1
|
Ali MAM, El-Sayed M, El-Shamy OAA, Khedr GE, Sabaa MW, Mohamed RR, Mubarak MF. Zinc-based metal-organic frameworks for sustainable water desalination and anti-scaling solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36411-6. [PMID: 40332710 DOI: 10.1007/s11356-025-36411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Water scarcity and pollution pose significant challenges worldwide, necessitating innovative solutions for sustainable water supply. Traditional desalination methods have limitations in terms of energy consumption, fouling, and environmental impact. This study focuses on the synthesis and characterization of zinc-based metal-organic frameworks (Zn-MOFs) as advanced fillers for desalination techniques. Zn-MOFs were synthesized using a simple precipitation technique and characterized using techniques such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The performance of Zn-MOFs was evaluated in terms of scale deformation experiments. The findings revealed that Zn-MOFs not only significantly reduce the concentration of Ca2⁺ ions responsible for scale (e.g., calcium carbonate scale) formation but also exhibit superior fouling resistance and high salt rejection capabilities. At a dosage of 3000 mg/L and pH 7.5, a remarkable 99% removal efficiency was achieved for half-scale concentration (synthetic water was prepared by the following scale concentrations: 3665 mg/L CaCl2, 685 mg/L NaHCO3, and 12,000 mg/L NaCl), while a 91.6% efficiency was obtained at normal scale concentrations (synthetic water was prepared by the following scale concentrations: 7330 mg/L CaCl2, 1370 mg/L NaHCO3, and 24,000 mg/L NaCl). These results highlight the Zn-MOFs' advantages over conventional fillers and traditional techniques by offering improved stability, superior adsorption capacity, and enhanced scale management for desalination applications. This work contributes to advancing water treatment technologies by providing a more sustainable and effective approach for mitigating fouling and enhancing desalination efficiency.
Collapse
Affiliation(s)
- Mennat Allah M Ali
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Ahmed El-Zomer, Cairo, Egypt.
| | - Mona El-Sayed
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Ahmed El-Zomer, Cairo, Egypt
| | - Omnia A A El-Shamy
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Ahmed El-Zomer, Cairo, Egypt
| | - Ghada E Khedr
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Ahmed El-Zomer, Cairo, Egypt
| | - Magdy W Sabaa
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud F Mubarak
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Ahmed El-Zomer, Cairo, Egypt
| |
Collapse
|
2
|
Ding L, Han D, Zhang H, Yang S, Zhang Y. Polydopamine-modified carboxylated cellulose nanocrystrals as functional fillers for polyethersulfone (PES) membranes to achieve superior dye/salt separation. Int J Biol Macromol 2025; 308:142482. [PMID: 40169057 DOI: 10.1016/j.ijbiomac.2025.142482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
This study presents the development of advanced tight polyethersulfone (PES) ultrafiltration membranes enhanced with polydopamine-coated carboxylated cellulose nanocrystrals (PDA@C-CNC) as functional fillers. The PDA@C-CNC fillers were synthesized via an in situ self-polymerization approach and employed as surface segregation agents during membrane preparation. Utilizing the non-solvent-induced phase separation (NIPS) technique, the highly hydrophilic PDA@C-CNC particles migrated to the interface between the polymer solution and the coagulation bath and tightly adhered to the polyethersulfone (PES) matrix through strong hydrogen bonding and π-π interactions, forming a dense, hydrophilic selective surface layer rich in polar functional groups (amino group (-NH2) and hydroxyl group(-OH)). Concurrently, the support layer developed a porous structure characterized by extended and widened cavities, facilitating enhanced mass transfer. The synergistic combination of a selective dense surface layer and an optimally structured support layer endowed the modified membranes with remarkable permeability and selectivity. Surprisingly, the water flux of the modified membrane with 0.2 % PDA@C-CNC (MPC0.2) achieved a remarkable 332 L·m-2·h-1·bar-1, which is 2.29 times higher than that of the unmodified membrane (M0). Additionally, MPC0.2 demonstrated exceptional dyes rejection rates (Congo red (CR) > 99.7 %, Eriochrome Black T (EBT) > 97.7 %) alongside minimal salt rejection (sodium chloride (NaCl): 0.2 %, sodium sulfate (Na2SO4): 1.7 %). These findings highlight the potential of PDA@C-CNC/PES composite membranes for efficient and selective removal of dyes and salts from textile wastewater.
