1
|
Zhao Y, Cui W, Shen Q, Zhao S, Qiu Y, Chen F, Lin J, Fang C, Zhu L. Zwitterionic nanospheres engineered co-polymer composite membrane for precise protein-protein separation via dynamic self-assembly micelle deposition. Colloids Surf B Biointerfaces 2024; 243:114118. [PMID: 39079187 DOI: 10.1016/j.colsurfb.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
The accurate protein-protein separation is important but technically challenging. Achieving such a precise separation using membrane requires the selective channels with appropriate pore geometry structure and high anti-fouling property. In this study, polyethersulfone-b-poly(sulfobetaine methyl methacrylate) (PES-b-PSBMA) was synthesized and engineered onto polysulfone (PSF) ultrafiltration (UF) membrane to fabricate zwitterionic nanospheres engineered co-polymer (ZN-e-CoP) composite membrane via dynamic self-assembly micelle deposition. On the one hand, self-assembly zwitterionic nanospheres were used as blocks to construct hydrophilic layers with size-dependent sieving channels, endowing ZN-e-CoP composite membranes with enhanced permselectivity and protein-protein separation abilities, meanwhile zwitterionic groups from nanospheres reinforced the structure stability of nanospheres/nanospheres and nanospheres/membrane via multiple intermolecular interactions. On the other hand, zwitterionic nanospheres can induce to produce the hydration layer enveloping themselves by binding water molecules, where hydration layer acts as a protective barrier on the membrane surface, impeding the protein adhesion. Hence, ZN-e-CoP_1a composite membrane exhibited superior separation properties with Lysozyme/Bovine Serum Albumin (BSA) separation factor of 18.1 and 95.4 % rejection against BSA, 10.1 and 2.3 times, respectively, higher these of pristine PSF membrane (1.8 and 42.1 %), without obviously sacrificing water flux. Simultaneously, hydration layer enables the ZN-e-CoP_1a membrane with enhanced anti-fouling performance and durability during the long-term operations. The proposed approach opens new pathways to fabricate excellent anti-fouling membranes for precise protein-protein separation.
Collapse
Affiliation(s)
- Yifan Zhao
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenshuo Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China.
| | - Shuzhen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China
| | - Yayu Qiu
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fang Chen
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiuyang Lin
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China.
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
2
|
Wei Q, Feng S, Zhang Z, Liu L, Wu L. A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier. Colloids Surf B Biointerfaces 2022; 220:112921. [PMID: 36252532 DOI: 10.1016/j.colsurfb.2022.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
A high protein retention polyethersulfone (PES) membrane was prepared by nonsolvent-induced phase separation and surface coating, which exhibited enhanced hemocompatibility and antioxidant stress performance. The cross-linked network was constructed by tannic acid (TA) and alpha-lipoic acid (α-LA) on the surface of the membrane, which controlled the pores to a reasonable size. The enrichment of heparin-like groups on the membrane surface, implemented by "hydrophobic interaction" and "click reaction", confers anticoagulant properties; the presence of a large number of phenolic hydroxyl groups from TA and the introduction of α-LA allows the modified membranes to intervene in oxidative stress. The hemocompatibility characterizations included plasma recalcification time (PRT), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and hemolysis rate (HR). Additionally, the DPPH ABTS radical scavenging capacity was tested to evaluate the antioxidant performance. The results show that the modified membrane presents an outstanding protein retention rate (99.3%) along with permeability. In addition, the PRT is prolonged to 341.7 s, and the DPPH• scavenging ability reaches 0.74 µmol•cm-2. The membranes can be easily prepared and present excellent comprehensive performance. This work provides a simple and facile strategy for the fabrication of hemodialysis membranes with controllable pore sizes.
Collapse
Affiliation(s)
- Qianyu Wei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Xiangxing Road 6, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
3
|
Zaman SU, Rafiq S, Ali A, Mehdi MS, Arshad A, Rehman SU, Muhammad N, Irfan M, Khurram MS, Zaman MKU, Hanbazazah AS, Lim HR, Show PL. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes. CHEMOSPHERE 2022; 307:135626. [PMID: 35863415 DOI: 10.1016/j.chemosphere.2022.135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 05/27/2023]
Abstract
The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Pakistan.
