1
|
Li J, Sun H, Zhang D, Yang X, Fu Z, Yu B. In Situ Preparation of MnO 2 on the Catechol/Silane-Coated Polypropylene Nonwoven Fabrics for Effective Removal of Cationic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25088-25100. [PMID: 39541439 DOI: 10.1021/acs.langmuir.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies have confirmed that MnOx removes heavy metal ions and organic pollutants from water with dual effects of adsorption and oxidation coupling, significantly improving the ability to remove impurities. Nanometal oxides have a highly reactive surface but tend to agglomerate during preparation and are challenging to recycle after use. A common method is to combine nano-MnO2 with Fe3O4 to prepare magnetic materials for easy recycling. Our previous research has confirmed that catechol (CA) and (3-aminopropyl) triethoxysilane (KH550) can be co-deposited on the surface of polypropylene nonwovens to form a stable CK coating under alkaline conditions. In addition, the coating has many active groups, including hydroxyl groups, amino groups, etc. This study further investigates the secondary reactivity of CK coatings. The coordination of catechol groups and metal ions was used to anchor manganese ions to the coating. Meanwhile, the hydroxyl and amino groups were used to reduce manganese ions to Mn4+ in situ to prepare PP-(CK-MnO2). We found that the sample had an excellent decolorization effect on cationic dyes but was limited to anionic dyes. The decolorization mechanism of cationic dyes was further discussed. The results showed that the decolorization of cationic dyes had a dual effect of adsorption and oxidative degradation. Under acidic conditions, its oxidation properties were enhanced. It can be used as a highly effective decolorizing agent for cationic dyes, and the decolorization behavior is consistent with the first-order kinetics. As the pH increases, its oxidation properties gradually decrease. Although the electrostatic adsorption effect was enhanced, the overall decolorization performance was significantly reduced. Recycling experiments have proved that it can maintain >90% removal rate after five cycles. This study also demonstrated that the CK coating has dopamine-like properties, which can coordinate with metal ions to prepare metal-organic hybrid materials.
Collapse
Affiliation(s)
- Jing Li
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Electrical and Mechanical Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Hui Sun
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dewei Zhang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xiaodong Yang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Zhuan Fu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Yu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
2
|
Yan C, Tong H, Liu C, Ye X, Yuan X, Xu J, Li H. Activation of polyimide by oxygen plasma for atomic layer deposition of highly compact titanium oxide coating. NANOTECHNOLOGY 2024; 35:265704. [PMID: 38522103 DOI: 10.1088/1361-6528/ad3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Titanium oxide (TiO2) coated polyimide has broad application prospects under extreme conditions. In order to obtain a high-quality ultra-thin TiO2coating on polyimide by atomic layer deposition (ALD), the polyimide was activated byin situoxygen plasma. It was found that a large number of polar oxygen functional groups, such as carboxyl, were generated on the surface of the activated polyimide, which can significantly promote the preparation of TiO2coating by ALD. The nucleation and growth of TiO2were studied by x-ray photoelectron spectroscopy monitoring and scanning electron microscopy observation. On the polyimide activated by oxygen plasma, the size of TiO2nuclei decreased and the quantity of TiO2nuclei increased, resulting in the growth of a highly uniform and dense TiO2coating. This coating exhibited excellent resistance to atomic oxygen. When exposed to 3.5 × 1021atom cm-2atomic oxygen flux, the erosion yield of the polyimide coated with 100 ALD cycles of TiO2was as low as 3.0 × 10-25cm3/atom, which is one order less than that of the standard POLYIMIDE-ref Kapton®film.
Collapse
Affiliation(s)
- Chi Yan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hua Tong
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Cui Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaojun Ye
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiao Yuan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiahui Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongbo Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
3
|
Yang X, Sun P, Wen Y, Mane AU, Elam JW, Ma J, Liu S, Darling SB, Shao L. Protein-activated atomic layer deposition for robust crude-oil-repellent hierarchical nano-armored membranes. Sci Bull (Beijing) 2024; 69:218-226. [PMID: 38087739 DOI: 10.1016/j.scib.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024]
Abstract
Atomic layer deposition (ALD) offers unique capabilities to fabricate atomically engineered porous materials with precise pore tuning and multi-functionalization for diverse applications like advanced membrane separations towards sustainable energy-water systems. However, current ALD technique is inhibited on most non-polar polymeric membranes due to lack of accessible nucleation sites. Here, we report a facile method to efficiently promote ALD coating on hydrophobic surface of polymeric membranes via novel protein activation/sensitization. As a proof of concept, TiO2 ALD-coated membranes activated by bovine serum albumin exhibit remarkable superhydrophilicity, ultralow underwater crude oil adhesion, and robust tolerance to rigorous environments including acid, alkali, saline, and ethanol. Most importantly, excellent cyclable crude oil-in-water emulsion separation performance can be achieved. The mechanism for activation/sensitization is rooted in reactivity for a particular set of amino acids. Furthermore, the universality of protein-sensitized ALD is demonstrated using common egg white, promising numerous potential usages in biomedical engineering, environmental remediation, low-carbon manufacturing, catalysis, and beyond.