Collapse
Affiliation(s)
- Lin Ding
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deyi Han
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichuan Zhang
- Department of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shujuan Yang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yong Zhang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China.
| |
Collapse
|
3
|
Kim J, Kim JH. Photocatalytic remediation of organic pollutants in contaminated water using trimetallic zeolitic imidazole framework: From methylene blue to wastewater. CHEMOSPHERE 2025; 377:144362. [PMID: 40158345 DOI: 10.1016/j.chemosphere.2025.144362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Photocatalysts have recently attracted significant attention for their ability to efficiently degrade organic contaminants in wastewater under sunlight irradiation conditions. In this study, trimetallic Zn-ZIF photocatalyst is synthesized by incorporating Ni- and Cd-dopant atoms to enhance photocatalytic performance. Morphological and crystallographic analyses confirm the formation of the ZIF-L structure. Compared to monometallic and bimetallic variants, the trimetallic ZIF exhibits enhanced optical absorbance. PL analysis indicates that additional impurities introduce more active sites, resulting in improved photocatalytic performance. Trimetallic N2C4 ZIF photocatalyst shows the highest organic degradability with 95.1 % MB degradation, with stable second-order kinetics derived primarily from superoxide radicals. The catalyst also effectively degrades melanoidin chromophore in coffee and wastewater. This work demonstrates a promising approach to developing broadly applicable ZIF photocatalysts to photodegrade various polluted environmental systems.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Chemical Engineering & Center for Innovative Chemical Processes (Institute of Engineering), University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea
| | - Jung Hyeun Kim
- Department of Chemical Engineering & Center for Innovative Chemical Processes (Institute of Engineering), University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea.
| |
Collapse
|
4
|
Xu LH, Zhang Q, Li SH, Chen FX, Zhao ZP. Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410067. [PMID: 39887893 DOI: 10.1002/smll.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
5
|
Modi A, Kasher R. Nitrate removal from contaminated groundwater by micellar-enhanced ultrafiltration using a polyacrylonitrile membrane with a hydrogel-stabilized ZIF-L layer. WATER RESEARCH 2024; 254:121384. [PMID: 38479174 DOI: 10.1016/j.watres.2024.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024]
Abstract
Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane. Graft polymerization with hydrophilic poly(methacrylate) and incorporation of porous zeolitic imidazole framework ZIF-L nanoparticles imparted antifouling properties to the membrane. The resulting modified membrane showed high water permeance (82.2 ± 1.7 L·m-2·h-1·bar-1). The efficiency of nitrate removal by MEUF was tested using cetylpyridinium chloride as a surfactant in nitrate-contaminated groundwater collected from the Coastal Aquifer of Israel. The membrane reduced nitrate levels from 40-70 to levels of 6.8-29.5 mg·L-1, depending on the groundwater composition; further reduction to 6.1-24.1 mg·L-1 with complete surfactant rejection was achieved via two-stage membrane filtration, which showed high permeate flux (between 32.1 ± 0.9 and 45.9 ± 0.6 L·m-2·h-1) at 2 bar. The membrane maintained stable separation performance during multiple cycles, and the flux recovery ratio was >93 %. Nitrate concentrations fell well below the acceptable limit for drinking water, allowing the treated water to be used without restriction. Overall, the membrane has the potential to allow efficient removal by MEUF of nitrate from contaminated groundwater.
Collapse
Affiliation(s)
- Akshay Modi
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel; Present address: Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| |
Collapse
|
6
|
Dmitrenko M, Mikhailovskaya O, Dubovenko R, Kuzminova A, Myznikov D, Mazur A, Semenov K, Rusalev Y, Soldatov A, Ermakov S, Penkova A. Pervaporation Membranes Based on Polyelectrolyte Complex of Sodium Alginate/Polyethyleneimine Modified with Graphene Oxide for Ethanol Dehydration. Polymers (Basel) 2024; 16:1206. [PMID: 38732675 PMCID: PMC11085317 DOI: 10.3390/polym16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.
Collapse
Affiliation(s)
- Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Olga Mikhailovskaya
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Roman Dubovenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Danila Myznikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anton Mazur
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Konstantin Semenov
- Pavlov First Saint Petersburg State Medical University, L’va Tolstogo ulitsa 6–8, St. Petersburg 197022, Russia;
| | - Yury Rusalev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova St., Rostov-on-Don 344090, Russia; (Y.R.); (A.S.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova St., Rostov-on-Don 344090, Russia; (Y.R.); (A.S.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (O.M.); (R.D.); (A.K.); (D.M.); (A.M.); (S.E.)
