1
|
Zhu S, Hu J. Process optimization and mechanism for the selective extraction of copper(ii) from polymetallic acidic solutions using a polymer inclusion membrane (PIM) with Mextral®5640H as the carrier. RSC Adv 2024; 14:17583-17593. [PMID: 38828278 PMCID: PMC11140453 DOI: 10.1039/d4ra02032d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
This study introduces a novel approach by integrating solvent extraction and polymer inclusion membrane (PIM) separation technologies to engineer an innovative PIM membrane material for the selective separation and enrichment of strategic metals, particularly copper, from polymetallic acidic solutions. The primary objectives were to streamline the technological process, reduce production costs, and enhance separation coefficients between copper and other metals. The optimal extraction conditions were determined as a mass fraction of Mextral®5640H : PVC : NPOE = 3 : 3 : 4, extraction temperature of 35 °C, and 0.9 mol L-1 H2SO4 in the stripping solution. Under these conditions, we achieved remarkable extraction efficiencies, with copper reaching 100%, and the separation coefficients between Cu2+ and Ni2+, Co2+, and Zn2+ exceeding 106. To elucidate the substantial differences in extraction performance between Cu2+ and the other metals (Ni2+, Co2+, and Zn2+), we employed an integrative analytical approach that combines FT-IR spectroscopy, BET analysis, and theoretical calculations. All extracted complexes demonstrated molecular sizes compatible with PIMs, underscoring the critical role of stability and back-extraction performance in the selective extraction of these metal ions.
Collapse
Affiliation(s)
- Shan Zhu
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553000 China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
2
|
Liu Z, Chen Z, Zhang D, Ni BJ. Carboxyl and polyamine groups functionalized polyacrylonitrile fibers for efficient recovery of copper ions from solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2243-2257. [PMID: 38055173 DOI: 10.1007/s11356-023-31227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Heavy metals (e.g., Cu) in wastewater are attractive resources for diverse applications, and adsorption is a promising route to recovery of heavy metals from wastewater. However, high-performance adsorbents with high adsorption capacity, speed, and stability remain challenging. Herein, chelating fibers were prepared by chemically grafting amine and carboxyl groups onto the polyacrylonitrile fiber surface and used in the wastewater's adsorption of Cu2+. The adsorption behavior of Cu2+ on the fibers was systematically investigated, and the post-adsorption fibers were comprehensively characterized to uncover the adsorption mechanism. The results show that chelated fiber has a 136.3 mg/g maximum capacity for Cu2+ adsorption at pH = 5, and the whole adsorption process could reach equilibrium in about 60 min. The adsorption process corresponds to the quasi-secondary kinetic and Langmuir models. The results of adsorption, FTIR, and XPS tests indicate that the synergistic coordination of -COOH and -NH2 plays a leading role in the rapid capture of Cu2+. In addition, introducing hydrophilic groups facilitates the rapid contact and interaction of the fibers with Cu2+ in the solution. After being used five times, the fiber's adsorption capacity remains at over 90% of its original level.
Collapse
Affiliation(s)
- Zhihao Liu
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Daijun Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Kadhim NR, Flayeh HM, Abbar AH. A new approach for cobalt (II) removal from simulated wastewater using electro membrane extraction with a flat sheet supported liquid membrane. Heliyon 2023; 9:e22343. [PMID: 38045123 PMCID: PMC10692895 DOI: 10.1016/j.heliyon.2023.e22343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The aim of this work was to efficiently remove cobalt (Co) from aqueous solutions by using a novel Electromembrane Extraction (EME) technique. This novel electrochemical cell design featured two distinct glass chambers, incorporating a Supported Liquid Membrane (SLM) composed of a polypropylene flat membrane saturated with 1-octanol and a carrier substance, as well as electrodes constructed from graphite and stainless steel. The investigation covered an exploration of various effective parameters like, carrier type, voltage across the cell, donor solution pH, and the initial Co concentration, with the overarching goal of comprehending their individual effect on Co removal efficiency. Notably, two different carriers, tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP), were systematically evaluated in combination with 1-octanol. The findings underscored the pivotal role of the cell voltage in significantly enhancing the mass transfer rate of cobalt across the membrane, thereby advancing the effectiveness of the removal process. After a comprehensive optimization process, the optimal operating conditions were established as follows: employing 1-octanol with 1.0 % v/v bis(2-ethylhexyl) phosphate as a carrier, applying a voltage of 60 V, maintaining an initial pH of 5, utilizing an initial cobalt concentration of 15 mg/L, conducting an extraction for 6 h, and employing a stirring rate of 1000 rpm. Remarkably, these conditions led to the attainment of an impressive removal efficiency of 87 %. In stark contrast, when no voltage was applied, the removal efficiency did not surpass 40 %. This underscores the pivotal role of the applied voltage in enhancing the cobalt removal process under the specified conditions.
