1
|
Lee CJ, Hong SJ, Song J, Yoon KS, Oh KH, Lee JY, Yoon SJ, Hong YT, Lee SY, Yu DM, So S. Porous Polyethylene Supports in Reinforcement of Multiblock Hydrocarbon Ionomers for Proton Exchange Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18834-18845. [PMID: 38091527 DOI: 10.1021/acs.langmuir.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Hydrocarbon (HC)-based block copolymers have been recognized as promising candidates for proton exchange membranes (PEMs) due to their distinct hydrophilic-hydrophobic separation, which results in improved proton transport compared to that of random copolymers. However, most PEMs derived from HC-based ionomers, including block copolymers, encounter challenges related to durability in electrochemical cells due to their low mechanical and chemical properties. One method for reinforcing HC-based ionomers involves incorporating the ionomers into commercially available low surface tension PTFE porous substrates. Nevertheless, the high interfacial energy between the hydrocarbon-based ionomer solution and PTFE remains a challenge in this reinforcement process, which necessitates the application of surface energy treatment to PTFE. Here, multiblock sulfonated poly(arylene ether sulfone) (SPAES) ionomers are being reinforced using untreated PE on the surface, and this is compared to reinforcement using surface-treated porous PTFE. The PE support layer exhibits a lower surface energy barrier compared to the surface-treated PTFE layer for the infiltration of the multiblock SPAES solution. This is characterized by the absence of noticeable voids, high translucency, gas impermeability, and a physical and chemical stability. By utilizing a high surface tension PE support with a comparable value to the multiblock SPAES, effective reinforcement of the multiblock SPAES ionomers is achieved for a PEM, which is potentially applicable to various hydrogen energy-based electrochemical cells.
Collapse
Affiliation(s)
- Chang Jin Lee
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
| | - Seung Jae Hong
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Jaeheon Song
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kyung Seok Yoon
- R&D Center, W-SCOPE Korea Co., LTD., Cheongju 28122, South Korea
| | - Keun-Hwan Oh
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Jang Yong Lee
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Sang Jun Yoon
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Young Taik Hong
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
| | - Duk Man Yu
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Soonyong So
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| |
Collapse
|
2
|
Kim S, Alayande AB, Eisa T, Jang J, Kang Y, Yang E, Hwang MH, Kim IS, Chae KJ. Fabrication and Performance Evaluation of a Cation Exchange Membrane Using Graphene Oxide/Polyethersulfone Composite Nanofibers. MEMBRANES 2023; 13:633. [PMID: 37504999 PMCID: PMC10383261 DOI: 10.3390/membranes13070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Ion exchange membranes, especially cation exchange membranes (CEMs), are an important component in membrane-based energy generation and storage because of their ability to transport cations via the electrochemical potential gradient while preventing electron transport. However, developing a CEM with low areal resistance, high permselectivity, and stability remains difficult. In this study, electrospun graphene oxide/polyethersulfone (GO/PES) composite nanofibers were prepared with varying concentrations of GO. To fabricate a CEM, the pores of the electrospun GO/PES nanofiber substrates were filled with a Nafion ionomer. The pore-filled PES nanofiber loaded with 1% GO revealed a noticeable improvement in hydrophilicity, structural morphology, and mechanical properties. The 1% GO/PES pore-filled CEM was compared to a Nafion membrane of a varying thickness and without a nanofiber substrate. The CEM with a nanofiber substrate showed permselectivity of 85.75%, toughness of 111 J/m3, and areal resistance of 3.7 Ω cm2, which were 12.8%, 4.3 times, and 4.0 times better, respectively, than those of the Nafion membrane at the same thickness. The development of a reinforced concrete-like GO/PES nanofiber structure containing stretchable ionomer-enhanced membrane surfaces exhibited suitable areal resistance and reduced the thickness of the composite membrane without compromising the mechanical strength, suggesting its potential application as a cation exchange membrane in electrochemical membrane-based systems.
