1
|
Redwine GEB, Braunecker WA, Gennett T. Polymer Encapsulated Framework Materials for Enhanced Gas Storage and Separations. ACS MATERIALS AU 2025; 5:268-298. [PMID: 40093827 PMCID: PMC11907295 DOI: 10.1021/acsmaterialsau.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 03/19/2025]
Abstract
Within the broader field of energy storage, polymer-encapsulated framework (PEF) materials have witnessed remarkable growth in recent years, with transformative implications for diverse applications. This comprehensive review discusses in detail the latest advancements in the design, synthesis, and applications of PEFs in gas storage and separations. Following a thorough survey of existing literature, the article delves into mechanistic considerations and foundational principles governing PEF synthesis. Emphasis is placed on covalent and coordinative covalent grafting methods, physical blending, nonsolvent utilization, and various vapor deposition techniques. The discussion critically evaluates the advantages and disadvantages of these synthesis approaches, considering factors such as grafting density, coating thickness, and other physical properties relevant to processability and stability in comparison to traditional framework materials. Special attention is given to the impact of polymer coatings on gas adsorption analysis. Finally, notable accomplishments and advancements in the PEF field, including mixed matrix membrane (MMM) technology, improvements in framework form factors, and enhanced chemical and mechanical stability are summarized. This review concludes by offering valuable perspective for researchers, highlighting gaps and challenges that confront the current state-of-the-art in PEF materials, paving the way for future innovations that are poised to help address global energy challenges.
Collapse
Affiliation(s)
- Grace E B Redwine
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Wade A Braunecker
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Li Y, Wang X, Huang W, Li X, Xia P, Xu X, Feng F. Self-Assembled Sandwich-like Mixed Matrix Membrane of Defective Zr-MOF for Efficient Gas Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:279. [PMID: 39997842 PMCID: PMC11858266 DOI: 10.3390/nano15040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Membrane technology has been widely used in industrial CO2 capturing, gas purification and gas separation, arousing attention due to its advantages of high efficiency, energy saving and environmental protection. In the context of reducing global carbon emissions and combating climate change, it is particularly important to capture and separate greenhouse gasses such as CO2. Zr-MOF can be used as a multi-dimensional modification on the polymer membrane to prepare self-assembled MOF-based mixed matrix membranes (MMMs), aiming at the problem of weak adhesion or bonding force between the separation layer and the porous carrier. When defective UiO-66 is applied to PVDF membrane as a functional layer, the CO2 separation performance of the PVDF membrane is significantly improved. TUT-UiO-3-TTN@PVDF has a CO2 permeation flux of 14,294 GPU and a selectivity of 27 for CO2/N2 and 18 for CO2/CH4, respectively. The CO2 permeability and selectivity of the membrane exhibited change after 40 h of continuous operation, significantly improving the gas separation performance and showing exceptional stability for large-scale applications.
Collapse
Affiliation(s)
- Yuning Li
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Xinya Wang
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Weiqiu Huang
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Xufei Li
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Ping Xia
- Department of Research and Development, Changzhou First Hydrocarbon Environmental Protection Sci-Tech Co., Ltd., Changzhou 213164, China;
| | - Xiaochi Xu
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Fangrui Feng
- Jiangsu Key Laboratory of Oil-Gas & New-Energy and Transportation Technology, Changzhou University, Changzhou 213164, China; (Y.L.); (X.W.); (X.L.); (X.X.); (F.F.)
- Engineering Technology Research Center for Oil Vapor Recovery, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Chen G, Zhu H, Liu G, Liu G, Jin W. Confinement Effects and Manipulation Strategies of Nanocomposite Membranes towards Molecular Separation. Angew Chem Int Ed Engl 2025; 64:e202418649. [PMID: 39506877 DOI: 10.1002/anie.202418649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Materials featuring well-defined nanoscale channels offer inherent advantages in the selective transport of gases, liquids, and ions, making them pivotal in applications such as molecular separation, catalysis and energy storage. A crucial challenge lies in assembling ordered nanochannel structures and translating these microscopic architectures into macroscopic regular distributions to enhance performance. Nanocomposites provide a promising solution by incorporating nanoscale material (e.g., filler) that significantly enhances macroscale properties of matrix (e.g., polymer). In this review, we spotlight nanocomposite membranes nanocomposite membranes that utilize confinement effects between filler and matrix to precisely control nanochannel apertures, surface properties, and channel distribution for efficient separation of target systems. We discussed the underlying design principles, channel architectures, and strategies for optimizing polymer-filler interfaces and nanochannel manipulation within functional membranes. Emphasis is placed on the fundamental mechanisms of mass transport, and the structure-property-performance relationships within the nanocomposite membranes towards molecular separation. This work aims to provide a comprehensive understanding of how these nanocomposite membranes can be further developed to meet the demands of industrial and environmental applications.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| |
Collapse
|
4
|