Collapse
Affiliation(s)
- Noor R. Kadhim
- Environmental Engineering Department, College of Engineering, University of Baghdad, Iraq
| | - Hussain M. Flayeh
- Environmental Engineering Department, College of Engineering, University of Baghdad, Iraq
| | - Ali H. Abbar
- Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq
| |
Collapse
|
4
|
Bakircioglu Kurtulus Y, Bakircioglu D, Topraksever N. Deep eutectic solvent-based three-liquid-phase-extraction system for one-step separation of Cu, Mg and Zn in water samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zeng L, Yi Q, Peng X, Huang Z, Van der Bruggen B, Zhang Y, Kuang Y, Ma Y, Tang K. Modelling and optimization of a new complexing retardant-enhanced polymer inclusion membrane system for highly selective separation of Zn2+ and Cu2+. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. MEMBRANES 2022; 12:membranes12030295. [PMID: 35323769 PMCID: PMC8949209 DOI: 10.3390/membranes12030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022]
Abstract
Polymer inclusion membrane (PIM) is a method for separating liquid membranes into thin, stable, and flexible film forms. In this study, the PIM was made using polyvinyl chloride (PVC), dibenzyl ether (DBE), and 4% copoly-eugenol divinyl benzene (co-EDVB) as a supporting polymer, plasticizer, and carrier compound, respectively. Furthermore, a phenol transport test was carried out using the parameters of pH influence, the effect of NaOH concentration, and transport time. The PIM membrane was also evaluated using the parameters affecting the concentration of plasticizer, the effect of salt concentration, and the lifetime of the PIM membrane. The results show that the optimum pH obtained to transport phenol to the receiving phase was 5.5, with a concentration of 0.1 M of the NaOH receiving phase and a transport time of 72 h. Furthermore, it was found that the use of plasticizers and salts affected the ability and resistance of the membranes. The membrane lifetime increased up to 60 days with the addition of 0.1 M NaNO3 or NaCl salt in the source phase.
Collapse
|
7
|
Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Simultaneous selective separation of silver (I) and lead (II) ions from a single dilute source solution through two supported liquid membranes composed of selective crown ethers in supra molecular solvent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Keskin B, Zeytuncu-Gökoğlu B, Koyuncu I. Polymer inclusion membrane applications for transport of metal ions: A critical review. CHEMOSPHERE 2021; 279:130604. [PMID: 33895673 DOI: 10.1016/j.chemosphere.2021.130604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/26/2023]
Abstract
The co-existence of heavy metals in industrial effluents is a prevalent problem. Heavy metals are not biodegradable and can remain in the environment when left untreated. Therefore, metals must be removed from wastewater to protect people's health and the environment. Also, these pollutants usually have dissimilar compositions and properties. Generally, metal treatment is performed using traditional methods, but new processes have been developed due to the disadvantages of traditional methods. Especially in the last 20 years, studies on polymer inclusion membranes have been carried out and the transport performance of metal ions has been investigated. It is a more convenient process than both ion exchange and liquid-liquid extraction methods due to the potential and performance of polymer inclusion membranes. When the studies in the literature are examined, it is seen that the performance of polymer inclusion membranes is higher than expected and also when the production conditions are examined, polymer inclusion membrane is more advantageous than other processes. This review is a summary of the studies on the removal and transport of metal by using polymer inclusion membranes in the literature over the last 20 years.
