1
|
Yang L, Yu H, Zhao H, Xia C, Yu Q, Chen X, Cao G, Cai L, Meng S, Tang CY. Degradation of polyamide nanofiltration membranes by free chlorine and halide ions: Kinetics, mechanisms, and implications. WATER RESEARCH 2025; 272:122963. [PMID: 39689551 DOI: 10.1016/j.watres.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br- and Cl-) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and H3BO3 permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond). The more reactive but less abundant brominating agents (Br2O, BrOCl, BrCl, and Br2) played significant roles in membrane degradation, contradicting the conventional belief that HOBr is the only reactive species. BrCl at pH 4.0 and BrOCl and Br2O at pH 7.0 made significantly higher contributions to membrane degradation than HOBr (>76 % vs. <13 %). The increased contribution of BrCl and Br2 with the increased [Cl-] and [Br-]ex (the excess bromide, defined as [Br-]o - [HOCl]o when [Br-]o > [HOCl]o), respectively, was responsible for the greater reduction of water permeability coefficient. The innovative and simple approach developed in this study provides important insights to evaluate and predict membrane degradation.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huihui Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyu Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lankun Cai
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China
| |
Collapse
|
2
|
Arriaza-Echanes C, Terraza CA, Tundidor-Camba A, Sanhueza Ch. L, Ortiz PA. Novel Co-Polyamides Containing Pendant Phenyl/Pyridinyl Groups with Potential Application in Water Desalination Processes. Polymers (Basel) 2025; 17:208. [PMID: 39861280 PMCID: PMC11768725 DOI: 10.3390/polym17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry. Notably, pyridinyl-substituted membranes achieved water fluxes up to 17.7 L m-2 h-1 and a NaCl rejection of 37.3%, while phenyl-substituted variants provided insights into the interplay of hydrophobicity and porosity. These findings highlight the critical role of pendant group functionality in tailoring membrane performance, offering a foundation for further structural modifications to enhance efficiency in water treatment technologies.
Collapse
Affiliation(s)
- Carolina Arriaza-Echanes
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile;
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alain Tundidor-Camba
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA;
| | - Loreto Sanhueza Ch.
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile;
| | - Pablo A. Ortiz
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile;
- Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile
| |
Collapse
|
3
|
Davidkova D, Graham MC, MacLeod D, Romero-Vargas Castrillón S, Correia Semiao AJ. Analysis of Tubular NF Plants in Scotland Indicates That Summer Temperatures and Redox-Sensitive Elements Are Correlated with Membrane Biofouling and Shortened Useful Life. ACS ES&T WATER 2024; 4:5002-5012. [PMID: 39539761 PMCID: PMC11555670 DOI: 10.1021/acsestwater.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
We investigate the effects of seasonal variations in water composition and temperature on the performance of two full-scale drinking water treatment plants in Scotland, equipped with tubular cellulose acetate nanofiltration membranes. Multiple environmental and water quality parameters, recorded over a 4.5-year period, were correlated against membrane permeance, cleaning frequency, and useful life. Membrane autopsies enabled the characterization of the foulant composition. Temporal variations in temperature at plant X led to significant biofouling (manifested by permeance losses of 30-50%, and bacteria detected on the membrane surface) during the summer months, when water temperatures exceeded 20 °C and microbiological activity was highest. Plant Y, in contrast, displayed smaller seasonal variations and was operationally stable without significant fouling. A pronounced increase in manganese and iron (up to 200 and 600 μg/L, respectively) in the lake water at plant X in summer was accompanied by elevated content (∼60 mg/m2) of those metals on the membrane surface, which was consistent with lake thermal stratification and metal input from the sediment into the water column. Our work shows that membrane plants in regions supplied by standing surface water bodies, such as plant X, are more vulnerable to biofouling, especially during warmer months.