Wang D, Jia X, Shan Z, Gao L, Yang J, Wang Z, Song H. Zr-MOFs (UIO-66-NH 2)@Fluorinated Graphene for Developing Highly Antiwear, Friction-Reduction Lubricating Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27061-27072. [PMID: 39658828 DOI: 10.1021/acs.langmuir.4c04002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Fluorinated graphene (FG) among numerous two-dimensional materials has enormous potential in improving antifriction properties. However, they being susceptible to thermal oxidation and prone to wear hinder practical applications. Herein, UIO-66-NH2 (Zr-MOF) enjoying good chemical and thermal stabilities was assembled on the surface of FG nanosheets under covalent bonds and van der Waals forces. The Zr-MOF@FG composite was successfully synthesized and used as a lubricant additive. It can be seen that Zr-MOF@FG composites offer a synergistic lubricant mechanism at the friction interface. Moreover, due to the adsorption and purification performance of Zr-MOF, the obtained Zr-MOF@FG composite adsorbs the abrasive rust during the friction process, thereby realizing the purification of the lubricant. These findings suggest that Zr-MOF@FG shows tremendous potential as a lubricant additive.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Xiaohua Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Zhiqiang Shan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Li Gao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Jin Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Zhaofeng Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory for Yantai Advanced Materials and Green Manufacturing, Yantai 264006, P.R. China
| | - Haojie Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| |
Collapse
|
5
|
Golgoli M, Farahbakhsh J, Najafi M, Khiadani M, Johns ML, Zargar M. Resilient forward osmosis membranes against microplastics fouling enhanced by MWCNTs/UiO-66-NH 2 hybrid nanoparticles. CHEMOSPHERE 2024; 359:142180. [PMID: 38679179 DOI: 10.1016/j.chemosphere.2024.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
6
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
7
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Tao H, Cao X, Song R, Zhou Z, Cheng F. Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:873-886. [PMID: 38423606 PMCID: wst_2024_043 DOI: 10.2166/wst.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O2 utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O2 utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O2 permeance of 31.65 GPU (1 GPU = 3.35 × 10-10 mol m-2 s-1 Pa-1), with O2/N2 selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.
Collapse
Affiliation(s)
- Haiyan Tao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xiaochang Cao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Rujie Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Zebin Zhou
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Fang Cheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
9
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
10
|
Shimada T, Usov PM, Wada Y, Ohtsu H, Watanabe T, Adachi K, Hashizume D, Matsumoto T, Kawano M. Long Time CO 2 Storage Under Ambient Conditions in Isolated Voids of a Porous Coordination Network Facilitated by the "Magic Door" Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307417. [PMID: 37985922 PMCID: PMC10787060 DOI: 10.1002/advs.202307417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 11/22/2023]
Abstract
A coordination network containing isolated pores without interconnecting channels is prepared from a tetrahedral ligand and copper(I) iodide. Despite the lack of accessibility, CO2 is selectively adsorbed into these pores at 298 K and then retained for more than one week while exposed to the atmosphere. The CO2 adsorption energy and diffusion mechanism throughout the network are simulated using Matlantis, which helps to rationalize the experimental results. CO2 enters the isolated voids through transient channels, termed "magic doors", which can momentarily appear within the structure. Once inside the voids, CO2 remains locked in limiting its escape. This mechanism is facilitated by the flexibility of organic ligands and the pivot motion of cluster units. In situ powder X-ray diffraction revealed that the crystal structure change is negligible before and after CO2 capture, unlike gate-opening coordination networks. The uncovered CO2 sorption and retention ability paves the way for the design of sorbents based on isolated voids.
Collapse
Affiliation(s)
- Terumasa Shimada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Pavel M Usov
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Taku Watanabe
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa, 231-0815, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Matsumoto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa, 231-0815, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
11
|
Wu WN, Mizrahi Rodriguez K, Roy N, Teesdale JJ, Han G, Liu A, Smith ZP. Engineering the Polymer-MOF Interface in Microporous Composites to Address Complex Mixture Separations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931132 DOI: 10.1021/acsami.3c11300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Poor interfacial compatibility remains a pressing challenge in the fabrication of high-performance polymer-MOF composites. In response, introducing compatible chemistries such as a carboxylic acid moiety has emerged as a compelling strategy to increase polymer-MOF interactions. In this work, we leveraged compatible functionalities in UiO-66-NH2 and a carboxylic acid-functionalized PIM-1 to fabricate mixed-matrix membranes (MMMs) with improved separation performance compared to PIM-1-based MMMs in industrially relevant conditions. Under pure-gas conditions, PIM-COOH-based MMMs retained selectivity with increasing MOF loading and showed increased permeability due to increased diffusion. The composites were further investigated under industrially relevant conditions, including CO2/N2, CO2/CH4, and H2S/CO2/CH4 mixtures, to elucidate the effects of competitive sorption and plasticization. Incorporation of UiO-66-NH2 in PIM-COOH and PIM-1 mitigated the effects of CO2- and H2S-induced plasticization typically observed in linear polymers. In CO2-based binary mixed-gas tests, all samples showed similar performance as that in pure-gas tests, with minimal competitive sorption contributions associated with the amine functional groups of the MOF. In ternary mixed-gas tests, improved plasticization resistance and interfacial compatibility resulted in PIM-COOH-based MMMs having the highest H2S/CH4 and CO2/CH4 selectivity combinations among the films tested in this study. These findings demonstrate that selecting MOFs and polymers with compatible functional groups is a useful strategy in developing high-performing microporous MMMs that require stability under complex and industrially relevant conditions.