Collapse
Affiliation(s)
- Başak Keskin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bihter Zeytuncu-Gökoğlu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
10
|
Wang D, Liu F, Zhang X, Wu M, Wang F, Liu J, Wang J, Liu Q, Zeng H. A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Çifci C, Budak Ç, Erol İ, Enginar H. Preparation of Poly(Vinyl Alcohol)-Poly[2-(4-Acetylphenoxy)-2-Oxoethyl-2-Methylacrylate]/Poly(Vinyl Alcohol)-Cellulose Composite Membranes and Their Use in Purification of Wastewater. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1883885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Cemal Çifci
- Faculty of Engineering, Department of Chemical Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Çetin Budak
- Faculty of Science and Arts, Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - İbrahim Erol
- Faculty of Science and Arts, Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hüseyin Enginar
- Faculty of Science and Arts, Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Kurniawan, Kim MS, Woo Chung K, Kim R, Lee JC. Simple and complete separation of copper from nickel in the ammoniacal leach solutions of metal coated ABS plastic waste by antagonistic extraction using a mixture of LIX 84-I and TBP. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Saik Su G, Morad N, Ismail N, Rafatullah M. Developments in supported liquid membranes for treatment of metal-bearing wastewater. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1828100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Goh Saik Su
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Norhashimah Morad
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
14
|
Kazemzadeh H, Karimi-Sabet J, Towfighi Darian J, Adhami A. Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Çifci C, Bayraktar MR, Erol İ, Enginar H. Synthesis of poly(vinyl alcohol-co-ethylene)/cellulose composite membranes and their application in wastewater treatment. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1832748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Cemal Çifci
- Faculty of Engineering, Department of Chemical Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Muhammed Raşit Bayraktar
- Faculty of Engineering, Department of Chemical Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - İbrahim Erol
- Faculty of Science and Arts, Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hüseyin Enginar
- Faculty of Science and Arts, Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
16
|
Wang D, Liu J, Chen J, Liu Q, Zeng H. New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn (II) extraction process. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr(VI) transport during electrodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Meng X, Li J, Lv Y, Feng Y, Zhong Y. Electro-membrane extraction of cadmium(II) by bis(2-ethylhexyl) phosphate/kerosene/polyvinyl chloride polymer inclusion membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121990. [PMID: 31896009 DOI: 10.1016/j.jhazmat.2019.121990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The development of the electroplating and battery industries has increased the environmental problems and the needs for resource recovery of Cd(II). In this study, the Electro-membrane extraction (EME) behaviour of Cd(II) was investigated by using polymer inclusion membrane with bis(2-ethylhexyl) phosphate as carrier and polyvinyl chloride as base polymer(PD-PIM) at 0-80 V. Results showed that the EME of Cd(II) by PD-PIM can be obtained in the feed phase with pH 3-8 and stripping phase of dilute acid. Voltage is the main factor to increase the mass transfer rate of Cd(II). The applied electric field reduced the mass transfer activation energy of Cd(II) by PD-PIM and weakened the mass transfer interference of Cd(II) on the background material of the feed phase. After using kerosene-stabilised PD-PIM for operation at pH5, 60 V for 120 h, Cd(II) in the 1 L solution reduced from 15 mg/L to 0.08 mg/L, and the enrichment factor was 9.79.
Collapse
Affiliation(s)
- Xiaorong Meng
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Jiawen Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yeyuan Feng
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Zhong
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Meng X, Song Y, Lv Y, Xin X, Ren T, Wang X. Study on stable mass transfer and enrichment of phenol by 1-octanol/kerosene/polyvinyl chloride polymer inclusion membrane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1100-1106. [PMID: 31434187 DOI: 10.1016/j.envpol.2019.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
A polymer inclusion membrane (PIM) that contains a polyvinyl chloride (PVC) polymer matrix and 1-octanol (OCT) as specific carrier (PO-PIM) was prepared to investigate the mass transfer behaviour of phenol in aqueous solutions. Results showed that the mass transfer behaviour of the PO-PIM for phenol conformed to the first-order kinetics. In addition, the mass transfer efficiency for phenol reached the maximum when the OCT content was 82.8 wt%. The mass transfer activation energy (Ea) was 14.46 kJ mol-1, which indicated that intramembranous diffusion was the main controlling factor in the mass transfer process. The introduction of hydrophobic additives, such as kerosene, liquid paraffin and vegetable oil, into the PO-PIM could remarkably improve its stability. In an aqueous solutions of phenol ranging from 0 mg L-1 to 9000 mg L-1, the initial flux (J0) of kerosene/PVC/OCT-PIM (KPO-PIM) was positively correlated with the initial concentration of phenol. For a stripping solution with a feed solution pH of 2.0 and a sodium hydroxide concentration of 0.1 mol L-1, the maximum permeability coefficient during stable mass transfer reached 12.55 μm s-1. At a mass transfer area of 3.14 cm2, an enrichment factor (EF) of 3.5 for 200 mg L-1 of phenolic aqueous solution was achieved within 48 h through KPO-PIM.