Collapse
Affiliation(s)
- Desislava
Filipova Davidkova
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
| | - Margaret Catherine Graham
- School
of Geosciences, The University of Edinburgh, Crew Building, Alexander Crum Brown
Road, Edinburgh EH9 3FF, United Kingdom
| | - David MacLeod
- Scottish
Water, 31 Henderson Drive, Inverness IV1 1 TR, United Kingdom
| | - Santiago Romero-Vargas Castrillón
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Andrea Joana Correia Semiao
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
| |
Collapse
|
4
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
5
|
Nasibiselahchin A, Soltanolkottabi F. Surface modification of polysulfone reverse osmosis membrane with chitosan-modified zinc oxide for water desalination. ENVIRONMENTAL TECHNOLOGY 2024; 45:3912-3923. [PMID: 37515812 DOI: 10.1080/09593330.2023.2237657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Decreasing groundwater levels, increasing world population, and pollution of water resources by industries lead to the use of new technologies for augmenting the fresh water supply such as its desalination. Chitosan-modified zinc oxide (C-ZnO) nanoparticles were synthesized and used for surface modification of polysulfone (PSf) in water desalination. PSf /C-ZnO membrane was fabricated through the phase inversion method and characterized by Fourier transfer infrared (FTIR), X-Ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), energy dispersive X-ray (EDX), Braunauer-Emmett-Teller (BET), and contact angle. The nanoparticle effect on the membrane properties was investigated by measuring the pure water flux and solute rejection under two constant pressures, at 6 and 10 bar, and the salts concentration of MgSO4, MgCl2, NaCl, and CaCl2 at 1 gL-1. The results showed that nanoparticles increased the hydrophilicity of the pristine PSf membrane while slightly decreasing the water permeability. Moreover, the salt rejection increased with the nanoparticle addition up to 0.2 wt.% while it decreased with 0.5 wt.% nanoparticle due to changing the membrane finger-like pores sublayer structure.
Collapse
Affiliation(s)
- Ahmad Nasibiselahchin
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Fariba Soltanolkottabi
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| |
Collapse
|
6
|
Pandey L, Liang W, VahidMohammadi A, Zhang T, Gogotsi Y, Wanunu M. Hydrophilicity and surface charge modulation of Ti 3C 2T x MXene based membranes for water desalination. RSC Adv 2024; 14:21635-21643. [PMID: 38979456 PMCID: PMC11229083 DOI: 10.1039/d4ra02678k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Lamellar membranes obtained by stacking 2D layers possess ample transport pathways due to their intricate network of interlayer gaps. This makes them suitable for molecular separation applications. However, controlling the surface chemistry of the nanochannels within the membrane to tune the desired transport properties of water and ions is challenging. Ti3C2T x has been considered for water desalination because of its hydrophilic surface and negative surface charge. Most of the studies of Ti3C2T x membranes have presented promising salt rejection values in forward osmosis mode, which is less practical for water purification. Here, we investigate two types of reverse osmosis MXene-based lamellar membranes consisting of Ti3C2T x nanosheets hybridized with (i) WS2 nanosheets and (ii) polyvinyl phosphonic acid (PVPA). When hydrophilic and flexible Ti3C2T x nanosheets are interleaved with softer and more hydrophobic WS2 nanosheets in 2 : 1 mass ratio, nano capillaries with Janus chemistry are created with comparable rejection to bare Ti3C2T x membrane and threefold higher permeance values. Further, we find that decorating Ti3C2T x nanosheets with anionic polymers improves salt rejection. Our Ti3C2T x /PVPA composite membranes reject ∼97% of divalent ions and ∼80% of monovalent ions with ∼0.2 Lm-2 h-1 bar-1 of water permeance when tested with brackish water, and exhibit significantly improved chlorine resistance and cost benefits over the commercial Toray membranes.
