1
|
Meena V, Swami D, Chandel A, Joshi N, Prasher SO. Selected emerging contaminants in water: Global occurrence, existing treatment technologies, regulations and associated risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136541. [PMID: 39608075 DOI: 10.1016/j.jhazmat.2024.136541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Emerging contaminants (ECs) in aquatic environments have recently attracted the attention of researchers due to their ubiquitous occurrence and the potential risk they may pose to life. While advance analytical methods have improved global reporting in water matrices, additional information is needed to compile data on their occurrence, existing legislation, treatment technologies and associated human health risks. Therefore, the present study provides an overview of the occurrence of selected ECs, including personal care product, antibiotics, NSAIDs, EDCs and psychiatric drugs, the existing regulatory framework and their toxicological effects on human health. The water matrices under review are the treated wastewater, surface water, groundwater and, in a few cases, drinking water. The study also highlights different treatment technologies available, and evaluates their performance based on the removal efficiency for different classes of ECs. For removal of almost all ECs considered, ozonation integrated with gamma radiation was reported highly efficient. Risk analysis was also performed for selected ECs including diclofenac, ibuprofen, naproxen, carbamazepine, estrone, 17 β-estradiol, bisphenol A, sulfamethoxazole, erythromycin and triclosan. The human health risk analysis indicated the highest number of locations with potential risk due to the EDCs, with South America, Europe and Asia having multiple risks due to estrone and Bisphenol A. The results of this study will give a better insight into the current situation of ECs in the global water matrices, the performance assessment of treatment technologies and the risk analysis will describe the need for more robust regulatory structures around the world to prevent the occurrence of such contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Vinay Meena
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Deepak Swami
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Aman Chandel
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Nitin Joshi
- Department of Civil Engineering, Indian Institute of Technology Jammu, Jammu, 181121 Jammu and Kashmir, India.
| | - Shiv O Prasher
- Department of Bioresource Engineering, McGill University, Canada.
| |
Collapse
|
2
|
Moure Abelenda A, Baltrusaitis J. Classical Batch Distillation of Anaerobic Digestate to Isolate Ammonium Bicarbonate: Membrane Not Necessary! Bioengineering (Basel) 2024; 11:1152. [PMID: 39593812 PMCID: PMC11591681 DOI: 10.3390/bioengineering11111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The excessive mineralization of organic molecules during anaerobic fermentation increases the availability of nitrogen and carbon. For this reason, the development of downstream processing technologies is required to better manage ammonia and carbon dioxide emissions during the storage and land application of the resulting soil organic amendment. The present work investigated classical distillation as a technology for valorizing ammoniacal nitrogen (NH4+-N) in anaerobic digestate. The results implied that the direct isolation of ammonium bicarbonate (NH4HCO3) was possible when applying the reactive distillation to the food waste digestate (FWD) with a high content of NH4+-N, while the addition of antifoam to the agrowaste digestate (AWD) was necessary to be able to produce an aqueous solution of NH4HCO3 as the distillate. The reason was that the extraction of NH4HCO3 from the AWD required a higher temperature (>95 °C) and duration (i.e., steady state in batch operation) than the recovery of the inorganic fertilizer from the FWD. The titration method, when applied to the depleted digestate, offered the quickest way of monitoring the reactive distillation because the buffer capacity of the distillate was much higher. The isolation of NH4HCO3 from the FWD was attained in a transient mode at a temperature below 90 °C (i.e., while heating up to reach the desired distillation temperature or cooling down once the batch distillation was finished). For the operating conditions to be regarded as techno-economically feasible, they should be attained in the anaerobic digestion plant by integrating the heat harvested from the engines, which convert the biogas into electricity.
Collapse
Affiliation(s)
- Alejandro Moure Abelenda
- School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
- Soil Quality Assessment Research Group, Department of Soil Science and Agricultural Chemistry, Universidade de Santiago de Compostela, Avenida de Vigo, s/n, 15782 Santiago de Compostela, Spain
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA;
| |
Collapse
|
3
|
Hu Y, Loh CY, Xie M, Chen G, Huang M, Qiao J. Ammonia recovery via direct contact membrane distillation: Modeling and performance optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121683. [PMID: 38963968 DOI: 10.1016/j.jenvman.2024.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.