Collapse
Affiliation(s)
- Xiaorong Meng
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Yingying Song
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqiang Xin
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tingting Ren
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
20
|
Selective Separation of Acetic and Hexanoic Acids across Polymer Inclusion Membrane with Ionic Liquids as Carrier. Int J Mol Sci 2019; 20:ijms20163915. [PMID: 31408956 PMCID: PMC6720499 DOI: 10.3390/ijms20163915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/27/2022] Open
Abstract
This paper first reports on the selective separation of volatile fatty acids (VFAs) (acetic and hexanoic acids) using polymer inclusion membranes (PIMs) containing quaternary ammonium and phosphonium ionic liquids (ILs) as the carrier. The affecting parameters such as IL content, VFA concentration, and the initial pH of the feed solution as well as the type and concentration of the stripping solution were investigated. PIMs performed a much higher selective separation performance toward hexanoic acid. The optimal PIM composed of 60 wt% quaternary ammonium IL with the permeability coefficients for acetic and hexanoic acid of 0.72 and 4.38 µm s−1, respectively, was determined. The purity of hexanoic acid obtained in the stripping solution increased with an increase in the VFA concentration of the feed solution and decreasing HCl concentration of the stripping solution. The use of Na2CO3 as the stripping solution and the involvement of the electrodialysis process could dramatically enhance the transport efficiency of both VFAs, but the separation efficiency decreased sharply. Furthermore, a coordinating mechanism containing hydrogen bonding and ion exchange for VFA transport was demonstrated. The highest purity of hexanoic acid (89.3%) in the stripping solution demonstrated that this PIM technology has good prospects for the separation and recovery of VFAs from aqueous solutions.
Collapse
|
21
|
Tang SY, Qiu YR. Selective separation of copper and zinc and regeneration of polymer from electroplating effluent using shear induced dissociation coupling with ultrafiltration. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0310-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Promising transport and high-selective separation of Li(I) from Na(I) and K(I) by a functional polymer inclusion membrane (PIM) system. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Molina J, de Pablo JJ, Hernández-Ortiz JP. Structure and proton conduction in sulfonated poly(ether ether ketone) semi-permeable membranes: a multi-scale computational approach. Phys Chem Chem Phys 2019; 21:9362-9375. [PMID: 30994661 DOI: 10.1039/c9cp00598f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of polymeric membranes for proton or ionic exchange highly depends on the fundamental understanding of the physical and molecular mechanisms that control the formation of the conduction channels. There is an inherent relation between the dynamical structure of the polymeric membrane and the electrostatic forces that drive membrane segregation and proton transport. Here, we used a multi-scale computational approach to analyze the morphology of sulfonated poly(ether ether ketone) membranes at the mesoscale. A self-consistent description of the electrostatic phenomenon was adopted, where discrete polymer chains and a continuum proton field were embedded in a continuum fluid. Brownian dynamics was used for the evolution of the suspended polymer molecules, while a convection-diffusion transport equation, including the Nernst-Planck diffusion mechanism, accounted for the dynamics of the proton concentration field. We varied the polymer concentration, the degree of sulfonation and the level of confinement to find relationships between membrane structure and proton conduction. Our results indicate that the reduced mobility of polymer chains, at concentrations above overlap, and a moderate degree of sulfonation - i.e., 30% - are essential elements for membrane segregation and proton domain connectivity. These conditions also ensure that the membrane structure is not affected by size or by potential gradients. Importantly, our analysis shows that membrane conductivity and current are linearly dependent on polymer concentration and quadratically dependent on the degree of sulfonation. We found that the optimal polymeric membrane design requires a polymer concentration above overlap and a degree of sulfonation around 50%. These conditions promote a dynamical membrane morphology with a constant density of proton channels. Our results and measurements agree with previous experimental works, thereby validating our model and observations.