Collapse
Affiliation(s)
- Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439, USA; Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont IL 60439, USA; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pan Sun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA; Department of Physics, University of Illinois at Chicago, Chicago IL 60607, USA
| | - Yajie Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, Lemont IL 60439, USA; Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont IL 60439, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont IL 60439, USA; Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont IL 60439, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth WA 6845, Australia.
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439, USA; Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont IL 60439, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA.
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
4
|
Kilicarslan B, Sardan Ekiz M, Bayram C. Electrostatic Repulsive Features of Free-Standing Titanium Dioxide Nanotube-Based Membranes in Biofiltration Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3400-3410. [PMID: 36786472 PMCID: PMC9996822 DOI: 10.1021/acs.langmuir.2c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This study presents the electrostatic repulsive features of electrochemically fabricated titanium dioxide nanotube (NT)-based membranes with different surface nanomorphologies in cross-flow biofiltration applications while maintaining a creatinine clearance above 90%. Although membranes exhibit antifouling behavior, their blood protein rejection can still be improved. Due to the electrostatically negative charge of the hexafluorotitanate moiety, the fabricated biocompatible, superhydrophilic, free-standing, and amorphous ceramic nanomembranes showed that about 20% of negatively charged 66 kDa blood albumin was rejected by the membrane with ∼100 nm pores. As the nanomorphology of the membrane was shifted from NTs to nanowires by varying fabrication parameters, pure water flux and bovine serum albumin (BSA) rejection performance were reduced, and the membrane did not lose its antifouling behavior. Herein, nanomembranes with different surface nanomorphologies were fabricated by a multi-step anodic oxidation process and characterized by scanning electron microscopy, atomic force microscopy, water contact angle analysis, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The membrane performance of samples was measured in 3D printed polyethylene terephthalate glycol flow cells replicating implantable artificial kidney models to determine their blood toxin removal and protein loss features. In collected urine mimicking samples, creatinine clearances and BSA rejections were measured by the spectrophotometric Jaffe method and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Bogac Kilicarslan
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Advanced
Technologies Application and Research Centre, Hacettepe University, Ankara 06800, Turkey
| | - Cem Bayram
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
5
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
ElGharbi H, Henni A, Salama A, Zoubeik M, Kallel M. Toward an Understanding of the Role of Fabrication Conditions During Polymeric Membranes Modification: A Review of the Effect of Titanium, Aluminum, and Silica Nanoparticles on Performance. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
IR-initiated preparation method of high performance nanofiltration membranes using graft polymerization of acrylic acid onto polyacrylonitrile surface. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
MnO -mineralized oxidized-polypropylene membranes for highly efficient oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Draoua Z, Harrane A, Adjdir M. Preparation, characterization and application of the nanocomposite PCL-PEG-PCL/Bentonite for the removal of methylene blue (MB) dye. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04549-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
13
|
Li R, Li N, Hou J, Yu Y, Liang L, Yan B, Chen G. Aquatic environment remediation by atomic layer deposition-based multi-functional materials: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123513. [PMID: 32717545 DOI: 10.1016/j.jhazmat.2020.123513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Water pollution still poses significant threats to the ecosystem and human health today. The adsorption, advanced oxidation and membranes filtration have been extensively investigated and utilized for aquatic contaminants remediation, and their efficiency is closely correlated with the advanced materials design and fabrication (e.g. adsorbents, catalysts and membranes). Thanks to uniform deposition, three-dimensional conformity and process controllability, the atomic layer deposition (ALD) has emerged as a promising strategy for fabrication of these multifunctional materials, arising their successful application in aquatic contaminants remediation. Therefore, a timely review on ALD-based water treatment materials is highly important to summarize the current opportunity and elucidate unaddressed problems in this field. Herein, in this review, the advantages of ALD process, the superiority of ALD-based materials and the corresponding decontamination performance were analyzed comprehensively, highlighting key advantages offered by this technology.