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan.
| | - Saif-Ur Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Muhammad Irfan
- Centre of Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | | | | | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Yin T, Zhang X, Shao S, Xiang T, Zhou S. Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr Polym 2022; 301:120356. [DOI: 10.1016/j.carbpol.2022.120356] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
5
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
6
|
Zhang P, Rajabzadeh S, Istirokhatun T, Shen Q, Jia Y, Yao X, Venault A, Chang Y, Matsuyama H. A novel method to immobilize zwitterionic copolymers onto PVDF hollow fiber membrane surface to obtain antifouling membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review. ENVIRONMENTAL RESEARCH 2022; 204:112045. [PMID: 34536369 DOI: 10.1016/j.envres.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
Collapse
Affiliation(s)
- Pooja Hariharan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Sujithra Sundarrajan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Sunanda Seshan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
8
|
A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. J Colloid Interface Sci 2022; 608:313-321. [PMID: 34626978 DOI: 10.1016/j.jcis.2021.09.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022]
Abstract
The demand for high safety lithium batteries has led to the rapid development of solid electrolytes. However, some inherent limitations of solid polymer electrolytes (SPEs) impede them achieving commercial value. In this work, a novel polyethylene oxide (PEO)-based solid electrolyte is reported. For the first time, biomaterial-based chitosan-silica (CS) hybrid particles serve as fillers, which can interact with polymer matrix to significantly improve the electrochemical performance. The optimized polymer electrolyte exhibits a maximum ion conductivity of 1.91 × 10-4 S·cm-1 at 30 °C when the mass ratio of PEO and CS is 4:1 (PCS4). All-solid-state LiFePO4|PCS4|Li cells deliver a high coulombic efficiency and stable cycling performance, remaining an excellent capacity of more than 96.2 % after 150 cycles. Furthermore, the wide electrochemical window (5.4 V) and steady interfacial stability provide the possibility for high-voltage batteries applications. NCM811|| Li cells are assembled and display reliable charge and discharge cycle properties.
Collapse
|
9
|
Miao Z, Chen Z, Wang L, Zhang L, Zhou J. Dual-responsive zwitterion-modified nanopores:a mesoscopic simulation study. J Mater Chem B 2022; 10:2740-2749. [DOI: 10.1039/d1tb02416g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, dissipative particle dynamics simulation was carried out to investigate the intelligent switching effect of nanopores grafted by the zwitterionic polymer brushes poly(carboxybetaine) with excellent antifouling property. The...
Collapse
|
10
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
11
|
Fouling of polyelectrolyte multilayer based nanofiltration membranes during produced water treatment: The role of surfactant size and chemistry. J Colloid Interface Sci 2021; 594:9-19. [PMID: 33744731 DOI: 10.1016/j.jcis.2021.02.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/09/2023]
Abstract
Large volumes of water become contaminated with hydrocarbons, surfactants, salts and other chemical agents during Oil & Gas exploration activities, resulting in a complex wastewater stream known as produced water (PW). Nanofiltration (NF) membranes are a promising alternative for the treatment of PW to facilitate its re-use. Unfortunately, membrane fouling still represents a major obstacle. In the present work, we investigate the effect of surface chemistry on fouling of NF membranes based on polyelectrolyte multilayers (PEM), during the treatment of artificial produced water. To this end, oil-in-water (O/W) emulsions stabilized with four different surfactants (anionic, cationic, zwitterionic and non-ionic) were treated with PEM-based NF membranes having the same multilayer, but different top layer polymer chemistry: crosslinked poly(allylamine hydrochloride) (PAH, nearly uncharged), poly(sodium 4-styrene sulfonate) (PSS, strongly negative), poly(sulfobetaine methacrylate-co-acrylic acid) (PSBMA-co-AA, zwitterionic) and Nafion (negative and hydrophobic). First, we study the adsorption of the four surfactants for the four different surfaces on model interfaces. Second, we study fouling by artificial produced water stabilized by the same surfactants on PEM-based hollow fiber NF membranes characterized by the same multilayer of our model surfaces. Third, we study fouling of the same surfactants solution but without oil. Very high oil retention (>99%) was observed when filtering all the O/W emulsions, while the physicochemical interactions between the multilayer and the surfactants determined the extent of fouling as well as the surfactant retention. Unexpectedly, our results show that fouling of PEM-based NF membranes, during PW treatment, is mainly due to membrane active layer fouling caused by surfactant uptake inside of the PEM coating, rather than due to cake layer formation. Indeed, it is not the surface chemistry of the membrane that determines the extent of fouling, but the surfactant interaction with the bulk of the PEM. A denser multilayer, that would stop these molecules, would benefit PW treatment by decreasing fouling issues, as would the use of slightly more bulky surfactants that cannot penetrate the PEM.