Collapse
Affiliation(s)
- Suhun Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Abayomi Babatunde Alayande
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyoung 53064, Republic of Korea
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jaewon Jang
- KEPCO Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO), Naju 58277, Republic of Korea
| | - Yesol Kang
- Starch & Sweetener R&D Department, Daesang Corporation, Seoul 07789, Republic of Korea
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyoung 53064, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, Seoul 02841, Republic of Korea
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
3
|
Kim J, Hwang S, Jeong YG, Choi YS, Kim K. Cross-Linked Sulfonated Poly(arylene ether sulfone) Membrane Using Polymeric Cross-Linkers for Polymer Electrolyte Membrane Fuel Cell Applications. MEMBRANES 2022; 13:7. [PMID: 36676814 PMCID: PMC9861409 DOI: 10.3390/membranes13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cross-linked membranes for polymer electrolyte membrane fuel cell application are prepared using highly sulfonated poly(arylene ether sulfone) (SPAES) and polymeric cross-linkers having different hydrophilicities by facile in-situ casting and heating processes. From the advantage of the cross-linked structures made with the use of polymeric cross-linkers, a stable membrane can be obtained even though the polymer matrix with a very high degree of sulfonation was used. In particular, hydrophilic cross-linker is found to be effective in improving physicochemical properties of the cross-linked membranes and at the same time showing reasonable proton conductivity. Accordingly, membrane electrode assembly made from the cross-linked membrane prepared by using hydrophilic polymeric cross-linker exhibits outstanding cell performance under high temperature and low relative humidity conditions (e.g., maximum power density of 176.4 mW cm-2 at 120 °C and 40% RH).
Collapse
Affiliation(s)
- Junghwan Kim
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seansoo Hwang
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu-Gyeong Jeong
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Seok Choi
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Int J Mol Sci 2022; 23:ijms232214252. [PMID: 36430726 PMCID: PMC9694323 DOI: 10.3390/ijms232214252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.
Collapse
|
5
|
Chen X, Xiao L, Qiu XS, Chen KC. Properties of Multiblock Sulfonated Poly(arylene ether sulfone)s Synthesized by Precise Controllable Post-sulfonation for Proton Exchange Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Yuan W, Zeng L, Li Y, Wang J, Wang X, Liao Q, Li L, Wei Z. Ultrathin and Super Strong UHMWPE Supported Composite Anion Exchange Membranes with Outstanding Fuel Cells Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105499. [PMID: 34984828 DOI: 10.1002/smll.202105499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/26/2021] [Indexed: 05/26/2023]
Abstract
For high-performance anion exchange membrane fuel cells (AEMFCs), the anion exchange membrane (AEMs) should be as thin as possible to reduce the ohmic resistance. However, the mechanical stability of ultrathin AEMs cannot be guaranteed, as well as a huge risk of gas (H2 &O2 ) permeation. In this work, composite AEMs based on ultrahigh molecular weight polyethylene (UHMWPE) are prepared by in situ bulk polymerization. The as-prepared composite membranes can be as thin as 4 µm, and possess super high strength beyond 150 MPa. It also shows extremely low hydrogen permeation, low water uptake, low dimensional swelling, high conductivity, and good alkaline stability. In addition, the fuel cell performance based on the ultrathin composite AEMs exhibits outstanding peak power density of 1014 and 534 mW cm-2 for H2 -O2 and H2 -Air (CO2 -free) at 65 °C, respectively, as well as good short-term durability.
Collapse
Affiliation(s)
- Wei Yuan
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lingping Zeng
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ying Li
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianchuan Wang
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xi Wang
- Shenzhen SENIOR Technology Materials Co., Ltd, Shenzhen, 518057, China
| | - Qiang Liao
- School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Li Li
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zidong Wei
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
7
|
Kim M, Ko H, Nam SY, Kim K. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Polymers (Basel) 2021; 13:3520. [PMID: 34685282 PMCID: PMC8539910 DOI: 10.3390/polym13203520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.