| |
Collapse
|
7
|
Bi Y, Meng X, Tan Z, Geng Q, Peng J, Yong Q, Sun X, Guo M, Wang X. A novel ZIF-L/PEI thin film nanocomposite membrane for removing perfluoroalkyl substances (PFASs) from water: Enhanced retention and high flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171727. [PMID: 38492592 DOI: 10.1016/j.scitotenv.2024.171727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Membrane separation technology is widely recognized as an effective method for removing perfluoroalkyl substances (PFASs) in water treatment. ZIF-L, a metal-organic framework (MOF) family characterized by its mat-like cavities and leaf-like morphology, has garnered considerable interest and has been extensively employed in fabricating thin-film nanocomposite (TFN) membranes. In this study, a robust, high-performance TFN membrane to remove PFASs in a nanofiltration (NF) process was created through an interfacial polymerization approach on the surface of polysulfone (PSF), incorporating ZIF-L within the selective layer. The TFN membrane modified by adding 5 wt% ZIF-L (relative to the weight of ethylene imine polymer (PEI)) exhibits 2.3 times higher water flux (up to 47.56 L·m-2·h-1·bar-1) than the pristine thin film composite membrane (20.46 L·m-2·h-1·bar-1), and the rejection for typical PFASs were above 95 % (98.47 % for perfluorooctanesulfonic acid (PFOS) and 95.85 % for perfluorooctanoic acid (PFOA)). The effectiveness of the ZIF-L/PEI TFN membrane in retaining representative PFASs was examined under various conditions, including different pressures, feed concentrations, aqueous environments, and salt ions. Notably, the experiments demonstrated that even after contamination with humic acid (HA), >88 % of the water flux could be restored by washing. Additionally, density functional theory (DFT) calculations were employed to predict the distinct intermolecular interactions between PFASs and ZIF-L as well as PEI. These calculations provide additional insights into the interception mechanism of TFN membranes towards PFASs. Based on this study, TFN membranes incorporating MOF as nanofillers show great potential as an effective method for purifying PFASs from aqueous environments and possess superior environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yujie Bi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijun Tan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianqian Geng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiaozhi Yong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaojie Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
8
|
Wang Y, Duan S, Wang H, Wei C, Qin L, Dong G, Zhang Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. MEMBRANES 2023; 14:7. [PMID: 38248697 PMCID: PMC10819655 DOI: 10.3390/membranes14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water. Furthermore, the hydropathic properties of the membranes can be well controlled by adjusting the content of m-ZIF-8 and m-HNTs. A series of modified m-ZIF-8/m-HNT/PAN membranes were prepared to modulate the dye/salt separation performance of TFN membranes. The experimental results showed that our m-ZIF-8/m-HNT/PAN membranes can elevate the water flux significantly up to 42.6 L m-2 h-1 MPa-1, together with a high rejection of Reactive Red 49 (more than 80%). In particular, the optimized NFM-7.5 membrane that contained 7.5 mg of HNTs and 2.5 mg of ZIF-8 showed a 97.1% rejection of Reactive Red 49 and 21.3% retention of NaCl.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Shaofan Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Huixian Wang
- School of Material Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Can Wei
- Pollution Prevention and Control Office, Ecological Environment Protection Commission of Zhengzhou, Zhengzhou 450007, China;
| | - Lijuan Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
- Research Department of New Energy Technology, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450046, China
| | - Guanying Dong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| |
Collapse
|
9
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Chen ZY, Wang RD, Su SL, Hao YL, Zhou F. Green synthesis of metal-organic framework loaded dexamethasone on wood aerogels for enhanced cranial bone regeneration. J Mater Chem B 2023; 11:9496-9508. [PMID: 37740279 DOI: 10.1039/d3tb01484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Bone defects have attracted increasing attention in clinical settings. To date, there have been no effective methods to repair defective bones. Balsa wood aerogels are considered as an excellent source of chemicals for chemical modification to facilitate the in situ immobilization of zeolitic imidazolate framework-8. Furthermore, dexamethasone has received considerable attention for bone tissue engineering. In this study, for the first time, a simple but effective one-pot method for developing a novel zeolitic imidazolate framework-8 with different concentrations of dexamethasone was developed. These findings illustrate that the novel scaffold has a significant positive impact on osteogenic differentiation in vitro and repairs defects in vivo, suggesting that it can be used in bone tissue engineering.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Deng Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shi-Long Su
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100191, China
| | - You-Liang Hao
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
11
|