Collapse
Affiliation(s)
- Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Justin J Teesdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin300350, P.R. China
| | - Alexander Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Rehman A, Jahan Z, Khan Niazi MB, Noor T, Javed F, Othman SI, Abukhadra MR, Nawaz A. Graphene-grafted bimetallic MOF membranes for hazardous & toxic contaminants treatment. CHEMOSPHERE 2023; 340:139721. [PMID: 37541443 DOI: 10.1016/j.chemosphere.2023.139721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Development of membrane with improved carbon dioxide (CO2) gas separation capability is a significant challenge. However, the fabrication of membrane that efficiently separate and purification CO2-containing gases has been the focus of global attention. Cellulose Acetate (CA) has robust reinforcing characteristics when incorporated within a suitable polymer matrix. This work focus on the synthesis of novel mixed matrix membranes (MMMs) by introducing Graphene-grafted bimetallic MOFs in Cellulose Acetate polymer. The graphene-grafted bimetallic MOF (GG-BM MOFs) was prepared by a hydrothermal technique. Whereas, the solution casting approach used to fabricate membranes. The 1-5 wt% of GG-BM MOFs incorporated into the CA matrix. The mechanical, hydrophilicity and adsorption characteristics of fabricated MMMs were investigated. The crystallinity of MMM enhanced after the addition of GG-BM MOFs. In addition, the mechanical characteristics of MMMs were improved with the incorporation of GG-BM MOFs inside the polymer matrix. Maximum stress and strain was obtained for 2 wt% MMM (36.4 N/mm2 and 11% respectively). The CO2 adsorption performance was evaluated at 10 bar and 45 °C. The FTIR results represent insignificant bond shifting with the addition GG-BM MOFs at these conditions. The overall results showed that MMMs containing 2 wt% GG-BM MOFs have good adsorption properties for CO2 i.e 3.15 wt% of CO2. The MMMs have shown a decrease in the mechanical properties and CO2 adsorption at the higher GG-BM MOFs loading due to the presence of agglomeration which was confirmed through SEM. Thus, the addition of GG-BM MOFs in the CA matrix positively altered the physicochemical characteristics of the resulting MMMs, which could assist them in achieving remarkable CO2 adsorption at 2 wt%.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Farhan Javed
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, 65211, Egypt
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
13
|
Ji T, Li Z, Liu Z, Chen Z. Facile and efficient preparation of amino bearing metal-organic frameworks-coated cotton fibers for solid-phase extraction of non-steroidal anti-inflammatory drugs in human plasma. J Chromatogr A 2023; 1705:464226. [PMID: 37487300 DOI: 10.1016/j.chroma.2023.464226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The determination of blood concentration of non-steroidal anti-inflammatory drugs (NSAIDs) is highly desired in clinical practice. In this work, three amino bearing metal-organic frameworks (amino-MOFs) coated cotton fibers were prepared using a facile cysteine-triggered in situ growth strategy and proposed as in-tip solid-phase microextraction (in-SPME) adsorbents for efficient extraction of non-steroidal anti-inflammatory drugs from human plasma. The self-made adsorbents exhibited satisfactory extraction performance toward three NSAIDs including diclofenac sodium, ketoprofen and flurbiprofen. Under the optimized conditions, the established method exhibited satisfactory enrichment performance, low limits of detection and excellent extraction efficiency. Good reproducibility, wide linear range, excellent linearity and satisfactory sensitivity were obtained in the experiment. The method was also used for the enrichment and determination of NSAIDs in human plasma samples. Good recoveries were obtained, ranging from 66.5% to 98.9% with relative standard deviations less than 6.62%. The good performance of amino-MOFs was due to the synergistic effects arising from grafted charged amino groups within ordered pores of suitable size, leading to strong affinity towards guest molecules. Electrostatic interaction, hydrogen bond and π-π interaction played a vital role in the extraction of NSAIDs. This report indicated the potential of amino-MOFs as efficient adsorbents for the determination of NSAIDs from human plasma.