Collapse
Affiliation(s)
- Yuan Hu
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ching Yoong Loh
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Gang Chen
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Manhong Huang
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jinli Qiao
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
4
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Turk OK, Zoungrana A, Cakmakci M. Performances of PTFE and PVDF membranes in achieving the discharge limit of mixed anodic oxidation coating wastewaters treated by membrane distillation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39663-39677. [PMID: 38831146 PMCID: PMC11186931 DOI: 10.1007/s11356-024-33830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
The mixed wastewater generated by anodic oxidation coating facilities contains high levels of various contaminants, including iron, aluminum, conductivity, chemical oxygen demand (COD), and sulfate. In this study, the effectiveness of the membrane distillation (MD) process using polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes was investigated to treat mixed wastewater from an anodized coating factory. The results indicate that both hydrophobic membranes effectively removed targeted contaminants. However, the PTFE membrane achieved higher removal efficiencies, with over 99% removal of sulfate, conductivity, iron, and aluminum, 85.7% of COD, and 86% of total organic carbon (TOC). In contrast, the PVDF membrane exhibited a significant decline in removal efficiency as the temperature increased and performed well only at lower feed temperatures. The PTFE membranes outperformed the PVDF membranes in treating chemically intensive anodic oxidation wastewaters. This superiority can be attributed to the PTFE membrane's morphology and structure, which are less influenced by feed water temperature and chemicals. Additionally, its slippery surface imparts anti-adhesion properties, effectively preventing membrane fouling, and maintaining the treated water quality and flux for longer operation time.
Collapse
Affiliation(s)
- Oruc Kaan Turk
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey.
| | - Ali Zoungrana
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey
| | - Mehmet Cakmakci
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey
| |
Collapse
|
6
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Jang D, Tran TN, Ko K, Park D, Park S, Kang S. Parametric studies during the removal of ammonia by membrane contactor with various stripping solutions. CHEMOSPHERE 2022; 309:136648. [PMID: 36183878 DOI: 10.1016/j.chemosphere.2022.136648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Although membrane contactors (MCs) have been recognized to be an efficient approach for the removal of ammonia from water streams, factors affecting the MCs performance were not clearly investigated. In this study, the effects of stripping solution chemistry (acid types and concentration), feed solution chemistry (pH, temperature, and ammonia concentration), and stages of MCs system have been comprehensively evaluated. Interestingly, the type of stripping solutions significantly affected the removal of ammonia, and the comparative effectiveness were in the order of H3PO4 > H2SO4 > HCOOH. However, the concentration of stripping solutions and ammonia in the feed has little impact to the performance of MCs. Among the feed solution chemistry, pH and temperature were the most crucial factors for ammonia removal in MCs, because the increase of pH and temperature enhanced the free ammonia fraction in the solution and facilitated the mass transfer through pores. At the absorbent concentration of 0.5 M H3PO4, pH of 10, and temperature of 40 °C, single-stage MCs could achieve 51% of ammonia removal within 40 s, and the ammonia removal rate in two-stage MCs reached 90% at the 1.5 min of hydraulic retention time (HRT). The results suggested the superior feasibility of multi-stage MCs system compare to the conventional stripping processes for the removal of ammonia in various waste or wastewater.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Thi Nhung Tran
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Kwanyoung Ko
- Department of Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Daeseon Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sanghyeon Park
- Separation and Purification Sciences Division, 3M R&D Center, Hwaseong-si, 18449, Republic of Korea.