Zamani A, Thibault J, Tezel FH. Separation of n-Butanol from Aqueous Solutions via Pervaporation Using PDMS/ZIF-8 Mixed-Matrix Membranes of Different Particle Sizes. MEMBRANES 2023; 13:632. [PMID: 37504998 PMCID: PMC10385397 DOI: 10.3390/membranes13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The use of mixed matrix membranes (MMMs) to facilitate the production of biofuels has attracted significant research interest in the field of renewable energy. In this study, the pervaporation separation of butanol from aqueous solutions was studied using a series of MMMs, including zeolitic imidazolate frameworks (ZIF-8)-polydimethylsiloxane (PDMS) and zinc oxide-PDMS mixed matrix membranes. Although several studies have reported that mixed matrix membranes incorporating ZIF-8 nanoparticles showed improved pervaporation performances attributed to their intrinsic microporosity and high specific surface area, an in-depth study on the role of ZIF-8 nanoparticle size in MMMs has not yet been reported. In this study, different average sizes of ZIF-8 nanoparticles (30, 65, and 80 nm) were synthesized, and the effects of particle size and particle loading content on the performance of butanol separation using MMMs were investigated. Furthermore, zinc oxide nanoparticles, as non-porous fillers with the same metalcore as ZIF-8 but with a very different geometric shape, were used to illustrate the importance of the particle geometry on the membrane performance. Results showed that small-sized ZIF-8 nanoparticles have better permeability and selectivity than medium and large-size ZIF-8 MMMs. While the permeation flux increased continuously with an increase in the loading of nanoparticles, the selectivity reached a maximum for MMM with 8 wt% smaller-size ZIF-8 nanoparticle loading. The flux and butanol selectivity increased by 350% and 6%, respectively, in comparison to those of neat PDMS membranes prepared in this study.
Collapse
Affiliation(s)
- Ali Zamani
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fatma Handan Tezel
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
12
|
Gallardo MR, Nicole Duena A, Belle Marie Yap Ang M, Rolly Gonzales R, Millare JC, Aquino RR, Li CL, Tsai HA, Huang SH, Lee KR. Improved Pervaporation Dehydration Performance of Alginate Composite Membranes by Embedding Organo-Montmorillonite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Wu LK, Xu ZL, Tong M, Li EC, Tang YJ. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
16
|
Yang C, Yu P, Li Y, Wang J, Ma X, Liu N, Lv T, Zheng H, Wu H, Li H, Sun C. Platform Formed from ZIF-8 and DNAzyme: "Turn-On" Fluorescence Assay for Simple, High-Sensitivity, and High-Selectivity Detection of Pb 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9567-9576. [PMID: 35880309 DOI: 10.1021/acs.jafc.2c03503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead contamination has posed a potential threat to the environment and food safety, arousing extensive concern. In this work, we fabricated a novel fluorescent sensing platform based on zeolitic imidazolate framework-8 (ZIF-8) and DNAzyme for monitoring Pb2+ in water and fish samples. ZIF-8 was proposed as a fluorescence quencher with the advantages of simple synthesis, low cost, and high quenching efficiency. The Pb2+-dependent GR5 DNAzyme containing the large ssDNA loop can be adsorbed onto ZIF-8 accompanied by fluorescence quenching. Upon binding with Pb2+, GR5 DNAzyme was activated and cleaved, leading to the release of FAM-labeled 5-base ssDNA, which restored the fluorescence. The "turn-on" assay can detect Pb2+ through the one-pot procedure in the range of 0.01-10.0 nM with a detection limit of 7.1 pM. The platform is promising for on-site monitoring of Pb2+ owing to the excellent performance of high sensitivity, low background, strong anti-interference ability, and simple operation.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peitong Yu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ni Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Lv
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongru Zheng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Han Wu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
High-performance ZIF-8/biopolymer chitosan mixed-matrix pervaporation membrane for methanol/dimethyl carbonate separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Li P, Zhang T, Ding S, Wang X. Development of high‐flux aciduric ultra‐thin nanofibrous pervaporation composite membrane for acetic acid dehydration. J Appl Polym Sci 2022. [DOI: 10.1002/app.52751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peiyun Li
- State Key Lab for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Tonghui Zhang
- State Key Lab for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Siping Ding
- State Key Lab for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Xuefen Wang
- State Key Lab for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| |
Collapse
|
19
|
Ehsan M, Razzaq H, Razzaque S, Bibi A, Yaqub A. Recent advances in sodium alginate‐based membranes for dehydration of aqueous ethanol through pervaporation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehwish Ehsan
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Humaira Razzaq
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Shumaila Razzaque
- School of Science, Department of Chemistry University of Management and Technology Lahore Pakistan
| | - Aasma Bibi
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Azra Yaqub
- Chemistry Division, Directorate of Science Pakistan Institute of Nuclear Science and Technology (PINSTECH), 45650 Pakistan
| |
Collapse
|
20
|