Collapse
Affiliation(s)
- Tao Ji
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Zhentao Li
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Zichun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China.
| |
Collapse
|
14
|
Zhang Y, Sheng K, Wang Z, Wu W, Yin BH, Zhu J, Zhang Y. Rational Design of MXene Hollow Fiber Membranes for Gas Separations. NANO LETTERS 2023; 23:2710-2718. [PMID: 36926943 DOI: 10.1021/acs.nanolett.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One scalable and facile dip-coating approach was utilized to construct a thin CO2-selection layer of Pebax/PEGDA-MXene on a hollow fiber PVDF substrate. An interlayer spacing of 3.59 Å was rationally designed and precisely controlled for the MXene stacks in the coated layer, allowing efficient separation of the CO2 (3.3 Å) from N2 (3.6 Å) and CH4 (3.8 Å). In addition, CO2-philic nanodomains in the separation layer were constructed by grafting PEGDA into MXene interlayers, which enhanced the CO2 affinity through the MXene interlayers, while non-CO2-philic nanodomains could promote CO2 transport due to the low resistance. The membrane could exhibit optimal separation performance with a CO2 permeance of 765.5 GPU, a CO2/N2 selectivity of 54.5, and a CO2/CH4 selectivity of 66.2, overcoming the 2008 Robeson upper bounds limitation. Overall, this facile approach endows a precise controlled molecular sieving MXene membrane for superior CO2 separation, which could be applied for interlayer spacing control of other 2D materials during membrane construction.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Kai Sheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 5046, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5046, New Zealand
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Engineering Research Centre of Advanced Manufacturing of Ministry of Education, Zhengzhou, 450001, PR China
| |
Collapse
|
15
|
Liu C, Si Z, Wu H, Zhuang Y, Zhang C, Zhang G, Zhang X, Qin P. High-/Low-Molecular-Weight PDMS Photo-Copolymerized Membranes for Ethanol Recovery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hanzhu Wu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yan Zhuang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Ganggang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry, Beijing100000, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
16
|
Yu Z, Gu Z, Lei J, Zheng G. Vacuum treated amorphous MOF mixed matrix membrane for methane/nitrogen separation. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Regulating the pore engineering of MOFs by the confined dissolving of PSA template to improve CO2 capture. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Jheng LC, Park J, Wook Yoon H, Chang FC. Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Ibrahim MIA, Solimando X, Stefan L, Pickaert G, Babin J, Arnal-Herault C, Roizard D, Jonquières A, Bodiguel J, Averlant-Petit MC. A lysine-based 2:1-[α/aza]-pseudopeptide series used as additives in polymeric membranes for CO 2 capture: synthesis, structural studies, and application †. RSC Adv 2023; 13:10051-10067. [PMID: 37006376 PMCID: PMC10052764 DOI: 10.1039/d3ra00409k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
The current study presents for the first time the synthesis of a new 2:1-[α/aza]-pseudopeptide series possessing charged amino acids (i.e., lysine) and aims at studying the influences of chirality, backbone length, and the nature of the lysine side chains on the conformation of the 2:1-[α/aza]-oligomers in solution using NMR, FTIR spectroscopy and molecular dynamic calculations. The spectroscopic results emphasized the conservation of the β-turn conformation adopted by the trimers regardless of the chirality which demonstrated a noticeable effect on the conformation of homochiral hexamer (8c) compared with the hetero-analogue (8d). The molecular dynamic calculations predicted that the chirality and the side chain of the lysine residues caused a little distortion from the classical β-turn conformation in the case of short trimer sequences (7c and 7d), while the chirality and the backbone length exerted more distortion on the β-turn adopted by the longer hexamer sequences (8c and 8d). The large disturbance in hexamers from classical β-turn was attributed to increasing the flexibility and the possibility of molecules to adopt a more energetically favorable conformation stabilized by non-classical β-turn intramolecular hydrogen bonds. Thus, alternating d- and l-lysine amino acids in the 2:1-[α/aza]-hexamer (8d) decreases the high steric hindrance between the lysine side chains, as in the homo analogue (8c), and the distortion is less recognized. Finally, short sequences of aza-pseudopeptides containing lysine residues improve CO2 separation when used as additives in Pebax® 1074 membranes. The best membrane performances were obtained with a pseudopeptidic dimer as an additive (6b′; deprotected lysine side chain), with an increase in both ideal selectivity αCO2/N2 (from 42.8 to 47.6) and CO2 permeability (from 132 to 148 Barrer) compared to the virgin Pebax® 1074 membrane. A new 2:1-[α/aza]-pseudopeptide series based charged lysine amino acid was synthesized. Influences of chirality, backbone length, and lysine side chains on the oligomers conformation were investigated in solution using NMR, FTIR and MD calculations.![]()
Collapse
Affiliation(s)
- Mohamed I. A. Ibrahim
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
- National Institute of Oceanography and Fisheries, NIOFEgypt