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
8
|
Shi M, Duan H, Feng L, Xiao M, He Q, Yan S. Sustainable ammonia recovery from anaerobic digestion effluent through pretreating the feed by biomass ash. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sfetsas T, Patsatzis S, Chioti A, Kopteropoulos A, Dimitropoulou G, Tsioni V, Kotsopoulos T. A review of advances in valorization and post-treatment of anaerobic digestion liquid fraction effluent. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1093-1109. [PMID: 35057678 DOI: 10.1177/0734242x211073000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditionally, digestate is considered a waste, which is used as fertiliser in the agriculture industry. Recent studies focus on increasing the profitability of digestate by extracting reusable nutrients to promote biogas plants cost-effectiveness, sustainable management and circular economy. This review focuses on the post-treatment and valorization of liquor which is produced by solid-liquid fractioning of digestate. Nutrient recovery and removal from liquor are possible through mechanical, physicochemical and biological procedures. The processes discussed involve complex procedures that differ in economic value, feasibility, legislative restrictions and performance. The parameters that should be considered to employ these techniques are influenced by liquor characteristics, topography, climate conditions and available resources. These are key parameters to keep in mind during designing and manufacturing a biogas plant. In the following chapters, a discussion on available liquor treatment methods takes place. The present study examines the critical aspects of the available liquor treatment methods.
Collapse
Affiliation(s)
- Themistoklis Sfetsas
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Stefanos Patsatzis
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Afroditi Chioti
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Alexandros Kopteropoulos
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Georgia Dimitropoulou
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Vasiliki Tsioni
- Research & Development, Quality Control and Testing Services, QLAB Private Company, Thessaloniki, Greece
| | - Thomas Kotsopoulos
- Faculty of Agriculture, Aristoteleio University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Managing the Effluents of Anaerobic Fermentations by Bioprocess Schemes Involving Membrane Bioreactors and Bio-Electrochemical Systems: A Mini-Review. ENERGIES 2022. [DOI: 10.3390/en15051643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Anaerobic bioprocesses, such as anaerobic digestion and dark fermentation, provide energy carriers in the form of methane and hydrogen gases, respectively. However, their wastewater-type residues, that is, the fermentation effluents, must be treated carefully due to the incomplete and non-selective conversion of organic matter fed to the actual system. For these reasons, the effluents contain various secondary metabolites and unutilized substrate, in most cases. Only a fraction of anaerobic effluents can be directly applied for fertilization under a moderate climate. Conventional wastewater treatment technologies may be used to clean the remainder, but that approach leads to a net loss of energy and of potentially useful agricultural input materials (organic carbon and NPK fertilizer substitutes). The rationale of this paper is to provide an overview of promising new research results in anaerobic effluent management strategies as a part of technological downstream that could fit the concept of new-generation biorefinery schemes aiming towards zero-waste discharge, while keeping in mind environmental protection, as well as economical perspectives. According to the literature, the effluents of the two above processes can be treated and valorized relying either on membrane bioreactors (in case of anaerobic digestion) or bio-electrochemical apparatus (for dark fermentation). In this work, relevant findings in the literature will be reviewed and analyzed to demonstrate the possibilities, challenges, and useful technical suggestions for realizing enhanced anaerobic effluent management. Both membrane technology and bio-electrochemical systems have the potential to improve the quality of anaerobic effluents, either separately or in combination as an integrated system.
Collapse
|
11
|
Ngo MTT, Diep BQ, Sano H, Nishimura Y, Boivin S, Kodamatani H, Takeuchi H, Sakti SCW, Fujioka T. Membrane distillation for achieving high water recovery for potable water reuse. CHEMOSPHERE 2022; 288:132610. [PMID: 34678340 DOI: 10.1016/j.chemosphere.2021.132610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Achieving high water recovery using reverse osmosis membranes is challenging during water recycling because the increased concentrations of organics and inorganics in wastewater can cause rapid membrane fouling, necessitating frequent cleaning using chemical agents. This study evaluated the potential of membrane distillation to purify reverse osmosis-concentrated wastewater and achieve 98% overall water recovery for potable water reuse. The results indicate that membrane fouling during membrane distillation treatment was low (4% reduction in permeability) until 98% water recovery. In contrast, membrane fouling during reverse osmosis treatments was high (73% reduction in permeability) before reaching 90% water recovery. Furthermore, membrane distillation showed superior performance in removing dissolved ions (99.9%) from wastewater as compared with reverse osmosis (98.9%). However, although membrane distillation removed most trace organic chemicals tested in this study, a negligible rejection (11%) was observed for N-nitrosodimethylamine, a disinfection byproduct regulated in potable water reuse. In contrast, RO treatment exhibited a high removal of N-nitrosodimethylamine (70%). Post-treatment (e.g., advanced oxidation) after reverse osmosis and membrane distillation may be needed to comply with the N-nitrosodimethylamine regulations. Overall, the membrane distillation process had the capacity to purify reverse osmosis concentrate with insignificant membrane fouling.