Collapse
Affiliation(s)
- Jarol Molina
- Departamento de Ciencias Básicas, Corporación Universitaria Minuto de Dios - UNIMINUTO, Bello, Antioquia, Colombia
| | | | | |
Collapse
|
25
|
Nowik-Zajac A, Zawierucha I, Kozlowski C. Selective removal of silver(i) using polymer inclusion membranes containing calixpyrroles. RSC Adv 2019; 9:31122-31132. [PMID: 35529381 PMCID: PMC9072362 DOI: 10.1039/c9ra04347k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
The transport of Ag(i) across polymer inclusion membranes is reported with derivatives of calixpyrroles with methyl (KP1) and carboxyl (KP2) groups as ion carriers, o-nitrophenyl pentyl ether as a plasticizer and cellulose triacetate as support.
Collapse
Affiliation(s)
- Anna Nowik-Zajac
- Institute of Chemistry, Health and Food Sciences
- Jan Dlugosz University of Czestochowa
- PL42200 Czestochowa
- Poland
| | - Iwona Zawierucha
- Institute of Chemistry, Health and Food Sciences
- Jan Dlugosz University of Czestochowa
- PL42200 Czestochowa
- Poland
| | - Cezary Kozlowski
- Institute of Chemistry, Health and Food Sciences
- Jan Dlugosz University of Czestochowa
- PL42200 Czestochowa
- Poland
| |
Collapse
|
26
|
Wang D, Cattrall RW, Li J, Almeida MIG, Stevens GW, Kolev SD. A comparison of the use of commercial and diluent free LIX84I in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membranes for the extraction and transport of Cu(II). Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Yaftian MR, Almeida MIG, Cattrall RW, Kolev SD. Flow injection spectrophotometric determination of V(V) involving on-line separation using a poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane. Talanta 2018; 181:385-391. [DOI: 10.1016/j.talanta.2018.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/27/2022]
|
28
|
Zhao WY, Zhou M, Yan B, Sun X, Liu Y, Wang Y, Xu T, Zhang Y. Waste Conversion and Resource Recovery from Wastewater by Ion Exchange Membranes: State-of-the-Art and Perspective. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00519] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen-Yan Zhao
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, PR China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Miaomiao Zhou
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, PR China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Binghua Yan
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaohan Sun
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yang Liu
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Zhang
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
29
|
Preparation and characterization of ion selective membrane and its application for Cu 2+ removal. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Sharaf M, Yoshida W, Kubota F, Kolev SD, Goto M. A polymer inclusion membrane composed of the binary carrier PC-88A and Versatic 10 for the selective separation and recovery of Sc. RSC Adv 2018; 8:8631-8637. [PMID: 35539843 PMCID: PMC9078549 DOI: 10.1039/c7ra12697b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/18/2018] [Indexed: 11/29/2022] Open
Abstract
This study reports on the selective separation of scandium (Sc) from other rare earth metals (REMs) using a polymer inclusion membrane (PIM). The PIM prepared with PC-88A (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) alone as the carrier showed high extractability but the poor back-extraction of the extracted Sc3+ ions did not allow the transport of these ions to the receiving solution of a membrane transport system. To overcome this problem, a novel approach was introduced using a mixture of carriers that allowed Sc3+ transport into the receiving solution. A cellulose triacetate (CTA) based PIM containing both PC-88A and Versatic 10 (decanoic acid) as carriers and dioctyl phthalate (DOP) as a plasticizer was prepared for the selective separation of Sc3+ from other REM ions in nitrate media. The membrane composition was optimized and the effect of operational parameters such as pH of the feed solution and composition of the receiving solution was explored. The flux at the membrane/feed solution interface was found to depend significantly on the carrier concentration in the PIM, pH of the feed solution and the receiving solution acidity. The newly developed PIM allowed quantitative and selective transport of Sc3+ thus demonstrating its suitability for the selective recovery of this metal. This study reports on the selective separation of scandium (Sc) from other rare earth metals (REMs) using a polymer inclusion membrane (PIM).![]()
Collapse
Affiliation(s)
- Maha Sharaf
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Wataru Yoshida
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Fukiko Kubota
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Spas D. Kolev
- School of Chemistry
- The University of Melbourne
- Australia
- Centre for Aquatic Pollution Identification and Management (CAPIM)
- The University of Melbourne
| | - Masahiro Goto
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
31
|
Wang D, Cattrall RW, Li J, Almeida MIG, Stevens GW, Kolev SD. A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(II) from its ammonium sulfate/ammonia solutions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|