS, BET, and XRD studies. The prepared Ag-NaZ-loaded PVA/PAA composite membrane was characterized by FE-SEM, XRD, a swelling study, and contact angle measurements. Pervaporation characteristics were investigated in terms of Ag-NaZ concentrations within PVA/PAA membranes using diverse feed solution conditions. The preferential sorption of IPA/water mixtures for Ag-NaZ-introduced membranes were also determined by calculating the apparent activation energies of IPA and water permeation, respectively. As a result, flux and selectivity increased with the Ag-NaZ concentration to 5 wt% in the membrane. Optimum pervaporation performance was observed in a 5 wt% Ag-NaZ-incorporated membrane with a flux equal to 0.084 kg m-2 h-1 and a separation factor of 2717.9 at 40 °C from an 80 wt% IPA aqueous feed solution.
Collapse
Affiliation(s)
- YongSung Kwon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - ChaEun Kim
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - DaHae Son
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - JiHwan Park
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MyungJun Moon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
45
|
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Pan F, Wang M, Ding H, Song Y, Li W, Wu H, Jiang Z, Wang B, Cao X. Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Asim S, Wasim M, Sabir A, Shafiq M, Andlib H, Khuram S, Ahmad A, Jamil T. The effect of Nanocrystalline cellulose/Gum Arabic conjugates in crosslinked membrane for antibacterial, chlorine resistance and boron removal performance. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:68-77. [PMID: 28941839 DOI: 10.1016/j.jhazmat.2017.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
In this work, we developed hybrid membranes integrated with Nanocrystalline cellulose (NCC)/Gum Arabic (GuA) conjugates using crosslinked Poly (vinyl alcohol) (PVA) as a matrix phase with the addition of PEO-PPO-PEO block copolymer that insured pore formation. At first, the NCC was prepared from microcrystalline cellulose via acid hydrolysis process. The performance property of hybrid NCC/GuA was measured using boron removal. The results showed that the rejection capability enhanced as compared to the control membranes, especially at 0.1wt% of NCC the selectivity is up to 92.4% with the flux rate of 21.3L/m2.h. Moreover, the GuA in NCC/GuA conjugate significantly enhances the antibacterial activity by hindering the bacterial attachment to the surface as both of them carry the negative charge. Also by providing the active sites responsible for hydrogen bonding thus enhancing the hydrophilic character resulted in increased permeation flux rate. Therefore, the NCC/GuA conjugated membranes have great potentials for boron removal.
Collapse
Affiliation(s)
- Saba Asim
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Maria Wasim
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan.
| | - Muhammad Shafiq
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Huma Andlib
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Sania Khuram
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Adnan Ahmad
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan
| | - Tahir Jamil
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 Pakistan.
| |
Collapse
|
50
|
Gao B, Jiang Z, Zhao M, Wu H, Pan F, Mayta JQ, Chang Z, Bu X. Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|