Collapse
Affiliation(s)
- Laxmi Pandey
- Department of Physics, Northeastern University Boston MA 02115 USA
| | - Wentao Liang
- Department of Physics, Northeastern University Boston MA 02115 USA
| | - Armin VahidMohammadi
- Department of Materials Science and Engineering, Drexel University Philadelphia PA 19104 USA
| | - Teng Zhang
- Department of Materials Science and Engineering, Drexel University Philadelphia PA 19104 USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University Philadelphia PA 19104 USA
| | - Meni Wanunu
- Department of Physics, Northeastern University Boston MA 02115 USA
- Department of Bioengineering, Northeastern University Boston MA 02115 USA
- Department of Chemistry and Chemical Biology, Northeastern University Boston MA 02115 USA
| |
Collapse
|
7
|
Zhang R, Yang J, Tian J, Zhu J, Van der Bruggen B. Synergistic interfacial polymerization between hydramine/diamine and trimesoyl chloride: A novel reaction for NF membrane preparation. WATER RESEARCH 2024; 257:121745. [PMID: 38733965 DOI: 10.1016/j.watres.2024.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyester-amide (PEA) thin film composite (TFC) NF membranes have rapidly evolved towards a competitive performance, benefiting from their remarkable antifouling capability and superior chlorine resistance. In this report, a new concept of synergistic interfacial polymerization is explored, which promptly triggers the reaction between hydramines and trimesoyl chloride (TMC) in the presence of a trace amount of diamines. This rapid-start mode enables the formation of defect-free PEA films without the requirement of catalysis. A comprehensive characterization of physicochemical properties using high-resolution mass spectrometer (HRMS) reveals that the recombination and formation of a "hydramine-diamine" coupling unit plays a decisive role in activating the synergistic interfacial polymerization reaction with TMC molecules. Taking the pair of serinol and piperazine (PIP) as an example, the PEA-NF membrane fabricated with 0.1 w/v% serinol mixed with 0.04 w/v% PIP as water-soluble monomer and 0.1 w/v% TMC as oil phase monomer was found to have a pure water permeability (PWP) of 18.5 L·m-2·h-1·bar-1 and a MgSO4 rejection of 95.5 %, which surpasses almost all the reported PEA NF membranes. Findings of the current research provide more possibilities for the low-cost and rapid synthesis of high-performance PEA membranes aiming for water purification.
Collapse
Affiliation(s)
- Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jie Yang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| |
Collapse
|
8
|
Jia TZ, Feng R, Cui C, Chen Q, Cseri L, Zhou RF, Szekely G, Cao XL, Sun SP. Conductive nanofiltration membranes via in situ PEDOT-polymerization for electro-assisted membrane fouling mitigation. WATER RESEARCH 2024; 252:121251. [PMID: 38324983 DOI: 10.1016/j.watres.2024.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT. This interwoven structure integrates with the polyamide network to establish a stable selective layer, yielding a remarkable 90 % increase in permeability to 20.4 L m-2 h-1 bar-1. Leveraging the conductivity conferred by PEDOT doping, an electro-assisted cleaning strategy is devised, rapidly restoring the flux to 98.3 % within 5 min, outperforming the 30-minute pure water cleaning approach. Through simulations in an 8040 spiral-wound module and the utilization of the permeated salt solution for cleaning, the electro-assisted cleaning strategy emerges as an eco-friendly solution, significantly reducing water consumption and incurring only a marginal electricity cost of 0.055 $ per day. This work presents an innovative avenue for constructing conductive membranes and introduces an efficient and cost-effective electro-assisted cleaning strategy to effectively combat membrane fouling.
Collapse
Affiliation(s)
- Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ru Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chun Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom
| | - Rong-Fei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China
| | - Gyorgy Szekely
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom; Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China.
| |
Collapse
|
9
|
Long W, Koo JW, Yuan Z, She Q. Flow-through electrochemically assisted reverse-osmosis: A new process towards low-chemical desalination. WATER RESEARCH 2024; 249:120982. [PMID: 38101048 DOI: 10.1016/j.watres.2023.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Two-pass reverse osmosis (RO) process is prevailing in seawater desalination, but each process must consume considerable amounts of chemicals to secure product water quality. Caustic soda is used to raise the pH of the first-pass RO permeate (also the second-pass RO feed) to ensure adequate removal of boron in the subsequent second-pass RO, while antiscalants and disinfectants such as hypochlorite are added in the feed seawater for scaling and biofouling control of the first-pass RO membranes. Here, we report for the first time a flow-through electrochemically assisted reverse osmosis (FT-EARO) module system used in the first-pass RO, aiming to dramatically reduce or even eliminate chemical usage for the current RO desalination. This novel system integrated an electroconductive permeate carrier as cathode and an electroconductive feed spacer as anode on each side of the first-pass RO membrane. Upon applying an extremely low-energy (< 0.005 kWh/m3) electrical field, the FT-EARO module could (1) produce a permeate with pH >10 with no alkali dosage, ensuring sufficient boron removal in the second-pass RO, and (2) generate protons and low-concentration free chlorine near the membrane surface, potentially discouraging membrane scaling and biofouling while maintaining satisfactory desalination performance. The current study further elucidated the high scalability of this novel electrified high-pressure RO module design. The low-chemical manner of FT-EARO presents an attractive practical option towards green and sustainable seawater desalination.