Collapse
Affiliation(s)
- My Thi Tra Ngo
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Binh Quoc Diep
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hideaki Sano
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yasuhisa Nishimura
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Sandrine Boivin
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hitoshi Kodamatani
- Graduate School of Science and Engineering, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, 60115, Indonesia; Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, 60115, Indonesia
| | - Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
12
|
Abstract
Water serves as an indispensable part of human life and production. On account of the overexploitation of traditional water sources, the demand for wastewater recycling is expanding rapidly. As a promising water treatment process, membrane distillation (MD) has been utilized in various wastewater treatments, such as desalination brine, textile wastewater, radioactive wastewater, and oily wastewater. This review summarized the investigation work applying MD in wastewater treatment, and the performance was comprehensively introduced. Moreover, the obstructions of industrialization, such as membrane fouling, membrane wetting, and high energy consumption, were discussed with the practical investigation. To cope with these problems, various strategies have been adopted to enhance MD performance, including coupling membrane processes and developing membranes with specific surface characteristics. In addition, the significance of nutrient recovery and waste heat utilization was indicated.
Collapse
|
13
|
Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review. ENERGIES 2021. [DOI: 10.3390/en14238149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The world is currently witnessing a rapid increase in sewage sludge (SS) production, due to the increased demand for wastewater treatment. Therefore, SS management is crucial for the economic and environmental sustainability of wastewater treatment plants. The recovery of nutrients from SS has been identified as a fundamental step to enable the transition from a linear to a circular economy, turning SS into an economic and sustainable source of materials. SS is often treated via anaerobic digestion, to pursue energy recovery via biogas generation. Anaerobically digested sewage sludge (ADS) is a valuable source of organic matter and nutrients, and significant advances have been made in recent years in methods and technologies for nutrient recovery from ADS. The purpose of this study is to provide a comprehensive overview, describing the advantages and drawbacks of the available and emerging technologies for recovery of nitrogen (N), phosphorus (P), and potassium (K) from ADS. This work critically reviews the established and novel technologies, which are classified by their ability to recover a specific nutrient (ammonia stripping) or to allow the simultaneous recovery of multiple elements (struvite precipitation, ion exchange, membrane technologies, and thermal treatments). This study compares the described technologies in terms of nutrient recovery efficiency, capital, and operational costs, as well as their feasibility for full-scale application, revealing the current state of the art and future perspectives on this topic.
Collapse
|
14
|
Bao Y, Fu Y, Wang C, Wang H. An effective integrated system used in separating for anaerobic digestate and concentrating for biogas slurry. ENVIRONMENTAL TECHNOLOGY 2021; 42:4434-4443. [PMID: 32338158 DOI: 10.1080/09593330.2020.1761457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this work, an integrated system was developed which achieves full-scale separation and valorization for anaerobic digestate of livestock manure, completes anaerobic digestate separation, biogas residue recovery, biogas slurry concentration and water recovery simultaneously. Compared with the centrifugal pretreatment, the particle size of the biogas slurry is reduced significantly via P/I pretreatment, the liquid recovery ratio is increased to 94.0%, this leads to the substantial increase of the entire system nutrients recovery ratio directly. What's even more valuable is the permeate flux of UF membrane is increased for 2.5 times via P/I pretreatment. The results showed that P/I pretreatment had much better effects in solid-liquid separation of biogas slurry, which reduced the load of the subsequent membrane separation unit and enhanced the UF membrane permeation flux greatly. That prolonged the cleaning cycle and service life of the UF membrane. The efficiency of system was validated according to the nutrients recovery ratios, the biogas slurry concentration efficiency, the recovery of water and the pollutants levels of discharged water. The results showed that the total nutrients recovery ratio was about 100%, the concentration ratios of biogas slurry were more than 3.7 (via UF) and 6.6 (via RO), total water recovery ratio was 46.9% (ratio of the discharged water volume to the digestate volume, the COD removal ratio of the discharged water was 99.9%, the contents of COD, TP and TN were 43.6 mg/L, 0.2 mg/L and 1.2 mg/L, which reached the nation integrated wastewater discharged standard class I.