Collapse
Affiliation(s)
- Rui Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yang Yu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Lan Liang
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
14
|
Hirai S, Phanthong P, Okubo H, Yao S. Enhancement of the Surface Properties on Polypropylene Film Using Side-Chain Crystalline Block Copolymers. Polymers (Basel) 2020; 12:E2736. [PMID: 33218102 PMCID: PMC7698896 DOI: 10.3390/polym12112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
The consumption of polypropylene (PP) has significantly increased over that of other materials because of its light weight, easy molding, and high mechanical strength. However, the applications of PP are limited, owing to the lack of surface properties, especially with respect to adhesive properties and hydrophilicity. In this study, we developed a surface modification method for enhancing the adhesive properties and hydrophilicity on the PP surface using a side-chain crystalline block copolymer (SCCBC). This method was simple and involved the dipping of a PP film in a diluted SCCBC solution. The optimized modification conditions for enhancing the adhesive properties of PP were investigated. The results revealed that the adhesion strength of PP modified with the SCCBC of behenyl acrylate and 2-(tert-butylamino)ethyl methacrylate was enhanced to 2.00 N/mm (T-peel test) and 1.05 N/mm2 (tensile shear test). In addition, the hydrophilicity of PP modified with the SCCBC of behenyl acrylate and di(ethylene glycol)ethyl ether acrylate was enhanced to a water contact angle of 69 ± 4°. Surface analysis was also performed to elucidate a plausible mechanism for PP modification by the SCCBCs. This surface modification method is facile and enhances desirable properties for the wide application of PP.
Collapse
Affiliation(s)
- Sho Hirai
- Research Institute for the Creation of Functional and Structural Materials, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (P.P.); (H.O.); (S.Y.)
| | | | | | | |
Collapse
|
15
|
|
16
|
|
17
|
Luo J, Chen W, Song H, Liu J. Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134398. [PMID: 31670038 DOI: 10.1016/j.scitotenv.2019.134398] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
A polyvinylidene fluoride plate sheet membrane coated 3D TiO2/poly (sodium styrenesulfonate) (PSS) photocatalyst layers were fabricated via dip-coating layer-by-layer (LbL) assembly. Cationic TiO2 and anionic PSS were alternately stacked on the support membrane via electrostatic interactions. The obtained modified membrane with (TiO2/PSS)7 exhibited optimal versatility under ultraviolet light irradiation in both dead-end and membrane reactor, which showed superior Lanasol Blue 3R (LB) removal rate to membrane filtration and biodegradation. The modified membranes (MM) exhibited good performance in terms of photocatalytic activity of foulant degradation and mitigation of membrane fouling in a membrane reactor. The obtained MM with (TiO2/PSS)7 exhibited optimal versatility under ultraviolet light irradiation in both dead-end and membrane reactors and superior Lanasol Blue 3R removal rate in membrane filtration and biodegradation. The MM (TiO2/PSS)7 possessed excellent antifouling properties by using bovine serum albumin (BSA), as evidenced by the extended Derjaguin-Landau-Verwey-Overbeek theory. Additionally, the TiO2/PSS membrane showed good self-cleaning ability, and the foulants on the membrane surface could be degraded using ultraviolet light irradiation.
Collapse
Affiliation(s)
- Jing Luo
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Weiwei Chen
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Hongwei Song
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Jinrong Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
| |
Collapse
|
18
|
Pinem J, Wardani A, Aryanti P, Khoiruddin K, Wenten IG. Hydrophilic Modification of Polymeric Membrane using Graft Polymerization Method: A Mini Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Jaleh B, Etivand ES, Mohazzab BF, Nasrollahzadeh M, Varma RS. Improving Wettability: Deposition of TiO 2 Nanoparticles on the O 2 Plasma Activated Polypropylene Membrane. Int J Mol Sci 2019; 20:ijms20133309. [PMID: 31284439 PMCID: PMC6651641 DOI: 10.3390/ijms20133309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20–120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran.