Collapse
Affiliation(s)
- Wei Long
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jing Wee Koo
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Ziwen Yuan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
10
|
Mi YF, Liu JL, Xia W, He SH, Shentu BQ. In Situ Formation of Silver Nanoparticles Induced by Cl-Doped Carbon Quantum Dots for Enhanced Separation and Antibacterial Performance of Nanofiltration Membrane. MEMBRANES 2023; 13:693. [PMID: 37623754 PMCID: PMC10456382 DOI: 10.3390/membranes13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Polyamide (PA) nanofiltration (NF) membranes suffer from biofouling, which will deteriorate their separation performance. In this study, we proposed a strategy to incorporate silver nanoparticles (Ag NPs) into PA NF membranes in situ, in order to simultaneously enhance water permeability and antibacterial performance. The chloride-doped carbon quantum dots (Cl-CQDs) with photocatalytic performance were pre-embedded in the PA selective layer. Under visible light irradiation, the photogenerated charge carriers generated by Cl-CQDs rapidly transported to silver ions (Ag+ ions), resulting in the in situ formation of Ag NPs. The proposed strategy avoided the problem of aggregating Ag NPs, and the amount of Ag NPs on the membrane surfaces could be easily tuned by changing silver nitrate (AgNO3) concentrations and immersion times. These uniformly dispersed Ag NPs increased membrane hydrophilicity. Thus, the obtained thin film nanocomposite Ag NPs (TFN-Ag) membrane exhibited an improved water flux (31.74 L m-2 h-1), which was ~2.98 times that of the pristine PA membrane; meanwhile, the sodium sulfate (Na2SO4) rejection rate was 96.11%. The sterilization rates of the TFN-Ag membrane against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 99.55% and 99.52%, respectively. Thus, this facile strategy simultaneously improved the permeability and antibacterial property of PA NF membranes.
Collapse
Affiliation(s)
- Yi-Fang Mi
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Shenlan New Material Technology Co., Ltd., Jiandei 311606, China
| | - Jia-Li Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen Xia
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shu-Heng He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bao-Qing Shentu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
11
|
Abdul Rahman N, Jose Jol C, Albania Linus A, Wan Borhan WWS, Abdul Jalal NS, Baharudin N, Samsul SNA, Abdul Mutalip N, Jitai AA, Abang Abdul Hamid DFA. Continuous electrocoagulation treatment system for partial desalination of tropical brackish peat water in Sarawak coastal peatlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163517. [PMID: 37068674 DOI: 10.1016/j.scitotenv.2023.163517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Sarawak coastal peatlands located on Borneo Island have vast availability of brackish peat water sources especially in some coastal rural areas. However, brackish peat water is currently underutilized as the source for water treatment plants due to excessive salinity levels. As such, this study aims to investigate the salinity reduction in brackish peat water sources for domestic consumption in Sarawak coastal peatlands by utilizing continuous electrocoagulation treatment with aluminium electrodes. Correspondingly, this study analyzes the effects of salinity percentage, electric current, and flow rate on salinity reduction with electrocoagulation treatment. This study has found that the treated salinity levels in brackish peat water with 30 % of salinity percentage meet the Malaysia Class I in National Water Quality Standard. The study has also identified both monolayer and multilayer adsorption that occurs in electrocoagulation treatment as the precursor to salinity reduction. In addition, the presence of in-situ aluminium hydroxide coagulants could adsorb some sodium chloride from brackish peat water with 70 % of salinity percentage at 2503 mg/g of maximum adsorption capacity and 2.65 min-1 of adsorption rate. This study has also found that electrocoagulation treatment could achieve 91.78 % of maximum salinity reduction efficiency at an optimum electric current of 5 A and flow rate of 1.2 L/min in brackish peat water with 30 % of salinity percentage. This treatment system costs only Ringgit Malaysia (RM) 0.29 or United States Dollars (USD) 0.06 per meter cubic of treated brackish peat water. Overall, this study demonstrates that continuous electrocoagulation treatment could partially desalinate brackish peat water with 30 % of salinity percentage in which the treated salinity levels could be utilized for domestic consumption in Sarawak coastal peatlands at reasonable cost.