Collapse
|
12
|
Ocakoglu K, Dizge N, Colak SG, Ozay Y, Bilici Z, Yalcin MS, Ozdemir S, Yatmaz HC. Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Xix-Rodriguez C, Varguez-Catzim P, Alonzo-García A, Rodriguez-Fuentes N, Vázquez-Torres H, González-Diaz A, Aguilar-Vega M, González-Díaz MO. Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Feng Y, Guo N, Ren S, Xie X, Xu J, Wang Y. AgNPs@ZIF‐8 Hybrid Material‐Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Feng
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong University of Science and Technology College of Mining and Safety Engineering 266590 Qingdao Shandong China
| | - Ning Guo
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong Jianzhu University School of Municipal and Environmental Engineering 250101 Jinan China
| | - Shaojie Ren
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| | - Xuan Xie
- IHE Delft Institute for Water Education 2622 HD Delft The Netherlands
| | - Juan Xu
- East China Normal University Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration School of Ecological and Environmental Sciences Shanghai China
| | - Yunkun Wang
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| |
Collapse
|
16
|
Song H, Li C, Wang Y, Zhu L, Zeng Z. Simple and Effective Preparation of Zwitterionic Anti‐Fouling Poly(vinylidene fluoride) Ultrafiltration Membrane by In Situ Cross‐Linking Polymerization Technology. ChemistrySelect 2020. [DOI: 10.1002/slct.202001108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hai‐Ming Song
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chen Li
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Yong‐Xin Wang
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Li‐Jing Zhu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Zhi‐Xiang Zeng
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
17
|
Xiang Y, Xu RG, Leng Y. Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7648-7657. [PMID: 32506917 DOI: 10.1021/acs.langmuir.0c01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyzwitterions (PZs) are promising materials for the antifouling in reverse osmosis and nanofiltration membrane technology for water treatment. Fundamental understanding of the structure and molecular interactions involving zwitterions is crucial to the optimal design of antifouling in membrane separation. Here we employ the umbrella sampling and molecular dynamics simulations to investigate molecular interactions between sulfobetaine/carboxybetaine zwitterions and different metal ions (Na+, K+, and Ca2+) in an aqueous solution. The simulation results show that these ions can form stable or metastable contact ionic/solvent-shared-ionic pairs with zwitterions. Simulations at different grafting densities of PZ brush arrays reveal complex competitive association mechanisms, which are attributed to nonbonded electrostatic and van der Waals interactions among zwitterions, water molecules, and different metal ions in an aqueous environment. While the high-grafting density of the PZ brush array leads to a strong branch association between different zwitterions in water, this association is decreased at intermediate- and low-grafting densities due to strong zwitterion-water interactions. More importantly, adding ions into water at intermediate- and low-grafting densities further breaks down the zwitterion branch association, resulting in a randomly oriented and dispersed branch configuration with significant swelling of the polymers. The degree of swelling depends on the type of ions, which further changes the surface electrostatic potential of PZ coatings.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
18
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Zarghami S, Mohammadi T, Sadrzadeh M, Van der Bruggen B. Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134951. [PMID: 31812409 DOI: 10.1016/j.scitotenv.2019.134951] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The major problem that limits the utilization of PES membranes in treatment of oily wastewater is the drastic irreversible membrane fouling due to the attachment of oil droplets onto the membrane surface. The goal of this study was to develop a novel, fast and facile post-functionalization of polydopamine (PDA) coated membranes using pre-synthesized nanoparticles for fabrication of novel organic-inorganic hybrid recoverable membranes with high hydrophilicity and underwater oleophobicity. Here, bio-inspired technique was studied because the membrane technology could separate small oil droplets (even <10 µm) with high performance if faced little fouling phenomena during the treatment process. The amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) were anchored onto the PDA coated PES membranes. The membranes characteristics, with specific focus on surface morphology and wettability were investigated. The newly developed PES/PDA/N-MWCNTs membranes showed an enhanced flux (~1086%) compared to the unmodified PES membrane. This enhancement was attributed to the high hydrophilic and underwater oleophobic properties, which were found to alleviate the effect of fouling. The total fouling ratio (Rt) of the PES/PDA/N-MWCNTs membrane was 22.35%, which was far lower than that of the unmodified PES membrane (98.38%). Meanwhile, most of the fouling was reversible for the former with the remaining (irreversible fouling) of 18.08%. It was concluded that cake filtration is the dominant fouling mechanism of the PES/PDA/N-MWCNTs membranes due to their average pore diameter. The modified membranes showed high oil rejection (>99%) so that the obtained clean water with oil concentration lower than 5 ppm met the wastewater discharge standard recommendations. Also, evaluation of the PES/PDA/N-MWCNT membrane in cross-flow filtration showed its antifouling properties in the long-term application (16 h).