- Hiroshima Synchrotron Radiation Center, Hiroshima University2-313 Kagamiyama, Higashi-HiroshimaHiroshima 739-0046Japan
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Jérôme Babin
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Denis Roizard
- Université de Lorraine, CNRS, LRGPF-54000 NancyFrance
| | | | | | | |
Collapse
|
21
|
Jiao H, Shi Y, Shi Y, Zhang F, Lu K, Zhang Y, Wang Z, Jin J. In-situ etching MOF nanoparticles for constructing enhanced interface in hybrid membranes for gas separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Sanni SE, Vershima DA, Okoro EE, Oni BA. Technological advancements in the use of ionic liquid- membrane systems for CO 2 capture from biogas/flue gas - A review. Heliyon 2022; 8:e12233. [PMID: 36582712 PMCID: PMC9792796 DOI: 10.1016/j.heliyon.2022.e12233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon capture has become a very important method for curbing the problems associated with the release of carbon dioxide into the atmosphere, which in turn has detrimental effects on the planet and its inhabitants. Ionic liquids and membrane separation have been explored in this review paper as effective means of capturing carbon dioxide. An innovative approach to CO2 capture is the use of Ionic liquids (ILs) since they exhibit certain significant traits such as good stability (thermal, mechanical and chemical), inflammability and high absorptive capacities. Ionic liquids (ILs) are widely regarded as nontoxic substances. Viscosity and thermal degradation of ILs at temperatures slightly above 100 °C are the major disadvantages of ILs. Membrane separation is a technique used for the effective separation of substances by materials bearing holes in a continuous structure. Membrane technology has gained significant improvements, over the years. Several ILs and membrane systems were considered in this work. Their weaknesses, strengths, permeability, selectivity, operating conditions and carbon capture efficiencies, were all highlighted in order to gain a good perspective on ways by which the individual systems can be improved upon. The study considered several polymer-Ionic liquid hybrid materials as viable options for CO2 capture from a post-combustion process. Different ILs were scrutinized for possible integration in membranes by taking full advantage of their individual properties and harnessing their tune-able characteristics in order to improve the overall carbon capture performance of the system. Several options for improving the mechanical, chemical, and thermal stabilities of the hybrid systems were considered including the use of cellulose acetate membrane, nanoparticles (graphene oxide powder) alongside potential ionic liquids. Doping membranes with ILs and nanoparticulates such as graphene oxide serves as a potential method for enhancing the CO2 capture of membranes and this review provides several evidences that serve as proofs for this concept.
Collapse
Affiliation(s)
- Samuel Eshorame Sanni
- Department of Chemical Engineering, Covenant University, Ota, Ogun, Nigeria,Corresponding author:
| | | | - Emeka Emmanuel Okoro
- Department of Petroleum Engineering, University of Port Harcourt, Choba, Rivers State, Nigeria
| | | |
Collapse
|
23
|
Zhang X, Ren X, Wang Y, Li J. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Ding Y, Wang H, Yu M, Zheng W, Ruan X, Li X, Xi Y, Dai Y, Liu H, He G. Amine group graft ZIF-93 to create gas storage space to improve the gas separation performance of Pebax-1657 MMMs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Shen Q, Cong S, Zhu J, Zhang Y, He R, Yi S, Zhang Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Farahani SK, Hosseini SM. A highly promoted nanofiltration membrane by incorporating of aminated Zr-based MOF for efficient salts and dyes removal with excellent antifouling properties. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Hu A, Sun Z, Hou Q, Duan J, Li C, Dou W, Fan J, Zheng M, Dong Q. Regulating Lithium Plating/Stripping Behavior by a Composite Polymer Electrolyte Endowed with Designated Ion Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205571. [PMID: 36351242 DOI: 10.1002/smll.202205571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The urgent demand for high energy and safety storage devices is pushing the development of lithium metal batteries. However, unstable solid electrolyte interface (SEI) formation and uncontrollable lithium dendrite growth are still huge challenges for the practical use of lithium metal batteries. Herein, a composite polymer electrolyte (CPE) endowed with designated ion channels is fabricated by constructing nanoscale Uio66-NH2 layer, which has uniformly distributed pore structure to regulate reversible Li plating/stripping in lithium metal batteries. The regular channels within the Uio66-NH2 layer work as an ion sieve to restrict larger TFSI- anions inside its channels and extract Li+ across selectively, which result in a high Li-ion transference number ( t Li + ${t_{{\rm{L}}{{\rm{i}}^{\bm{ + }}}}}$ ) of 0.6. Moreover, CPE provides high ion conductivity (0.245 mS cm-1 at room temperature) and expanded oxidation window (5.1 V) and forms a stable SEI layer. As a result, the assembled lithium metal batteries with CPE exhibit outstanding cyclic stability and capacity retention. The Li/CPE/Li symmetric cell continues plating/stripping over 500 h without short-circuiting. The Li/CPE/LFP cell delivers a reversible capacity of 149.3 mAh g-1 with a capacity retention of 99% after 100 cycles.