Collapse
Affiliation(s)
- Yali Bao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Yanyan Fu
- WoDe Biological Technology Co., Ltd., Hohhot, People's Republic of China
| | - Caixia Wang
- WoDe Biological Technology Co., Ltd., Hohhot, People's Republic of China
| | - Hong Wang
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| |
Collapse
|
15
|
Tibi F, Charfi A, Cho J, Kim J. Effect of interactions between ammonium and organic fouling simulated by sodium alginate on performance of direct contact membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Charfi A, Kim S, Yoon Y, Cho J. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. CHEMOSPHERE 2021; 279:130524. [PMID: 34134401 DOI: 10.1016/j.chemosphere.2021.130524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.2% sodium hypochlorite (NaOCl) and 3% citric acid (C6H8O7) cleaning was tested with different cleaning frequencies and various chemical cleaning durations at different cross-flow velocities. To avoid severe fouling, the optimal cross-flow velocity was found at 0.18 m/s (0.8 L/min). Moreover, even if higher cross-flow velocity allows higher flux, it could increase fouling risks. For a better membrane regeneration and process productivity, a cleaning of 60 min duration for each chemical cleaning applied every two days was defined as the optimal cleaning strategy. Such conditions allowed the preservation of 75.5% of the initial flux after 96 h of operation. Furthermore, the effect on membrane flux regeneration of DI water flushing, sodium hypochlorite, and citric acid cleaning registered were, 31.52%, 11.95% and 20.65%, respectively. This study revealed that in the MD process treating real wastewater both external and internal fouling are responsible of permeate flux decline due to the accumulation of organic and inorganic matter on the membrane surface as well as within the pores.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
17
|
Charfi A, Tibi F, Kim J, Hur J, Cho J. Organic Fouling Impact in a Direct Contact Membrane Distillation System Treating Wastewater: Experimental Observations and Modeling Approach. MEMBRANES 2021; 11:membranes11070493. [PMID: 34208956 PMCID: PMC8303707 DOI: 10.3390/membranes11070493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
| | - Fida Tibi
- Program of Environmental and Polymer Engineering, Department of Environmental Engineering, Inha University, Michuholgu, Inharo 100, Incheon 22212, Korea; (F.T.); (J.K.)
| | - Jeonghwan Kim
- Program of Environmental and Polymer Engineering, Department of Environmental Engineering, Inha University, Michuholgu, Inharo 100, Incheon 22212, Korea; (F.T.); (J.K.)
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
- Correspondence: ; Tel.: +82-2-3408-3970
| |
Collapse
|
18
|
Li W, Deng L, Huang H, Zhou J, Liao Y, Qiu L, Yang H, Yao L. Janus Photothermal Membrane as an Energy Generator and a Mass-Transfer Accelerator for High-Efficiency Solar-Driven Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26861-26869. [PMID: 34080412 DOI: 10.1021/acsami.1c01072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane distillation (MD) is an emerging membrane-based evaporation technology with great promise for the desalination and separation industries. However, its widespread application still depends on substantial development to increase the distillation flux, reduce the energy consumption, and extend the lifespan of the membrane. Herein, we report for the first time the integration of multiple functions, that is, energy-saving, flux-enhancing, and anti-fouling properties, into a single membrane. Such a membrane was fabricated by coating the top surface of a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) nanofibrous mat with photothermal and hydrophobic graphitic carbon spheres and subsequently coating the bottom surface with a hydrophilic polydopamine layer, yielding a novel Janus photothermal membrane (JPTM). Owing to the high photothermal efficiency and accelerated mass transport across the membrane, the JPTM demonstrated an excellent desalination performance when assembled into a solar-driven MD system, with a distillation flux of 1.29 kg m-2 h-1, which is 10 times higher than that of the conventional un-modified PVDF-HFP membrane, requiring only 1 kW m-2 solar illumination as the energy input.