Novel pH-responsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Luo Q, Huang X, Deng Q, Zhao X, Liao H, Deng H, Dong F, Zhang T, Shi L, Jiang J. Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal Cr(VI) and Congo Red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40041-40052. [PMID: 35112246 DOI: 10.1007/s11356-021-18272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The photocatalytic properties of Zn/Co zeolite imidazolate frameworks (ZIF-ZnCo) prepared by various Zn/Co ratio are of significantly diversity due to the morphology structure of the ZIF-ZnCo. Thereinto, the prepared ZIF-ZnCO-8:1 is excellent capability by virtue of its 3D cross-shaped structure. Spectral test results show that as-prepared novel 3D cross-shaped ZIF-ZnCo has a lower recombination rate of electron and hole pairs than the lamellar and dodecahedral, thus improving the photocatalytic ability. The photocatalytic ability of 3D cross-shaped ZIF-ZnCo was carefully investigated for removing mixed solution of Congo Red (CR) and Cr(VI). The photocatalytic reduction ability of 3D cross-shaped ZIF-ZnCo was 22% higher than ZIF-8 for Cr(VI). Meanwhile, CR was altogether removed at dark processing and Cr(VI) was removed 70% after dark processing 120 min and photocatalytic 240 min. Therefore, the high adsorption and photocatalytic capacity denote the potential application of 3D cross-shaped ZIF-ZnCo.
Collapse
Affiliation(s)
- Qin Luo
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Xiaofeng Huang
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Qiulin Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China.
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China.
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China.
| | - Xueyuan Zhao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Huiwei Liao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Hongquan Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Faqin Dong
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Lianjun Shi
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Jinlong Jiang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China
| |
Collapse
|
22
|
Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts 2022. [DOI: 10.3390/catal12050521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here, for the first time, a 2D and leaf-like zeolitic imidazolate framework (ZIF-L) is reported for the synthesis of ultrahigh molecular weight (UHMW) poly(methyl methacrylate) (PMMA) with Mn up to 1390 kg mol−1. This synthesis method is a one-step process without any co-catalyst in a solvent-free medium. SEM, PXRD, FT-IR, TGA, and nitrogen sorption measurements confirmed the 2D and leaf-like structure of ZIF-L. The results of PXRD, SEM, TGA demonstrate that the catalyst ZIF-L is remarkably stable even after a long-time polymerization reaction. Zwitterionic Lewis pair polymerization (LPP) has been proposed for the catalytic performance of ZIF-L on methyl methacrylate (MMA) polymerization. This MMA polymerization is consistent with a living system, where ZIF-L could reinitiate the polymerization and propagates the process by gradually growing the polymer chains.
Collapse
|
23
|
Acid-reinforced ionic cross-linking of sodium alginate/polyamidoamine dendrimer blended composite membranes for isopropanol dehydration through pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Su X, Zheng T, Zhu Y, Tao X, Yu K, Zhao Z, Wu Z, Lu J, Gao C, Zhao D. Enhanced n‐butanol permselectivevapor permeation by incorporating ZIF‐8 into a polydimethylsiloxane composite membrane: Effect of filler loading contents. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dian Zhao
- Zhejiang Normal University Department of Chemistry No. 688 Yingbin Road 321004 Jinhua CHINA
| |
Collapse
|
25
|
Hu L, Wang J, Wang Z, Li F, She J, Zhou Y, Zhang Y, Liu Y. Mechanical response of surface wettability of Janus porous membrane and its application in oil-water separation. NANOTECHNOLOGY 2022; 33:245704. [PMID: 35272272 DOI: 10.1088/1361-6528/ac5ca7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Smart surfaces with switchable wettability are widely studied for environmental application. Although a large number of stimulation routes provide broad prospects for the development of smart surfaces, achieving high sensitivity, fast response and recovery, simple operation, security and good stability is still challenging. Herein, a Janus membrane via electrospinning, chemical bath deposition and heat treatment is constructed. By using the hydrophilic ZIF-L nanosheet to functionalize the hydrophobic thermoplastic polyurethane (TPU) substrate, a smart surface utilizes the ZIF-L crack induced by strain in the hydrophilic layer to control surface wettability is obtained. In the range of 0%-100% strain, the wettability of the smart surface presents an obvious change with stretching, and water contact angle of the surface shows a monotonic increase with a maximum tuning range from 47° to 114°. Due to local fusion of the TPU microfibers and good binding between the ZIF-L layer and the TPU substrate after heat treatment, the prepared Janus membrane exhibits consistent and symmetrical hydrophilic-hydrophobic-hydrophilic transition curves in 50 stretching-releasing cycles. Thanks to the porous and asymmetric architecture, the membrane shows good oil-water separation performance, and the separation flux increases with the increase of strain, while the separation efficiency is always higher than 98%. Because of the excellent structural stability, the robust membrane with 100% strain maintains its oil-water separation property for 50 stretching-releasing cycles. This study provides a new perspective for the development of smart material with stimuli responsive surface for oily wastewater purification.