Collapse
Affiliation(s)
- Nazeri Abdul Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Calvin Jose Jol
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Allene Albania Linus
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Wan Wafi Shahanney Wan Borhan
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nur Syahida Abdul Jalal
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nooranisha Baharudin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Shaleen Nur Ain Samsul
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nurshazatul'aini Abdul Mutalip
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Airul Azhar Jitai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Dayang Fadhilatul Aisyah Abang Abdul Hamid
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
12
|
Li Y, Li J, Zhu D, Qian G, Tang H. Facile dual-functionalization of NF membranes with excellent chlorine resistance and good antifouling property by in-situ grafting of zwitterions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
13
|
Mallya DS, Abdikheibari S, Dumée LF, Muthukumaran S, Lei W, Baskaran K. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation - A review. CHEMOSPHERE 2023; 321:138070. [PMID: 36775036 DOI: 10.1016/j.chemosphere.2023.138070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Collapse
Affiliation(s)
| | | | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 8001, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, Victoria. 3220, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, Victoria, 3216, Australia
| |
Collapse
|
14
|
Liu H, Zhang X, Ji B, Qiang Z, Karanfil T, Liu C. UV aging of microplastic polymers promotes their chemical transformation and byproduct formation upon chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159842. [PMID: 36374755 DOI: 10.1016/j.scitotenv.2022.159842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The presence and accumulation of microplastics (MPs) in water and wastewater is a growing concern. When released to the water bodies, microplastics can be subject to surface weathering due to ultraviolet (UV) exposure. In this study, the effects of UV aging of six MP polymers from three groups (e.g., polyamide, polyester, and polyolefin) on their chlorine reactivity, chemical transformation, and formation of disinfection byproducts (DBPs) were studied. Polyamide (e.g., polyamide 6) in both virgin and UV-aged forms showed significantly higher chlorine demands than other MP polymers (915.5-947.9 versus 7.0-21.1 μmol/g MP in 24 h), and polyolefins were relatively inert to chlorine. UV aging enhanced the destructions of functional groups of polyamide and polyester upon chlorination, promoting the chlorine demands and leaching of organics by up to 1.7- and 2.4-fold, respectively. Polymer monomer and oligomers of polyamide 6 and toxic or endocrine disrupting additives (e.g., dimethyl phthalate and butyl octyl phthalate) were identified in leachates from chlorinated MP polymers by mass spectrometry. Meanwhile, up to >10-fold increases in the yields of trihalomethane, haloacetic acid, haloacetaldehyde, haloacetonitrile, and haloacetamide were observed from 30-day UV-aged MP polymers as compared to their virgin counterparts. Overall, this study reveals that UV aging can promote the reactivity and chemical transformation of MP polymers during chlorination, especially for polyamide and polyester, increase the release of polymer monomers, oligomers, and additives, and aggravate the role of MP polymers as DBP precursors.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xian Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Gao J, Liu J, Liu L, Dong J, Zhao X, Pan J. Multiple Interface Reactions Enabled Zwitterionic Polyamide Composite Reverse Osmosis Membrane for Enhanced Permeability and Antifouling Property. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jialin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Lingling Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiajing Dong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| |
Collapse
|
16
|
Lopez KP, Wang R, Hjelvik EA, Lin S, Straub AP. Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. SCIENCE ADVANCES 2023; 9:eade0413. [PMID: 36598997 PMCID: PMC9812388 DOI: 10.1126/sciadv.ade0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desalination technologies using salt-rejecting membranes are a highly efficient tool to provide fresh water and augment existing water supplies. In recent years, numerous studies have worked to advance a variety of membrane processes with different membrane types and driving forces, but direct quantitative comparisons of these different technologies have led to confusing and contradictory conclusions in the literature. In this Review, we critically assess different membrane-based desalination technologies and provide a universal framework for comparing various driving forces and membrane types. To accomplish this, we first quantify the thermodynamic driving forces resulting from pressure, concentration, and temperature gradients. We then examine the resistances experienced by water molecules as they traverse liquid- and air-filled membranes. Last, we quantify water fluxes in each process for differing desalination scenarios. We conclude by synthesizing results from the literature and our quantitative analyses to compare desalination processes, identifying specific scenarios where each process has fundamental advantages.