Collapse
Affiliation(s)
- Soheil Zarghami
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Mohtada Sadrzadeh
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
20
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
21
|
Bao Q, Xie L, Ohashi H, Hosomi M, Terada A. Inhibition of Agrobacterium tumefaciens biofilm formation by acylase I-immobilized polymer surface grafting of a zwitterionic group-containing polymer brush. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Xiang T, Lu T, Zhao WF, Zhao CS. Ionic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1146-1155. [PMID: 30107735 DOI: 10.1021/acs.langmuir.8b01719] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we studied the swelling behavior and adsorption behavior of zwitterionic copolymer hydrogels, which were prepared via the free radical copolymerization of sulfobetaine methacrylate (SBMA) and other monomers including sodium p-styrenesulfonate (NaSS), acrylic acid, N-isopropylacrylamide, and 2-(dimethylamino) ethyl methacrylate. The PSBMA hydrogel showed increased swelling ratio with the increase of ionic strength at the same temperature, and the swelling process reflected endothermicity. Interestingly, the PSBMA-NaSS hydrogels collapsed when the ionic strength increased because the ions can weaken the repulsive interaction of the anionic groups of PNaSS. In addition, the PSBMA-NaSS showed high adsorption of methylene blue (760 mg/g). The zwitterionic hydrogels have potential to be used as an adsorbent in the field of wastewater treatment.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
- State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , China
| | - Ting Lu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Cheng-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
24
|
Pan W, Wallin TJ, Odent J, Yip MC, Mosadegh B, Shepherd RF, Giannelis EP. Optical stereolithography of antifouling zwitterionic hydrogels. J Mater Chem B 2019; 7:2855-2864. [DOI: 10.1039/c9tb00278b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the rapid 3D printing of tough (toughness, UT, up to 141.6 kJ m−3), highly solvated (ϕwater ∼ 60 v/o), and antifouling hybrid hydrogels for potential uses in biomedical, smart materials, and sensor applications, using a zwitterionic photochemistry compatible with stereolithography (SLA).
Collapse
Affiliation(s)
- Wenyang Pan
- Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | | | - Jérémy Odent
- Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Mighten C. Yip
- Dalio Institute of Cardiovascular Imaging
- New York-Presbyterian Hospital and Weill Cornell Medicine
- New York
- USA
- Department of Radiology
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging
- New York-Presbyterian Hospital and Weill Cornell Medicine
- New York
- USA
- Department of Radiology
| | - Robert F. Shepherd
- Sibley School of Mechanical & Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
25
|
Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Na CK, Park GY, Park H. Polypropylene surface with antibacterial property by photografting 1-vinylimidazole and subsequent chemical modification. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0080-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Upadhyaya L, Qian X, Ranil Wickramasinghe S. Chemical modification of membrane surface — overview. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Wei R, Song W, Yang F, Zhou J, Zhang M, Zhang X, Zhao W, Zhao C. Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wanying Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | | | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
29
|
Dai J, Dong Y, Yu C, Liu Y, Teng X. A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Rong G, Zhou D, Pang J. Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1463-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Yang Z, Zhang S, Tarabara VV, Bruening ML. Aqueous Swelling of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in the Presence of Ionic Surfactants. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Shouwei Zhang
- Department
of Chemical and Biomolecular Engineering and Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - Merlin L. Bruening
- Department
of Chemical and Biomolecular Engineering and Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
Liu D, Zheng J, Wang X, Lu X, Zhu J, He C. Low-fouling PES membranes fabricated via in situ copolymerization mediated surface zwitterionicalization. NEW J CHEM 2018. [DOI: 10.1039/c7nj03437g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEGylated and zwitterionic PES membranes were fabricated during membrane formation, showing superior antifouling and anticoagulant properties.