Collapse
Affiliation(s)
| | | | | | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (H.K.); (S.Y.N.)
| |
Collapse
|
8
|
Self-Humidifying Membrane for High-Performance Fuel Cells Operating at Harsh Conditions: Heterojunction of Proton and Anion Exchange Membranes Composed of Acceptor-Doped SnP 2O 7 Composites. MEMBRANES 2021; 11:membranes11100776. [PMID: 34677541 PMCID: PMC8541432 DOI: 10.3390/membranes11100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/05/2022]
Abstract
Here we suggest a simple and novel method for the preparation of a high-performance self-humidifying fuel cell membrane operating at high temperature (>100 °C) and low humidity conditions (<30% RH). A self-humidifying membrane was effectively prepared by laminating together proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites, Sn0.9In0.1H0.1P2O7/Sn0.92Sb0.08(OH)0.08P2O7. At the operating temperature of 100 °C, the electrochemical performances of the membrane electrode assembly (MEA) with this heterojunction membrane at 3.5% RH were better than or comparable to those of each MEA with only the proton or anion exchange membranes at 50% RH or higher.
Collapse
|
9
|
Pore-Filled Proton-Exchange Membranes with Fluorinated Moiety for Fuel Cell Application. ENERGIES 2021. [DOI: 10.3390/en14154433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proton-exchange membrane fuel cells (PEMFCs) are the heart of promising hydrogen-fueled electric vehicles, and should lower their price and further improve durability. Therefore, it is necessary to enhance the performances of the proton-exchange membrane (PEM), which is a key component of a PEMFC. In this study, novel pore-filled proton-exchange membranes (PFPEMs) were developed, in which a partially fluorinated ionomer with high cross-linking density is combined with a porous polytetrafluoroethylene (PTFE) substrate. By using a thin and tough porous PTFE substrate film, it was possible to easily fabricate a composite membrane possessing sufficient physical strength and low mass transfer resistance. Therefore, it was expected that the manufacturing method would be simple and suitable for a continuous process, thereby significantly reducing the membrane price. In addition, by using a tri-functional cross-linker, the cross-linking density was increased. The oxidation stability was greatly enhanced by introducing a fluorine moiety into the polymer backbone, and the compatibility with the perfluorinated ionomer binder was also improved. The prepared PFPEMs showed stable PEMFC performance (as maximum power density) equivalent to 72% of Nafion 212. It is noted that the conductivity of the PFPEMs corresponds to 58–63% of that of Nafion 212. Thus, it is expected that a higher fuel cell performance could be achieved when the membrane resistance is further lowered.
Collapse
|
10
|
Kim J, Kim K, Han J, Lee H, Kim H, Kim S, Sung Y, Lee J. End‐group cross‐linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross‐linker and a filler for proton exchange membrane fuel cell application. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junghwan Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Kihyun Kim
- School of Materials Science and Engineering, Polymer Science and Engineering Gyeongsang National University Jinju South Korea
| | - Jusung Han
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyunhee Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyejin Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Yung‐Eun Sung
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Jong‐Chan Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
11
|
Haragirimana A, Li N, Ingabire PB, Hu Z, Chen S. Multi-component organic/inorganic blend proton exchange membranes based on sulfonated poly(arylene ether sulfone)s for fuel cells. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Haider R, Wen Y, Ma ZF, Wilkinson DP, Zhang L, Yuan X, Song S, Zhang J. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem Soc Rev 2020; 50:1138-1187. [PMID: 33245736 DOI: 10.1039/d0cs00296h] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.
Collapse
Affiliation(s)
- Rizwan Haider
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ingabire PB, Haragirimana A, Liu Y, Li N, Hu Z, Chen S. Titanium oxide/graphitic carbon nitride nanocomposites as fillers for enhancing the performance of SPAES membranes for fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Ahmadian-Alam L, Teymoori M, Mahdavi H. Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02049-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Xu G, Zou J, Guo Z, Li J, Ma L, Li Y, Cai W. Bi-Functional Composting the Sulfonic Acid Based Proton Exchange Membrane for High Temperature Fuel Cell Application. Polymers (Basel) 2020; 12:polym12051000. [PMID: 32357433 PMCID: PMC7285267 DOI: 10.3390/polym12051000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Although sulfonic acid (SA)-based proton-exchange membranes (PEMs) dominate fuel cell applications at low temperature, while sulfonation on polymers would strongly decay the mechanical stability limit the applicable at elevated temperatures due to the strong dependence of proton conduction of SA on water. For the purpose of bifunctionally improving mechanical property and high-temperature performance, Nafion membrane, which is a commercial SA-based PEM, is composited with fabricated silica nanofibers with a three-dimensional network structure via electrospinning by considering the excellent water retention capacity of silica. The proton conductivity of the silica nanofiber–Nafion composite membrane at 110 °C is therefore almost doubled compared with that of a pristine Nafion membrane, while the mechanical stability of the composite Nafion membrane is enhanced by 44%. As a result, the fuel cell performance of the silica nanofiber-Nafion composite membrane measured at high temperature and low humidity is improved by 38%.