| | - Ehsan Sabzi Etivand
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | - Bahareh Feizi Mohazzab
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Li R, Liu J, Shi A, Luo X, Lin J, Zheng R, Fan H, Selasie SV, Lin H. A facile method to modify polypropylene membrane by polydopamine coating via inkjet printing technique for superior performance. J Colloid Interface Sci 2019; 552:719-727. [PMID: 31176918 DOI: 10.1016/j.jcis.2019.05.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Membrane surface functionalization based on mussel-inspired polydopamine (PDA) deposition for enhancing antifouling ability has attracted considerable attention. However, high cost of dopamine (DA) and long-time of reaction during self-polymerization of DA in aqueous solution remain the major problems impeding its practical application. This study provided a first report on a low-cost and facile membrane modification approach based on inkjet printing of DA and sodium periodate (SP) to rapidly deposit PDA on polypropylene (PP) membrane. Compared with the pristine PP membrane and DA printed PP membrane, the PDA-SP coated PP membrane demonstrated superior hydrophilicity (67.2°), high pure water permeability (2156.8 L·m-2·h-1) and antifouling property, due to the improved oxidation degree of PDA. Moreover, the modified membrane possesses good chemical stability in aqueous solution over the wide range of pH 2-9. The inkjet printing integrated oxidant-induced mussel-inspired modification proposed in this study is substrate-independent, and can be applied to various geometries and materials, showing broad application prospects in membrane fabrication.
Collapse
Affiliation(s)
- Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jinxia Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - An Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiaoqian Luo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jincong Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ran Zheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hangxu Fan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Semekor Vincent Selasie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
21
|
Wu S, Wang Z, Xiong S, Wang Y. Tailoring TiO2 membranes for nanofiltration and tight ultrafiltration by leveraging molecular layer deposition and crystallization. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Yang HC, Waldman RZ, Chen Z, Darling SB. Atomic layer deposition for membrane interface engineering. NANOSCALE 2018; 10:20505-20513. [PMID: 30397691 DOI: 10.1039/c8nr08114j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In many applications, interfaces govern the performance of membranes. Structure, chemistry, electrostatics, and other properties of interfaces can dominate the selectivity, flux, fouling resistance, and other critical aspects of membrane functionality. Control over membrane interfacial properties, therefore, is a powerful means of tailoring performance. In this Minireview, we discuss the application of atomic layer deposition (ALD) and related techniques in the design of novel membrane interfaces. We discuss recent literature in which ALD is used to (1) modify the surface chemistry and interfacial properties of membranes, (2) tailor the pore sizes and separation characteristics of membranes, and (3) enable novel advanced functional membranes.
Collapse
Affiliation(s)
- Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ruben Z Waldman
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Seth B Darling
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. and Institute for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA and Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
23
|
Jia X, Low Z, Chen H, Xiong S, Wang Y. Atomic layer deposition of Al 2 O 3 on porous polypropylene hollow fibers for enhanced membrane performances. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Mallakpour S, Shamsaddinimotlagh S. Ultrasonic-promoted rapid preparation of PVC/TiO 2-BSA nanocomposites: Characterization and photocatalytic degradation of methylene blue. ULTRASONICS SONOCHEMISTRY 2018; 41:361-374. [PMID: 29137762 DOI: 10.1016/j.ultsonch.2017.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
In the present project in order to prevent agglomeration and better dispersion of TiO2 nanoparticles (NPs) in the poly(vinyl chloride) (PVC) matrix, initially, the surface of TiO2 NPs was covered by bovine serum albumin protein (BSA) via sonication method. Then, the TiO2-BSA powders were embedded into the PVC matrix using ultrasonic irradiations. With mechanical and magnetic stirring homogenous mixture was not obtained. So sonication process was very essential and vital. Physical, chemical and structural properties of the samples were investigated with various tools. Morphology studies showed the well distribution of spherical TiO2 NPs in the PVC matrix. TGA analysis showed that nanocomposites (NCs) have higher thermal stability than the pristine polymer. The photocatalytic activity tests by destroying the methylene blue dye on the pristine TiO2 NPs, TiO2-BSA NPs and PVC/TiO2-BSA NC 6 wt% were examined. The results showed that the photocatalytic activity of TiO2 NPs was reduced in the presence of BSA and PVC. It can be concluded that the TiO2-BSA NPs and PVC/TiO2-BSA NC 6 wt% have UV shielding properties and can protect film from degradation by UV.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Sima Shamsaddinimotlagh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
25
|
Chen H, Wu S, Jia X, Xiong S, Wang Y. Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water. AIChE J 2018. [DOI: 10.1002/aic.16097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- He Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Shanshan Wu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Xiaojuan Jia
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Sen Xiong
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| |
Collapse
|
26
|
Lin Y, Loh CH, Shi L, Fan Y, Wang R. Preparation of high-performance Al 2 O 3 /PES composite hollow fiber UF membranes via facile in-situ vapor induced hydrolyzation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Dischinger SM, McGrath MJ, Bourland KR, Noble RD, Gin DL. Effect of post-polymerization anion-exchange on the rejection of uncharged aqueous solutes in nanoporous, ionic, lyotropic liquid crystal polymer membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Mokkapati VRSS, Koseoglu-Imer DY, Yilmaz-Deveci N, Mijakovic I, Koyuncu I. Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent. RSC Adv 2017; 7:4378-4386. [PMID: 28496976 PMCID: PMC5361168 DOI: 10.1039/c6ra25015g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/01/2016] [Indexed: 12/07/2022] Open
Abstract
PSF–GO composite membrane fabrication using a new and facile method where after casting, the polymer solution was phase inversed in di-water–GO non-solvent.