Collapse
Affiliation(s)
- Ajuan Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongqiang Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qing Hou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianing Duan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjie Dou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingmin Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingsen Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Quanfeng Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
28
|
Lee TH, Lee BK, Youn C, Kang JH, Kim YJ, Kim KI, Ha YR, Han Y, Park HB. Interface engineering in MOF/crosslinked polyimide mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Relationship between wet coating thickness and nanoparticle loadings based on the performance of mixed matrix composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Tanvidkar P, Jonnalagedda A, Kuncharam BVR. Fabrication and testing of mixed matrix membranes of
UiO‐66‐NH
2
in cellulose acetate for
CO
2
separation from model biogas. J Appl Polym Sci 2022. [DOI: 10.1002/app.53264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Priya Tanvidkar
- Department of Chemical Engineering Birla Institute of Technology and Science Pilani India
| | - Aditya Jonnalagedda
- Department of Chemical Engineering Birla Institute of Technology and Science Pilani India
| | | |
Collapse
|
31
|
Li G, Kujawski W, Knozowska K, Kujawa J. Pebax® 2533/PVDF thin film mixed matrix membranes containing MIL-101 (Fe)/GO composite for CO 2 capture. RSC Adv 2022; 12:29124-29136. [PMID: 36320736 PMCID: PMC9555015 DOI: 10.1039/d2ra05095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
MIL-101 (Fe) and MIL-GO composites were successfully synthesized and used as fillers for the preparation of Pebax® 2533/PVDF thin film MMMs for CO2/N2 separation. The defect-free Pebax® 2533/PVDF thin film MMMs were fabricated by casting the Pebax solution containing fillers on the PVDF support. The presence of GO nanosheets in the reaction solution did not destroy the crystal structure of MIL-101 (Fe). However, the BET surface area and total pore volume of MIL-GO decreased dramatically, comparing with MIL-101 (Fe). The incorporation of MIL-GO-2 into Pebax matrix simultaneously increased the CO2 permeability and the CO2/N2 ideal selectivity of Pebax® 2533/PVDF thin film MMMs mainly owing to the porous structure of MIL-GO-2, and the tortuous diffusion pathways created by GO nanosheets. MMMs containing 9.1 wt% MIL-GO-2 exhibited the highest CO2 permeability equal to 303 barrer (1 barrer = 10-10 cm3 (STP) cm cm-2 s-1 cmHg-1) and the highest CO2/N2 ideal selectivity equal to 24. Pebax-based MMMs containing composite fillers showed higher gas separation performance than the Pebax-based MMMs containing single filler (GO or MOFs). Therefore, the synthesis and utilization of 3D@2D composite filler demonstrated great potential in the preparation of high-performance MMMs for gas separation processes.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Katarzyna Knozowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Joanna Kujawa
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| |
Collapse
|
32
|
Boosting the CO2/N2 selectivity of MMMs by vesicle shaped ZIF-8 with high amino content. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Asadabadi S, Ahmadi Feijani E, Ahmadian‐Alam L. Gas separation improvement of
PES
/
PSF
/
PVP
blend mixed matrix membranes inclusive of amorphous
MOFs
by
O
2
plasma treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.53128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simin Asadabadi
- Department of Applied Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Elahe Ahmadi Feijani
- Department of Applied Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Leila Ahmadian‐Alam
- Department of Electrical and Computer Engineering University of New Hampshire Durham New Hampshire USA
| |
Collapse
|
34
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
35
|
Iqbal Z, Shamair Z, Usman M, Gilani MA, Yasin M, Saqib S, Khan AL. One pot synthesis of UiO-66@IL composite for fabrication of CO 2 selective mixed matrix membranes. CHEMOSPHERE 2022; 303:135122. [PMID: 35636596 DOI: 10.1016/j.chemosphere.2022.135122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 05/26/2023]
Abstract
In this study, a facile and extensible one pot approach was utilized to synthesize ionic liquid inside a porous metal organic framework (UiO-66). Different characterization techniques were used to confirm the successful synthesis of UiO-66@IL composite. The MMMs were characterized and tested for CO2 separation from CH4 or N2 at ambient and elevated temperatures. SEM images exhibited well dispersion of the filler particles with no notable defect even at high loadings. Single and mixed gas permeation results indicated significant performance (CO2 permeability: 143 Barrer and CO2/CH4, CO2/N2 selectivity: 28.32, 61.11 respectively) by enhancing the permeability of CO2 by 74% and selectivity to 31% and 26% for CO2/CH4 and CO2/N2 compared with neat Pebax®1657 membrane.
Collapse
Affiliation(s)
- Zain Iqbal
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Zufishan Shamair
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan; School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, United Kingdom
| | - Muhammad Usman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dharan, 31261, Saudi Arabia
| | - Mazhar Amjad Gilani
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
36
|
Habib N, Durak O, Zeeshan M, Uzun A, Keskin S. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Eljaddi T, Bouillon J, Roizard D, Lebrun L. Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO 2 Separation. MEMBRANES 2022; 12:membranes12090836. [PMID: 36135855 PMCID: PMC9502531 DOI: 10.3390/membranes12090836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 05/31/2023]
Abstract
A series of mixed matrix membranes containing poly (ether-block-amide) Pebax 1657 as matrix and polyethylene glycol (PEG) and Zeolitic Imidazolate Framework-8 (ZIF-8) as additives, were prepared and tested for CO2 separation. The membranes were prepared by solvent evaporation method and were characterized by TGA, DSC, SEM, and gas permeation measurements. The effects of PEG and its molecular weight, and the percentage of ZIF-8 into Pebax matrix were investigated. The results showed that the addition of PEG to Pebax/ZIF-8 blends avoid the agglomeration of ZIF-8 particles. A synergic effect between PEG and ZIF was particularly observed for high ZIF-8 content, because the initial permeability of pristine Pebax was multiplied by three (from 54 to 161 Barrers) while keeping the CO2 selectivity (αCO2/N2 = 61, αCO2/CH4 = 12 and αCO2/O2 = 23). Finally, the mechanism of CO2 transport is essentially governed by the solubility of CO2 into the membranes. Therefore, this new Pebax/PEG/ZIF-8 system seems to be a promising approach to develop new selective membranes for CO2 with high permeability.