Collapse
Affiliation(s)
- Dapeng Liu
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou
- P. R. China
| | - Junzhi Zheng
- Suzhou Institute of Inspection on Fiber
- Suzhou
- P. R. China
| | - Xin Wang
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xinwu Lu
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Xiang T, Lu T, Zhao WF, Zhao CS. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj00039e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Zwitterionic polymer modified membranes were prepared, which showed ionic strength- and thermo-responsive properties.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ting Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. J Colloid Interface Sci 2018; 510:308-317. [DOI: 10.1016/j.jcis.2017.09.071] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
|
36
|
Surface functionalization of TFC FO membranes with zwitterionic polymers: Improvement of antifouling and salt-responsive cleaning properties. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
|
38
|
Zhang X, Xu S, Zhou J, Zhao W, Sun S, Zhao C. Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32237-32247. [PMID: 28857540 DOI: 10.1021/acsami.7b08740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel anion-responsive "intelligent" membranes with functional gates are fabricated by filling polyethersulfone microporous membranes with poly(ionic liquid)s (PILs) gels. The wetting properties of the PILs could be controlled by changing their counteranions (CAs), and thus, the filled PILs gel gates in the membrane pores could spontaneously switch from the "closed" state to the "open" one by recognizing the hydrophilic CAs in the environment and vice versa. As a result, the fluxes of the "intelligent" membranes could be tuned from a very low level (0 mL/m2·mmHg for Cl-, Br-, and BF4-) to a relatively high one (430 mL/m2·mmHg for TFSI). The anion-responsive gating behavior of the PILs filled membranes is fast, reversible, and reproducible. In addition, the "intelligent" membranes are sensitive to contact time and ion concentrations of the hydrophobic CA species. The proposed anion-responsive "intelligent" membranes are highly attractive for ion-recognizable chemical/biomedical separations and purifications.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Sheng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
39
|
Zhang X, Zhou J, Wei R, Zhao W, Sun S, Zhao C. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization. J Colloid Interface Sci 2017; 498:136-143. [DOI: 10.1016/j.jcis.2017.03.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
|
41
|
Wan P, Bernards M, Deng B. Modification of Polysulfone (PSF) Hollow Fiber Membrane (HFM) with Zwitterionic or Charged Polymers. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Peng Wan
- Department
of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Matthew Bernards
- Department
of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Baolin Deng
- Department
of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
- School
of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| |
Collapse
|
42
|
He M, Wang Q, Wang R, Xie Y, Zhao W, Zhao C. Design of Antibacterial Poly(ether sulfone) Membranes via Covalently Attaching Hydrogel Thin Layers Loaded with Ag Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15962-15974. [PMID: 28440618 DOI: 10.1021/acsami.7b03176] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To inhibit bacteria attachment and the subsequent formation of biofilms on poly(ether sulfone) (PES) membranes, poly(sulfobetaine methacrylate)/poly(sodium acrylate) antibacterial hydrogel thin layers were covalently attached onto the membranes, followed by loading with Ag nanoparticles. In our strategy, double bonds were firstly introduced onto the PES membrane surfaces to provide anchoring sites, and then the hydrogel layers were synthesized on the membrane surfaces via UV light-initiated crosslinking copolymerization. Then, Ag ions were adsorbed into the hydrogel layers and reduced to Ag nanoparticles by sodium borohydride. The amounts of the adsorbed Ag ions were controlled by the mole ratios of carboxylate groups in the hydrogel layers. After attaching the hydrogel layers, a typical 3D porous structure was observed by scanning electron microscopy, and the surface chemical composition variations were characterized by attenuated total reflection-Fourier transform infrared spectroscopy. The live/dead staining, inhibition zone, and the optical degree of co-culture solution demonstrated that the designed surfaces could not only effectively resist bacteria attachment but also kill the surrounding bacteria Escherichia coli and Staphylococcus aureus. It was noteworthy that the strong antibacterial ability could be maintained for more than 5 weeks. Additionally, the excellent hemocompatibility of the modified membranes was confirmed by undetectable plasma protein adsorption, suppressed platelet adhesion, prolonged clotting time, low hemolysis ratio, and suppressed blood-related complement activation. Cell culture tests indicated that the membranes showed no cytotoxicity, but strong anti-cell adhesion properties. The proposed method to fabricate antibacterial hydrogel thin layers has great potential to be widely used to inhibit the formation of biofilms on various biomedical devices.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| |
Collapse
|
43
|
Zhu L, Song H, Wang J, Xue L. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:159-166. [DOI: 10.1016/j.msec.2017.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023]
|
44
|
Peydayesh M, Bagheri M, Mohammadi T, Bakhtiari O. Fabrication optimization of polyethersulfone (PES)/polyvinylpyrrolidone (PVP) nanofiltration membranes using Box–Behnken response surface method. RSC Adv 2017. [DOI: 10.1039/c7ra03566g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein response surface methodology (RSM) is employed to optimize the fabrication of polyethersulfone (PES) nanofiltration (NF) membranes via phase inversion.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Research and Technology Center of Membrane Processes
- Faculty of Chemical Engineering
- Iran University of Science and Technology (IUST)
- Tehran
- Iran
| | - Maryam Bagheri
- Research and Technology Center of Membrane Processes
- Faculty of Chemical Engineering
- Iran University of Science and Technology (IUST)
- Tehran
- Iran
| | - Toraj Mohammadi
- Research and Technology Center of Membrane Processes
- Faculty of Chemical Engineering
- Iran University of Science and Technology (IUST)
- Tehran
- Iran
| | - Omid Bakhtiari
- Department of Chemical Engineering
- Razi University
- Kermanshah
- Iran
| |
Collapse
|
45
|
Wang R, Xie Y, Xiang T, Sun S, Zhao C. Direct catechol conjugation of mussel-inspired biomacromolecule coatings to polymeric membranes with antifouling properties, anticoagulant activity and cytocompatibility. J Mater Chem B 2017; 5:3035-3046. [DOI: 10.1039/c6tb03329f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TheO-sulfated chitosan andN,O-sulfated chitosan coatings were prepared by direct catechol conjugation to enrich the biological applications of polymeric membranes.