A new and facile method for the fabrication of polysulfone–graphene oxide composite membranes is reported, where after casting, phase inversion is carried out with graphene oxide flakes (GO) in a coagulation bath. The membranes were characterized and the morphology was analysed using scanning electron microscopy. A bacterial inhibition ratio of 74.5% was observed with membranes fabricated from a very low concentration of di-water–GO non-solvent (0.048% of GO). The membranes were successfully tested for permeate flux and fouling resistance using activated sludge filtration from an MBR system. The observed trend shows that GO can operate as a protective barrier for membrane pores against the bacterial community. To our knowledge this is the first time where the immersion precipitation mechanism was carried out in a coagulation bath with GO flakes under continuous stirring. Using this method, a very low concentration of GO is required to fabricate membranes with conventional GO composite membrane properties and better selectivity.
Collapse
Affiliation(s)
- V R S S Mokkapati
- Department of Biology and Biological Engineering , Chalmers University of Technology , Kemivagen 10 , 41296 , Goteborg , Sweden . .,Nanotechnology Research and Application Center (SUNUM) , Sabanci University , Orhanli/Tuzla , Istanbul 34956 , Turkey
| | - Derya Yuksel Koseoglu-Imer
- Department of Environmental Engineering , Istanbul Technical University , 34469 , Istanbul , Turkey.,National Research Center on Membrane Technologies , Istanbul Technical University , 34469 , Istanbul , Turkey
| | - Nurmiray Yilmaz-Deveci
- Nanoscience and Nanoengineering Department , Istanbul Technical University , 34469 , Istanbul , Turkey
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering , Chalmers University of Technology , Kemivagen 10 , 41296 , Goteborg , Sweden .
| | - Ismail Koyuncu
- Department of Environmental Engineering , Istanbul Technical University , 34469 , Istanbul , Turkey.,National Research Center on Membrane Technologies , Istanbul Technical University , 34469 , Istanbul , Turkey
| |
Collapse
|
31
|
Li Y, Fang Y, Wang J, Wang L, Tang S, Jiang C, Zheng L, Mei Y. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization. LAB ON A CHIP 2016; 16:4406-4414. [PMID: 27752686 DOI: 10.1039/c6lc01148a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Miniaturization of functional devices and systems demands new design and fabrication approaches for lab-on-a-chip application and optical integrative systems. By using a direct laser writing (DLW) technique based on two-photon polymerization (TPP), a highly integrative optofluidic refractometer is fabricated and demonstrated based on tubular optical microcavities coupled with waveguides. Such tubular devices can support high quality factor (Q-factor) up to 3600 via fiber taper coupling. Microtubes with various diameters and wall thicknesses are constructed with optimized writing direction and conditions. Under a liquid-in-tube sensing configuration, a maximal sensitivity of 390 nm per refractive index unit (RIU) is achieved with subwavelength wall thickness (0.5 μm), which offers a detection limit of the devices in the order of 10-5 RIU. Such tubular microcavities with coupled waveguides underneath present excellent optofluidic sensing performance, which proves that TPP technology can integrate more functions or devices on a chip in one-step formation.
Collapse
Affiliation(s)
- Yonglei Li
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China. and Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China
| | - Yangfu Fang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China.
| | - Jiao Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China. and School of Information Science & Technology, Fudan University, Shanghai 200433, China
| | - Lu Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China.
| | - Shiwei Tang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China.
| | - Chunping Jiang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China
| | - Lirong Zheng
- School of Information Science & Technology, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China.
| |
Collapse
|
32
|
Hydrophilic modification of polyvinylidene fluoride membranes by ZnO atomic layer deposition using nitrogen dioxide/diethylzinc functionalization. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Yu W, Brown M, Graham NJD. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation. Sci Rep 2016; 6:30144. [PMID: 27436142 PMCID: PMC4951810 DOI: 10.1038/srep30144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.
Collapse
Affiliation(s)
- Wenzheng Yu
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew Brown
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
34
|
Xiong S, Sheng T, Kong L, Zhong Z, Huang J, Wang Y. Enhanced performances of polypropylene membranes by molecular layer deposition of polyimide. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|