Collapse
Affiliation(s)
- Luyang Hu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
- Institute for Nano- and Microfluidics, Technische Universität (TU) Darmstadt, Darmstadt, D-64287, Germany
| | - Jingming Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Zhidan Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Fabing Li
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Jing She
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Yufeng Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yumin Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| |
Collapse
|
26
|
Du A, Fu H, Wang P, Zhao C, Wang CC. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoS x-CuS x derived from ZIF-L(Co) immobilized on copper foam. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128134. [PMID: 34959213 DOI: 10.1016/j.jhazmat.2021.128134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The CoSx-CuSx was firmly immobilized on copper foam (CF) substrate to fabricate supported CoSx-CuSx/CF using ZIF-L(Co)/CF as a self-sacrificing template, in which CF substrate played an important role in improving the adhesion between CF and target catalyst as well as the interfacial interaction between CoSx and CuSx. The CoSx-CuSx/CF performed well in catalytic peroxymonosulfate (PMS) activation, which can accomplish 97.0% sulfamethoxazole (SMX) degradation within 10 min due to the special structure and Co2+ regeneration promoted by S2- and Cu+. The influences of pH, PMS dosage, catalyst dosage, co-existing anions and natural organic matter (NOM) on SMX removal were studied in detail. CoSx-CuSx/CF presented excellent catalytic activity and reusability, which might be fascinating candidate for real wastewater treatment. The possible pathway of SMX degradation was proposed, and the toxicity of the intermediates during the degradation process were evaluated. It is noteworthy that long-term continuous degradation of sulfonamide antibiotics was achieved using a self-developed continuous-flow fixed-bed reactor. This work demonstrated that CF as a substrate to fabricate supported catalysts derived from MOF had great potential in actual wastewater remediation.
Collapse
Affiliation(s)
- Aofei Du
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, China Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, China Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
27
|
A mixed matrix membrane for enhanced CO2/N2 separation via aligning hierarchical porous zeolite with a polyethersulfone based comb-like polymer. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Tang YB, Xie SJ. Structure and dynamics of a water/methanol mixture confined in zeolitic imidazolate framework ZIF-8 from atomistic simulations. Phys Chem Chem Phys 2022; 24:5220-5232. [PMID: 35167632 DOI: 10.1039/d1cp05571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A classical atomistic simulation study is reported for the microscopic structure and dynamics of a water/methanol mixture confined in flexible nanoporous zeolitic imidazolate framework ZIF-8. Both the radial density distribution and vivid two-dimensional density profile demonstrate that methanol molecules can roughly be viewed as "embedded" between two layers of water molecules to form a "sandwich" structure. The reason for the formation of such a specific structure is explained based on the hydrogen-bonding state and the strength of various hydrogen bonds. The investigation of guest molecular diffusion shows that the self-diffusion coefficient of confined water is generally one to two orders of magnitude smaller than that of bulk water. In addition, the dependence of the self-diffusion coefficient on loading is non-monotonic: the self-diffusion coefficient firstly shows a significant increase and then decreases at higher loading. Moreover, both the structure and dynamics of the hydrogen bond (HB) network of confined water molecules are investigated in a spatially resolved manner. The results indicate that both the HB structure and dynamics of water molecules near the ZIF-8 surface deviate significantly from those of bulk water. However, while water molecules located at the pore center are relatively similar to bulk water molecules with respect to the HB structure, they exhibit strong slowdown in HB dynamics when compared with bulk water. This simulation study elucidates in detail the structural and dynamical properties of a water/methanol mixture in nanoscopic ZIF-8 confinement, which is expected to provide a deep insight into the role of porous fillers, such as ZIF-8, in improving the performance of the dehydration of alcohols via pervaporation and other related processes.