Collapse
Affiliation(s)
- Wenpeng Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haiyan Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiale Zhou
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuanyuan Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Qiu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haitao Yang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
19
|
Permeate Flux and Rejection Behavior in Submerged Direct Contact Membrane Distillation Process Treating a Low-Strength Synthetic Wastewater. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of operational conditions such as permeate recirculation velocity, mixing intensity, and trans-membrane temperature on the performances of hydrophobic polyethylene (PE) hollow-fiber membrane were investigated by operating the submerged direct contact membrane distillation (SDCMD) process treating a synthetic low-strength wastewater. Permeate flux of the membrane increased with increasing a permeate recirculation velocity through the fiber lumen. However, the effectiveness was less pronounced as the velocity was higher than 0.5 m/s. Increasing rotational speed to 600 rpm, which can lead to mixing intensity from a bulk wastewater toward hollow-fiber membrane, enhanced permeate flux. Feed temperature played a more significant role in enhancing permeate flux rather than a permeate temperature under constant trans-membrane temperature. The SDCMD process treating a synthetic low-strength wastewater achieved an excellent rejection efficiency which is higher than 97.8% for both chemical oxygen demand (CODCr) and total phosphorus (T-P) due to the hydrophobic property of membrane material which can allow water vapor through membrane. However, the rejection efficiency of the ammonia nitrogen (NH3-N) was relatively low at about 87.5% because ammonia gas could be volatized easily through membrane pores in SDCMD operation. In a long-term operation of the SDCMD process, the permeate flux decreased significantly due to progressive formation of inorganic scaling on membrane.
Collapse
|
20
|
Tibi F, Guo J, Ahmad R, Lim M, Kim M, Kim J. Membrane distillation as post-treatment for anaerobic fluidized bed membrane bioreactor for organic and nitrogen removal. CHEMOSPHERE 2019; 234:756-762. [PMID: 31238271 DOI: 10.1016/j.chemosphere.2019.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
To observe feasibility of membrane distillation (MD) as post-treatment for anaerobic fluidized bed membrane bioreactor (AFMBR), removals of organic and total nitrogen were investigated by using the commercial polyvinylidene difluoride (PVDF) membrane for direct contact membrane distillation (DCMD) at various operational conditions. Test solutions for MD experiments were permeate produced by staged AFMBR (SAF-MBR), permeate from single AFMBR and synthetic wastewater fed to both reactors. Increasing in feed temperature improved permeate flux through PVDF membrane, but it decreased total nitrogen (TN) removal efficiency. Effect of chemical oxygen demand (COD) concentrations in feed solutions for DCMD on TN removal efficiency was almost negligible. However, the COD removal efficiency was lower at lower feed concentration in DCMD operation. At constant feed temperature, TN removal efficiency was improved by increasing a recirculation flow rate on PVDF membrane across DCMD system. Both organic and inorganic fouling were observed on PVDF membrane surface and pore matrix after conducting DCMD operation. The organic fouling on PVDF membrane consisted mainly of protein and fatty acids, supporting that the permeate produced by AFMBR should have potentials to foul the membrane applied in DCMD system as post-treatment.
Collapse
Affiliation(s)
- Fida Tibi
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea
| | - Jing Guo
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea
| | - Rizwan Ahmad
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Pakistan
| | - Michael Lim
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea
| | - Minseok Kim
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Michuholgu, Inharo-100, Incheon, Republic of Korea.