Collapse
Affiliation(s)
- Tarik Eljaddi
- UNIROUEN, CNRS, PBS, Normandie Université, 76000 Rouen, France
| | - Julien Bouillon
- UNIROUEN, CNRS, PBS, Normandie Université, 76000 Rouen, France
| | - Denis Roizard
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 54000 Nancy, France
| | - Laurent Lebrun
- UNIROUEN, CNRS, PBS, Normandie Université, 76000 Rouen, France
| |
Collapse
|
38
|
Wang X, Zhang Y, Chen X, Wang Y, He M, Shan Y, Li Y, Zhang F, Chen X, Kita H. Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO 2/N 2 Separation by Active Site of Triazole Ligand. MEMBRANES 2022; 12:786. [PMID: 36005701 PMCID: PMC9412359 DOI: 10.3390/membranes12080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Fillers play a critical role in the performance of mixed matrix membranes (MMMs). Microporous metal azolate frameworks (MAFs) are a subclass material of metal-organic frameworks (MOFs). Due to the uncoordinated nitrogen of the organic ligands, MAF-7 (SOD-[Zn(mtz)2], Hmtz = 3-methyl-1,2,4-triazole, window: d = 0.34 nm) shows excellent CO2 adsorption performance. In this work, Pebax 1657/MAF-7 MMMs were prepared by a sample solution casting method with MAF-7 particles as fillers for the first time. By means of X-ray diffraction (XRD), scanning electron microscope (SEM), infrared radiation (IR), and thermogravimetry (TG), the compositional and structural properties of the mixed matrix membrane with different filler content were analyzed. The results show that the compatibility of MAF-7 and Pebax is good with a filler content of 5 wt.%. The pure gas testing showed that mixed matrix membrane has a high ideal CO2/N2 selectivity of 124.84 together with a better CO2 permeability of 76.15 Barrer with the optimized filler content of 5 wt.%. The obtained membrane showed 323.04% enhancement in selectivity of CO2/N2 and 27.74% increase in the permeability of CO2 compared to the pristine membrane at 25 °C and 3 bar. The excellent separation performance may be due to the ligands that can afford a Lewis base active site for CO2 binding with the uniform dispersion of MAF-7 particles in Pebax and the favorable interface compatibility. The obtained membrane overcomes the Robeson's upper bound in 2008 for CO2/N2 separation. This work provides a new strategy by utilizing MAFs as fillers with triazole ligand to enhance the gas separation performance of mixed matrix membranes.
Collapse
Affiliation(s)
- Xingqian Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuping Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinwei Chen
- The Attached Middle School to Jiangxi Normal University, Nanchang 330031, China
| | - Yifei Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Mingliang He
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yongjiang Shan
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuqin Li
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Fei Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiangshu Chen
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hidetoshi Kita
- Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| |
Collapse
|
39
|
Qu K, Xu J, Dai L, Wang Y, Cao H, Zhang D, Wu Y, Xu W, Huang K, Lian C, Guo X, Jin W, Xu Z. Electrostatic‐Induced Crystal‐Rearrangement of Porous Organic Cage Membrane for CO
2
Capture. Angew Chem Int Ed Engl 2022; 61:e202205481. [DOI: 10.1002/anie.202205481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Qu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Jipeng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Dezhu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Weiyi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
40
|
Zhang Y, Sun M, Li L, Xu R, Pan Y, Wang T. Carbon molecular sieve /ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Qu K, Xu J, Dai L, Wang Y, Cao H, Zhang D, Wu Y, Xu W, Huang K, Lian C, Guo X, Jin W, Xu Z. Electrostatic‐Induced Crystal‐Rearrangement of Porous Organic Cage Membrane for CO
2
Capture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Qu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Jipeng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Dezhu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Weiyi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
42
|
Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. Poly(ionic liquid)-Functionalized UiO-66-(OH) 2: Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO 2 Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Dechao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
43
|
Zhu H, Li R, Liu G, Pan Y, Li J, Wang Z, Guo Y, Liu G, Jin W. Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Spiegel S, Wagner I, Begum S, Schwotzer M, Wessely I, Bräse S, Tsotsalas M. Dynamic Surface Modification of Metal-Organic Framework Nanoparticles via Alkoxyamine Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6531-6538. [PMID: 35579436 DOI: 10.1021/acs.langmuir.2c00085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
External surface engineering of metal-organic framework nanoparticles (MOF NPs) is emerging as an important design strategy, leading to optimized chemical and colloidal stability. To date, most of the MOF surface modifications have been performed either by physical adsorption or chemical association of small molecules or (preformed) polymers. However, most of the currently employed approaches cannot precisely control the polymer density, and dynamic modifications at the surfaces on demand have been a challenging task. Here, we introduce a general approach based on covalent modification employing alkoxyamines as a versatile tool to modify the outer surface of MOF nanoparticles (NPs). The alkoxyamines serve as initiators to grow polymers from the MOF surface via nitroxide-mediated polymerization (NMP) and allow dynamic attachment of small molecules via a nitroxide exchange reaction (NER). The successful surface modification and successive surface polymerization are confirmed via time-of-flight secondary ion mass spectrometry (ToF-SIMS), size exclusion chromatography (SEC), and nuclear magnetic resonance (NMR) spectroscopy. The functionalized MOF NPs exhibit high suspension stability and good dispersibility while retaining their chemical integrity and crystalline structure. In addition, electron paramagnetic resonance spectroscopy (EPR) studies prove the dynamic exchange of two different nitroxide species via NER and further allow us to quantify the surface modification with high sensitivity. Our results demonstrate that alkoxyamines serve as a versatile tool to dynamically modify the surface of MOF NPs with high precision, allowing us to tailor their properties for a wide range of potential applications, such as drug delivery or mixed matrix membranes.