Collapse
Affiliation(s)
- Guoxiao Xu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Juan Zou
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Zhu Guo
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Jing Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
- Correspondence: (J.L.); (L.M.)
| | - Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: (J.L.); (L.M.)
| | - Ying Li
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
16
|
|
17
|
Zheng P, Liu Q, Wang D, Li Z, Meng Y, Zheng Y. Preparation of Covalent-Ionically Cross-Linked UiO-66-NH 2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Front Chem 2020; 8:56. [PMID: 32133339 PMCID: PMC7039937 DOI: 10.3389/fchem.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/17/2020] [Indexed: 01/14/2023] Open
Abstract
Metal-organic frameworks (MOFs), as newly emerging filler materials for polyelectrolytes, show many compelling intrinsic features, such as variable structural designability and modifiability of proton conductivity. In this manuscript, UiO-66-NH2, a stable MOF with -NH2 functional groups in its ligands, was selected to achieve a high-performance sulfonated poly(arylene ether nitrile)s (SPENs)/UiO-66-NH2-x covalent-ionically cross-linked composite membrane. Simultaneously, the obtained composite membranes displayed excellent thermal stability and dimensional stability. The as-prepared SPEN/UiO-66-NH2-x cross-linked membranes exhibited higher proton conductivity than recast SPENs, which can be attributed to the construction of ionic clusters and well-connected ionic nanochannels along the interface between UiO-66-NH2-x and SPEN matrix via molecular interactions. Meanwhile, the methanol permeability of the SPEN/UiO-66-NH2-x composite membrane had been effectively reduced due to the barrier effect of cross-linking and the addition of UiO-66-NH2-x. The SPEN/UiO-66-NH2-5 composite membrane had the highest selectivity of 6.42 × 105 S·s·cm−3: 14.3-times higher than that of Nafion 117. The preparation of cross-linked UiO-66-NH2/SPEN composite was facile, which provides a new strategy for preparing high performance proton exchange membrane.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yawei Meng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| |
Collapse
|
18
|
Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Wang L, Liu Z, Liu Y, Wang L. Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Haragirimana A, Ingabire PB, Zhu Y, Lu Y, Li N, Hu Z, Chen S. Four-polymer blend proton exchange membranes derived from sulfonated poly(aryl ether sulfone)s with various sulfonation degrees for application in fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Fang Z, Xu H, Gao S, Wu Z, Yin Z, Wang J, Yang J, Zhu C. Synthesis of Sulfonated Poly(arylene ether)s in a One‐Pot Polymerization Process and Their Nafion‐Blend Membranes for Proton Exchange Membrane Fuel Cell Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201901230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhou Fang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Hulin Xu
- Beijing Qintian Science & Technology Development Co. Ltd. Beijing 100070 China
| | - Shuitao Gao
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zeyu Wu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zhechang Yin
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jie Wang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jun Yang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Changjin Zhu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
22
|
Han J, Kim K, Kim J, Kim S, Choi SW, Lee H, Kim JJ, Kim TH, Sung YE, Lee JC. Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Lee H, Han J, Kim K, Kim J, Kim E, Shin H, Lee JC. Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Zhang C, Yue X, Mu Y, Zuo X, Lu N, Luo Y, Na R, Zhang S, Wang G. Novel pore-filling membrane based on block sulfonated poly (ether sulphone) with enhanced proton conductivity and methanol resistance for direct methanol fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Kim K, Heo P, Hwang W, Baik JH, Sung YE, Lee JC. Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21788-21793. [PMID: 29883095 DOI: 10.1021/acsami.8b05139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we show a simple and effective cross-linking method to prepare a high performance cross-linked sulfonated poly(arylene ether sulfone) (C-SPAES) membrane using bishydroxy perfluoropolyether (PFPE) as a cross-linker for fuel cell applications. The C-SPAES membrane shows much improved physicochemical stability due to the cross-linked structure and reasonably high proton conductivity compared to the non-cross-linked SPAES membrane due to the incorporation of flexible PFPE and the effective phase-separated morphology between the hydrocarbon and perfluorinated moieties forming well-connected networks. Under intermediate-temperature and low humidity conditions (90 °C, 50% RH, and 150 kPa), the membrane electrode assembly employing the C-SPAES membrane reveals an outstanding cell performance (1.17 W cm-2 at 0.65 V) ascribed to its reasonably high proton conductivity and enhanced interfacial compatibility between the perfluorinated moieties in the electrode and C-SPAES membrane. Furthermore, a hydration-dehydration cycling test result at 90 °C reveals that the C-SPAES membrane has notable durability against rigorous operating conditions.