Collapse
Affiliation(s)
- Yu-Bo Tang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shi-Jie Xie
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
29
|
Yang W, Su X, Zheng T, Zhang Q, Jiao J, Meng L, Qing W. Fabricating a ZIF–8@Polydimethylsiloxane(PDMS)/PVDF mixed matrix composition membrane for separation of ethanol from aqueous solution via vapor permeation. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- WeiPing Yang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China CHINA
| | - Xing Su
- Quzhou University College of Chemical and Material Engineering No.78, Jiuhua North Avenue, Kecheng DistrictQuzhou CityZhejiang ProvinceChina 324000 Quzhou CHINA
| | - Tucai Zheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China CHINA
| | - Qingqiu Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China CHINA
| | - Jiacai Jiao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China CHINA
| | - Lingbin Meng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China CHINA
| | - Weihua Qing
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, the United States CHINA
| |
Collapse
|
30
|
Stabilize thin nanoparticle layer of zeolitic imidazole framework-8 (ZIF-8) on different PVDF substrates by contra-diffusion method for high-efficiency ultrafiltration application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/24/2023]
Abstract
An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | | | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
32
|
Baysak FK, Işıklan N. Pervaporation performance of poly(vinyl alcohol)‐graft‐poly(
N
‐hydroxymethyl acrylamide) membranes for dehydration of isopropyl alcohol‐water mixture. J Appl Polym Sci 2021. [DOI: 10.1002/app.51976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatma Kurşun Baysak
- Science and Arts Faculty, Chemistry Department Kırıkkale University Kırıkkale Turkey
- Science and Arts Faculty, Chemistry Department Kırklareli University Kırklareli Turkey
| | - Nuran Işıklan
- Science and Arts Faculty, Chemistry Department Kırıkkale University Kırıkkale Turkey
| |
Collapse
|
33
|
Hua B, He Z, Zheng L, Li F. Self-assembly of three-dimensional zeolite imidazolate framework/anionic polyacrylamide network with enhanced hydrophilicity and water dispersibility for highly efficient water purification. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
|
35
|
Li S, Geng X, Ma C, Zhan X, Li J, Ma M, He J, Wang L. Improved performance of three-component structure mixed membrane for pervaporation modified by lignosulfonates@2D-MXene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Liu W, Ban Y, Liu J, Wang Y, Hu Z, Wang Y, Li Q, Yang W. ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Li L, Bai X, Shao L, Zhai X, Fan F, Li Y, Fu Y. Fabrication of a MOF/Aerogel Composite via a Mild and Green One-Pot Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Linlin Li
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Xiaojue Bai
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Lei Shao
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Xu Zhai
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Fuqiang Fan
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Yunong Li
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| |
Collapse
|
39
|
Lewis A, Chen T, Butt FS, Wei X, Radacsi N, Fan X, Huang Y. Facile fabrication of zeolitic imidazolate framework hollow fibre membranes via a novel scalable continuous fluid circulation process. NANOSCALE 2021; 13:14644-14655. [PMID: 34558583 DOI: 10.1039/d1nr03112k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel continuous fluid circulation system was designed and employed for the impregnation seeding and fabrication of zeolitic imidazolate framework (ZIF) crystals on the internal surface of polymeric hollow fibre membranes. Application of impregnation seeding has been proven effective to decrease crystal size, consequently increasing surface roughness and wettability of the membrane. Evaluation of the as-synthesised membrane demonstrated excellent separation efficiencies (>99%) of surfactant stabilised oil-in-water emulsions. Owing to the simple impregnation strategy assisted by the continuous fluid circulation, the active ZIF layer formed was visibly thinner and denser than typical seeding techniques, hence a high pure water flux of >1150 L m-2 h-1 bar-1 was achieved. The membranes were highly selective and ultra-permeable to water, however, almost impermeable to oils in a water environment, e.g., n-hexane, n-heptane, chloroform and dichloromethane, as well as their emulsion mixtures, with a separation efficiency higher than 99%. Besides, this new continuous fluid circulation method was also found promising for the synthesis of other types of ZIF on hollow fibre membranes.