Collapse
Affiliation(s)
- Simon Spiegel
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ilona Wagner
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Isabelle Wessely
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
45
|
Ding R, Wang Q, Ruan X, Dai Y, Li X, Zheng W, He G. Novel and versatile PEI modified ZIF-8 hollow nanotubes to construct CO2 facilitated transport pathway in MMMs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Tan L, Li Y, Lv Q, Gan Y, Fang Y, Tang Y, Wu L, Fang Y. Development of soluble UiO-66 to improve photocatalytic CO2 reduction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Zakariya S, Yeong YF, Jusoh N, Tan LS. Performance of Multilayer Composite Hollow Membrane in Separation of CO 2 from CH 4 in Mixed Gas Conditions. Polymers (Basel) 2022; 14:1480. [PMID: 35406352 PMCID: PMC9002636 DOI: 10.3390/polym14071480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Composite membranes comprising NH2-MIL-125(Ti)/PEBAX coated on PDMS/PSf were prepared in this work, and their gas separation performance for high CO2 feed gas was investigated under various operating circumstances, such as pressure and CO2 concentration, in mixed gas conditions. The functional groups and morphology of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). CO2 concentration and feed gas pressure were demonstrated to have a considerable impact on the CO2 and CH4 permeance, as well as the CO2/CH4 mixed gas selectivity of the resultant membrane. As CO2 concentration was raised from 14.5 vol % to 70 vol %, a trade-off between permeance and selectivity was found, as CO2 permeance increased by 136% and CO2/CH4 selectivity reduced by 42.17%. The membrane produced in this work exhibited pressure durability up to 9 bar and adequate gas separation performance at feed gas conditions consisting of high CO2 content.
Collapse
Affiliation(s)
- Shahidah Zakariya
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Norwahyu Jusoh
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Lian See Tan
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| |
Collapse
|
49
|
Sunder N, Fong YY, Bustam MA, Suhaimi NH. Development of Amine-Functionalized Metal-Organic Frameworks Hollow Fiber Mixed Matrix Membranes for CO 2 and CH 4 Separation: A Review. Polymers (Basel) 2022; 14:1408. [PMID: 35406281 PMCID: PMC9002624 DOI: 10.3390/polym14071408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
CO2 separation from raw natural gas can be achieved through the use of the promising membrane-based technology. Polymeric membranes are a known method for separating CO2 but suffer from trade-offs between its permeability and selectivity. Therefore, through the use of mixed matrix membranes (MMMs) which utilizes inorganic or hybrid fillers such as metal-organic frameworks (MOFs) in polymeric matrix, the permeability and selectivity trade-off can be overcome and possibly surpass the Robeson Upper Bounds. In this study, various types of MOFs are explored in terms of its structure and properties such as thermal and chemical stability. Next, the use of amine and non-amine functionalized MOFs in MMMs development are compared in order to investigate the effects of amine functionalization on the membrane gas separation performance for flat sheet and hollow fiber configurations as reported in the literature. Moreover, the gas transport properties and various challenges faced by hollow fiber mixed matrix membranes (HFMMMs) are discussed. In addition, the utilization of amine functionalization MOF for mitigating the challenges faced is included. Finally, the future directions of amine-functionalized MOF HFMMMs are discussed for the fields of CO2 separation.
Collapse
Affiliation(s)
- Naveen Sunder
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| | - Yeong Yin Fong
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- CO2 Research Center (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Nadia Hartini Suhaimi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| |
Collapse
|
50
|
Xu H, Feng W, Sheng M, Yuan Y, Wang B, Wang J, Wang Z. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|