Collapse
Affiliation(s)
- Kihyun Kim
- Department of Chemical and Biological Engineering , Seoul National University , 599 Gwanak-ro , Gwanak-gu , Seoul 151-744 , Republic of Korea
| | - Pilwon Heo
- Cell Development Group, Automotive & ESS Business Division , Samsung SDI Co. Ltd. , 150-20, Gongse-ro, Giheung-gu , Yongin-si , Gyeonggi-do 446-577 , Republic of Korea
| | - Wonchan Hwang
- Department of Chemical and Biological Engineering , Seoul National University , 599 Gwanak-ro , Gwanak-gu , Seoul 151-744 , Republic of Korea
| | - Ji-Hoon Baik
- Department of Chemical and Biological Engineering , Seoul National University , 599 Gwanak-ro , Gwanak-gu , Seoul 151-744 , Republic of Korea
| | - Yung-Eun Sung
- Department of Chemical and Biological Engineering , Seoul National University , 599 Gwanak-ro , Gwanak-gu , Seoul 151-744 , Republic of Korea
| | - Jong-Chan Lee
- Department of Chemical and Biological Engineering , Seoul National University , 599 Gwanak-ro , Gwanak-gu , Seoul 151-744 , Republic of Korea
| |
Collapse
|
27
|
Lim MY, Kim K. Sulfonated Poly(Arylene Ether Sulfone) and Perfluorosulfonic Acid Composite Membranes Containing Perfluoropolyether Grafted Graphene Oxide for Polymer Electrolyte Membrane Fuel Cell Applications. Polymers (Basel) 2018; 10:E569. [PMID: 30966603 PMCID: PMC6403734 DOI: 10.3390/polym10060569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
Sulfonated poly(arylene ether sulfone) (SPAES) and perfluorosulfonic acid (PFSA) composite membranes were prepared using perfluoropolyether grafted graphene oxide (PFPE-GO) as a reinforcing filler for polymer electrolyte membrane fuel cell (PEMFC) applications. PFPE-GO was obtained by grafting poly(hexafluoropropylene oxide) having a carboxylic acid end group onto the surface of GO via ring opening reaction between the carboxylic acid group in poly(hexafluoropropylene oxide) and the epoxide groups in GO, using 4-dimethylaminopyridine as a base catalyst. Both SPAES and PFSA composite membranes containing PFPE-GO showed much improved mechanical strength and dimensional stability, compared to each linear SPAES and PFSA membrane, respectively. The enhanced mechanical strength and dimensional stability of composite membranes can be ascribed to the homogeneous dispersion of rigid conjugated carbon units in GO through the increased interfacial interactions between PFPE-GO and SPAES/PFSA matrices.
Collapse
Affiliation(s)
- Min-Young Lim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak⁻ro, Gwanak⁻gu, Seoul 151⁻744, Korea.
| | - Kihyun Kim
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
28
|
Comb-shaped polysulfones containing sulfonated polytriazole side chains for proton exchange membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Munavalli B, Torvi A, Kariduraganavar M. A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|