Collapse
Affiliation(s)
- Rui Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yi Xie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Tao Xiang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shudong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
46
|
He M, Wang Q, Zhao W, Li J, Zhao C. A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. Polym Chem 2017. [DOI: 10.1039/c7py00967d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
(1) A self-defensive bacterial infection responsive bilayer hydrogel coating was designed; (2) the bilayer coating could promote cell adhesion and proliferation; and (3) the surface showed bacterial infection sensitive switching from a cell adhesion surface to an antibacterial adhesion surface by detaching the upper layer.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
47
|
Li D, Wu J, Yang S, Zhang W, Ran F. Hydrophilicity and anti-fouling modification of polyethersulfone membrane by grafting copolymer chains via surface initiated electrochemically mediated atom transfer radical polymerization. NEW J CHEM 2017. [DOI: 10.1039/c7nj01825h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyethersulfone membrane is modified by grafting copolymer chainsviathe SI-eATRP method for improvement of hydrophlicity and anti-fouling performance.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Jiayu Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Shiyuan Yang
- Lanzhou Chemical Research Center of PetroChina Co Ltd
- Lanzhou 730060
- P. R. China
| | - Weijie Zhang
- College of Life Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| |
Collapse
|
48
|
He M, Cui X, Jiang H, Huang X, Zhao W, Zhao C. Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/26/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Min He
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xiaofei Cui
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xuelian Huang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- Fiber and Polymer Technology; School of Chemical Science and Engineering; Royal Institute of Technology (KTH); Teknikringen 56-58, SE-100 44 Stockholm Sweden
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
49
|
He M, Jiang H, Wang R, Xie Y, Zhao W, Zhao C. A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. J Colloid Interface Sci 2016; 484:60-69. [PMID: 27591729 DOI: 10.1016/j.jcis.2016.08.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/07/2023]
Abstract
In this study, a robust and straightforward method to covalently attach multi-functional hydrogel thin layers onto substrates was provided. In our strategy, double bonds were firstly introduced onto substrates to provide anchoring points for hydrogel layers, and then hydrogel thin layers were prepared via surface cross-linking copolymerization of the immobilized double bonds with functional monomers. Sulfobetaine methacrylate (SBMA), sodium allysulfonate (SAS), and methyl acryloyloxygen ethyl trimethyl ammonium chloride (METAC) were selected as functional monomers to form hydrogel layers onto polyether sulfone (PES) membrane surfaces, respectively. The thickness of the formed hydrogel layers could be controlled, and the layers showed excellent long-term stability. The PSBMA hydrogel layer exhibited superior antifouling property demonstrated by undetectable protein adsorption and excellent bacteria resistant property; after attaching PSAS hydrogel layer, the membrane showed incoagulable surface property when contacting with blood confirmed by the activated partial thromboplastin time (APTT) value exceeding 600s; while, the PMETAC hydrogel thin layer could effectively kill attached bacteria. The proposed method provides a new platform to directly modify material surfaces with desired properties, and thus has great potential to be widely used in designing materials for blood purification, drug delivery, wound dressing, and intelligent biosensors.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China; Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
50
|
Zhu B, Ma D, Wang J, Zhang J, Zhang S. Multi-responsive hydrogel based on lotus root starch. Int J Biol Macromol 2016; 89:599-604. [DOI: 10.1016/j.ijbiomac.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
|