Collapse
Affiliation(s)
- Kian P. Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Elizabeth A. Hjelvik
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Anthony P. Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| |
Collapse
|
17
|
He Y, Zhang Y, Liang F, Zhu Y, Jin J. Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
El Meragawi S, Cooray D, Majumder M. Improvement of the chlorine resistance of graphene oxide membranes through siloxane cross-linking. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Sally El Meragawi
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| | - Dilusha Cooray
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. WATER 2022. [DOI: 10.3390/w14142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biofilm formation is one of the main obstacles in membrane treatment. The non-oxidizing biocide ethyl lauroyl arginate (LAE) is promising for mitigating biofilm development on membrane surfaces. However, the operating conditions of LAE and their impact on biofilm detachment are not comprehensively understood. In this study, a real-time in vitro flow cell system was utilized to observe biofilm dispersal caused by the shear rate, concentration, and treatment time of LAE. This confirmed that the biofilm was significantly reduced to 68.2% at a shear rate of 3.42 s−1 due to the increased physical lifting force. LAE exhibited two different mechanisms for bacterial inactivation and biofilm dispersal. Biofilms treated with LAE at sub-growth inhibitory concentrations for a longer time could effectively detach the biofilm formed on the surface of the glass slides, which can be attributed to the increased motility of microorganisms. However, a high concentration (i.e., bactericidal concentration) of LAE should be seriously considered because of the inactivated sessile bacteria and their residual debris remaining on the surface. This study sheds light on the effect of LAE on biofilm detachment and provides insights into biofouling mitigation during the membrane process.
Collapse
|
21
|
Liu C, He Q, Song D, Jackson J, Faria AF, Jiang X, Li X, Ma J, Sun Z. Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation. WATER RESEARCH 2022; 217:118375. [PMID: 35405551 DOI: 10.1016/j.watres.2022.118375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly antimicrobial CuNPs were integrated into a hydrophilic polydopamine (PDA) coating and immobilized on a RO TFC membrane via a mild and facile reduction approach to form a stable and durable dual-functional layer. Based on the XDLVO analysis, the introduction of PDA increased the membrane-foulant total interaction energy (ΔGmwf) to 14.13 mJ/m2, resulting in improved anti-adhesive properties as demonstrated by a 37% decrease in BSA adsorption for the modified membranes. The well dispersed and high loadings of CuNPs induced by PDA conferred strong bacterial toxicity to the modified membranes, reducing the viability of E. coli by 76%. Furthermore, the presence of catechol groups on PDA favors the formation of covalent bond with CuNPs, thus prolonging the durability of the copper-based anti-biofouling membranes. The combination of PDA coating and CuNPs functionalization imparts the membrane with simultaneous anti-adhesive and anti-microbial properties, leading to a substantial reduction in biofouling propensity in dynamic biofouling experiments. Specifically, the flux decline due to biofouling observed for the modified membranes significantly decreased from 65% to 39%, and biofilm thickness and TOC biomass were 58%, and 55% lower, respectively. This study provides a facile and versatile strategy to construct high performance RO membranes with excellent anti-biofouling functionality.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jennifer Jackson
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Andreia F Faria
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Xihui Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Yuan YD, Zhang X, Yang Z, Zhao D. Metal-organic cage incorporating thin-film nanocomposite membranes with antifouling properties. Chem Commun (Camb) 2022; 58:6865-6868. [PMID: 35621067 DOI: 10.1039/d2cc01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the antifouling properties of thin-film nanocomposite (TFN) membranes containing two water-stable metal-organic cages (MOCs). The MOC-containing TFN membranes possess excellent antifouling properties against positively-charged foulants and protein (BSA, up to 99.7% water permeability retention) and achieve up to 100% water permeability recovery.