| |
Collapse
|
21
|
Yan Z, Yang H, Qu F, Zhang H, Rong H, Yu H, Liang H, Ding A, Li G, Van der Bruggen B. Application of membrane distillation to anaerobic digestion effluent treatment: Identifying culprits of membrane fouling and scaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:880-889. [PMID: 31255825 DOI: 10.1016/j.scitotenv.2019.06.307] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Membrane distillation (MD) has great potential in the treatment of high-salinity and low-biodegradability wastewater, but membrane fouling restricts its real applications. In this work, MD was applied to treat anaerobic digestion effluent, and the feed pH was adjusted to investigate the membrane organic fouling and inorganic scaling. The results show that the fouling of MD membranes during the treatment of anaerobic digestion effluent was substantially alleviated at a low feed pH (pH=5). Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the fouled membranes. The MD membrane scaling was primarily attributed to the deposition of calcium-, magnesium-, phosphate-, and silicon-related inorganic compounds during the treatment of cow dung anaerobic digestion effluent. Feed acidification significantly decreased inorganic scaling as well as fouling by organic matter, and organic fouling dominated the fouling process in the low-pH environment. By comparing the components in acid and alkaline cleaning solutions, it was found that the deposition of organics on the membranes via adsorption to inorganic scaling was the primary cause of more severe organic fouling with increasing feed pH. Hence, restricting inorganic scaling could be an effective way to control MD membrane fouling by organics during treatment of anaerobic digestion effluent.
Collapse
Affiliation(s)
- Zhongsen Yan
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Haiyang Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
22
|
Shi J, Dang Y, Qu D, Sun D. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH/PAM pre-treatment process. CHEMOSPHERE 2019; 220:195-203. [PMID: 30583212 DOI: 10.1016/j.chemosphere.2018.12.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Reverse osmosis is frequently used to process biologically treated leachate from municipal solid waste incineration plants. Reverse osmosis concentrate from incineration leachate (ROCIL) contains extremely high concentrations of monovalent and divalent ions (e.g. Na+, K+, Mg2+, and Ca2+) and some refractory organic pollutants (e.g. humic substances). In this study, lab-scale direct contact membrane distillation (DCMD) coupled with pre-treatment was applied to treat ROCIL. NaOH and polyacrylamide (PAM) chemical precipitation and coagulation pretreatment effectively removed Ca2+ and Mg2+ (>99%) from the ROCIL, which also significantly improved the treatment efficiency of DCMD and slowed down membrane fouling caused by Mg5(CO3)4(OH)2·4H2O and CaCO3 scaling on the membrane surface. During the long-term operation of DCMD, ROCIL was concentrated 21 times and nearly all of the inorganic ions (>99.9%) and organic matter (>99%) were removed from the pre-treated ROCIL. A strong interaction occurred due to the accumulation of humic substances and metal ions in the feed solution, which lead to inorganic and organic scaling deposited on the membrane surface and pores, but the wetting phenomenon was not serious. These results demonstrated that DCMD coupled with NaOH/PAM pre-treatment can be a potential alternative for further treatment and concentration of ROCIL to obtain high quality water.
Collapse
Affiliation(s)
- Jinyu Shi
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dan Qu
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Świątczak P, Cydzik-Kwiatkowska A, Zielińska M. Treatment of the liquid phase of digestate from a biogas plant for water reuse. BIORESOURCE TECHNOLOGY 2019; 276:226-235. [PMID: 30640016 DOI: 10.1016/j.biortech.2018.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Biogas plants struggle with managing nitrogen-rich digestate from manure co-digestion. In this study, the biologically treated liquid phase of digestate from an aerobic granular sludge batch reactor (GSBR) containing oxidized nitrogen forms (NOx), phosphorus, COD and total suspended solids was post-denitrified (P-D), and then ultrafiltered. In P-D, various hydraulic retention times (from 10 to 60 h) and biomass concentrations (from 6 to 14 g MLSS/L) were tested. Then, waste glycerin (GL) was added to the P-D reactor at a CODGL/NOx ratio of 1.1, causing a large number of phosphate-accumulating and denitrifying Janibacter sp., and PHB-accumulating and denitrifying Paracoccus sp. and Thauera sp. to be present in granules, which improved nutrient removal. The effluent was ultrafiltered at 0.3 and 0.5 MPa. After biological treatment supported with GL and followed by ultrafiltration, the purified liquid phase of the digestate met FAO standards for water reuse for irrigation.