Collapse
Affiliation(s)
- Allana Lewis
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Ting Chen
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Fraz Saeed Butt
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Xiuming Wei
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Xianfeng Fan
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Yi Huang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| |
Collapse
|
40
|
Zhang X, Zhan ZM, Cheng FY, Xu ZL, Jin PR, Liu ZP, Ma XH, Xu XR, Van der Bruggen B. Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39819-39830. [PMID: 34375531 DOI: 10.1021/acsami.1c09221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film composite (TFC) membranes are attracting wide attention because their ultrathin selective layer usually corresponds to the higher membrane flux for pervaporation. However, the direct preparation of the TFC membranes on ceramic substrates confronted with the great difficulties because the larger pores on ceramic substrate surfaces are detrimental to the formation of an intact polyamide (PA) selective layer produced by interfacial polymerization (IP) reaction. Here, the integrated ZIF-L nanosheets were proposed to be used as an assistance interlayer for the first time to eliminate the existence of the pores of the ceramic support, and provides a better basis for the formation of an intact PA selective layer by IP reaction between TMC and ethylenediamine (EDA). The experimental data obtained in pervaporation (PV) show that the increased flux from 1.1 to 2.9 kg/m2h corresponds to the decreased separation factor from 396 to 110 when the feed concentration of ethanol decreases from 95 wt % to 80 wt % at 50 °C. In addition, the membrane flux increases from 0.8 to 2.5 kg/m2h with a change of the separation factor from 683 to 111 when the operational temperature varies from 30 to 60 °C. These results demonstrate the great potential of the fabricated TFC membranes in practical application for PV dehydration of organic solutions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Feng-Yi Cheng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Peng-Rui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ze-Peng Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
41
|
Chitosan/sodium alginate hybrid membranes modified by zeolitic imidazolate framework-90 for pervaporative dehydration of butanol. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00970-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
43
|
Guan P, Ren C, Shan H, Cai D, Zhao P, Ma D, Qin P, Li S, Si Z. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration. SUSTAINABILITY 2021. [DOI: 10.3390/su13116092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modern society strives for the development of sustainable processes that are aimed at meeting human needs while preserving the environment. Membrane technologies satisfy all the principles of sustainability due to their advantages, such as cost-effectiveness, environmental friendliness, absence of additional reagents and ease of use compared to traditional separation methods. In the present work, novel green membranes based on sodium alginate (SA) modified by a FeBTC metal–organic framework were developed for isopropanol dehydration using a membrane process, pervaporation. Two kinds of SA-FeBTC membranes were developed: (1) untreated membranes and (2) cross-linked membranes with citric acid or phosphoric acid. The structural and physicochemical properties of the developed SA-FeBTC membranes were studied by spectroscopic techniques (FTIR and NMR), microscopic methods (SEM and AFM), thermogravimetric analysis and swelling experiments. The transport properties of developed SA-FeBTC membranes were studied in the pervaporation of water–isopropanol mixtures. Based on membrane transport properties, 15 wt % FeBTC was demonstrated to be the optimal content of the modifier in the SA matrix for the membrane performance. A membrane based on SA modified by 15 wt % FeBTC and cross-linked with citric acid possessed optimal transport properties for the pervaporation of the water–isopropanol mixture (12–100 wt % water): 174–1584 g/(m2 h) permeation flux and 99.99 wt % water content in the permeate.
Collapse
|
45
|
Fabrication of hydrophobic ZIFs based composite membrane with high CO2 absorption performance. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0762-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Abdali A, Mahmoudian M, Eskandarabadi SM, Nozad E, Enayati M. Elimination of dibenzothiophene from n-hexane by nano-composite membrane containing Cu-MOF in a pervaporation process. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Feng Y, Wang H, Yao J. Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers (Basel) 2021; 13:polym13050674. [PMID: 33668120 PMCID: PMC7956398 DOI: 10.3390/polym13050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane methods, especially pervaporation, are quickly growing up. In line with that, effective membrane materials based on biopolymers are required for the industrially significant mixtures separation. To essentially improve membrane transport characteristics, the application of the surface or/and bulk modifications can be carried out. In the present study, novel dense and supported membranes based on hydroxyethyl cellulose (HEC)/sodium alginate (SA) were developed for pervaporation dehydration of isopropanol using several approaches: (1) the selection of the optimal ratio of polymers, (2) the introduction of fullerenol in blend polymer matrix, (3) the selection of the optimal cross-linking agent for the membranes, (4) the application of layer-by-layer deposition of polyelectrolytes on supported membrane surface (poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) and PSS/SA). Structural and physicochemical characteristics of the membranes were analyzed by different methods. A cross-linked supported membrane based on HEC/SA/fullerenol (5%) composite possessed the following transport characteristics in pervaporation dehydration of isopropanol (12–50 wt.% water): 0.42–1.72 kg/(m2h) permeation flux, and 77.8–99.99 wt.% water content in the permeate. The surface modification of this membrane with 5 bilayers of PSS/PAH and PSS/SA resulted in the increase of permeation flux up to 0.47–3.0 and 0.46–1.9 kg/(m2h), respectively, with lower selectivity.
Collapse
|