Collapse
Affiliation(s)
- Piotr Świątczak
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland.
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland
| |
Collapse
|
25
|
Flux model for the membrane distillation process to treat wastewater: Effect of solids concentration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Wang M, Liu G, Yu H, Lee SH, Wang L, Zheng J, Wang T, Yun Y, Lee JK. ZnO Nanorod Array Modified PVDF Membrane with Superhydrophobic Surface for Vacuum Membrane Distillation Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13452-13461. [PMID: 29616789 DOI: 10.1021/acsami.8b00271] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The vacuum membrane distillation (VMD) is a promising technology for lots of applications. To solve the membrane fouling and wetting problems, in this paper, a novel ZnO nanorods 1 H,1 H,2 H,2 H-perfluorodecyltriethoxysilane (PDTS) modified poly(vinylidene fluoride) (PVDF) membrane with a micro/nanoscale hierarchical structure and a superhydrophobic surface has been prepared and applied to the VMD process for distilling highly salty water, for the first time. Among these, a pyrolysis-adhesion method is created to obtain the ZnO seeds and fasten them on the PVDF substrate firmly. The novel modified membrane shows a stable superhydrophobic surface with a water contact angle of 152°, easy cleaning property, excellent thermal and mechanical stability, because of the Cassie's state caused by pocketing much air in the hydrophobized ZnO nanorods, the low surface energy of PDTS coating, and the strong adhesion between ZnO nanorods and PVDF membrane, which has built an ideal structure for VMD application. After 8 h VMD of 200 g L-1 NaCl solution, compared to the virgin PVDF membrane, the novel membrane shows a similar permeate flux but a much higher quality permeated liquid because of its unique antifouling and antiwetting caused by the several microns gap between the feed and the membrane. Due to its easy cleaning property, the novel membrane also exhibits an excellent reusability.
Collapse
Affiliation(s)
- Manxiang Wang
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | | | | | - Sang-Hyup Lee
- Green School , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Lei Wang
- Beijing Key Lab of Cryobiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jianzhong Zheng
- College of Resources and Environment , University of Chinese Academy of Sciences , 19 A Yuquan Road , Beijing 100049 , P. R. China
| | - Tao Wang
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | - Yanbin Yun
- College of Environmental Science and Engineering , Beijing Forestry University , Beijing 100083 , P. R. China
| | | |
Collapse
|
27
|
Characterization of triple electrospun layers of PVDF for direct contact membrane distillation process. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-017-1437-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Xu F, Khalaf A, Sheets J, Ge X, Keener H, Li Y. Phosphorus Removal and Recovery From Anaerobic Digestion Residues. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Wang Z, Lin S. The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Akhiar A, Battimelli A, Torrijos M, Carrere H. Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 59:118-128. [PMID: 27847231 DOI: 10.1016/j.wasman.2016.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 05/24/2023]
Abstract
Waste management by anaerobic digestion generates a final byproduct, the digestate, which is usually separated into solid and liquid fractions to reduce the volume for transportation. The composition of the solid fraction has been recently studied to allow its valorization. However, full composition of liquid fraction of digestate and its size fractionation are less considered in the literature for efficient post treatment and valorization purposes. Therefore, here we characterized in detail liquid fraction of digestate obtained after solid-liquid separation from 11 full-scale co-digestion plants. The liquid fraction has a high concentration in organic matter with Chemical Oxygen Demand (COD) from 9.2 to 78g/L with 60-96% of COD in suspended particles (>1.2μm), 2-27% in colloids (1.2μm to 1kDa) and 2-18% in dissolved matter (<1kDa). Besides, it contained from 1.5 to 6.5g/L total nitrogen and high ions concentrations (0.5-3.1g/L NH4+, 1.05-5.48g/L K+, 0-2.13g/L PO43-). In addition, liquid fraction of digestate has poor biodegradability due to presence of humic substances making aerobic treatment inefficient. Only physico-chemical post treatment can be proposed for organic matter removal.
Collapse
Affiliation(s)
- Afifi Akhiar
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France
| | | | | | - Helene Carrere
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France
| |
Collapse
|
31
|
Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|