Collapse
Affiliation(s)
- Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Xiaomei Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Ziqi Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
23
|
Xie Y, Yang L, Chen X, Zhao H, Cao G, Li X, Bai L, Meng S, Wang R. The role of iron present in water environment in degradation of polyamide membranes by free chlorine. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Lasisi KH, Ajibade TF, Zhang K. Degradation impact of low pH mineral acids and long exposure period on the active layer of semi-aromatic polyamine-based nanofiltration membrane. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Xie L, He X, Liu Y, Cao C, Zhang W. Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect. CHEMOSPHERE 2022; 292:133444. [PMID: 34973249 DOI: 10.1016/j.chemosphere.2021.133444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Chemicals soaking is generally acknowledged as a convenient and efficient method to improve the performance of reverse osmosis (RO) membranes. The conventional soaking of RO membranes in alkaline sodium hypochlorite (NaClO) usually promotes extensive hydrolysis and cleavage amide bonds, resulting in improved water flux but declined salt rejection. Here, alcohols were added into the NaClO solution to regulate the chlorination processes using their "swelling-fastening" effect. The alcohols could interact with polyamide chains, and thus swell the polyamide network. Due to this interaction, the NaClO has less probability of attacking the polyamide chains. Hence, the chlorine-promoted hydrolysis was partly eased, which could weaken the decrease of salt rejection. Besides, after removing alcohols as well as the dissolved small oligomers and fragments of polyamide, the network was compacted and the loosened sites were healed, which is also beneficial to increase the difficulty of salt penetration. The treatment of RO membrane by the NaClO and alcohols could produce a hydrophilic surface with increased water flux and high salt rejection. The membrane chloridized at 2000 ppm NaClO exhibited a water flux improvement of 20.28% and a salt rejection declination of 0.95%. When treated with 2000 ppm NaClO associated with 5% methanol, the water flux improved 20.13% with little declination in salt rejection.
Collapse
Affiliation(s)
- Lixin Xie
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xuan He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yaqian Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanpeng Cao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
26
|
|
27
|
Wang J, Li SL, Guan Y, Zhu C, Gong G, Hu Y. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. SEPARATIONS 2021. [DOI: 10.3390/separations9010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.
Collapse
|
29
|
Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers. MEMBRANES 2021; 11:membranes11120981. [PMID: 34940482 PMCID: PMC8706410 DOI: 10.3390/membranes11120981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
We report a new type of alkaline-stable hollow-fiber reverse osmosis (RO) membrane with an outside-in configuration that was established via adsorption of positively charged poly(vinyl alcohol) copolymers containing a small amount of quaternary ammonium moieties. Anionic sulfonated poly(arylene ether sulfone nitrile) hollow-fiber membranes were utilized as a substrate upon which the cationic copolymer layer was self-organized via electrostatic interaction. While the adsorption of the low-charge copolymer on the membrane support proceeded in a Layer-by-Layer (LbL) fashion, it was found that the adsorbed amount by one immersion step was enough to form a defect-free separation layer with a thickness of around 20 nm after cross-linking of vinyl alcohol units with glutaraldehyde. The resultant hollow-fiber membrane showed excellent desalination performances (NaCl rejection of 98.3% at 5 bar and 1500 mg/L), which is comparable with commercial low-pressure polyamide RO membranes, as well as good alkaline resistance. The separation performance could be restored by repeating the LbL treatment after alkaline degradation. Such features of LbL membranes may contribute to extending RO membrane lifetimes.
Collapse
|
30
|
Matshetshe K, Sikhwivhilu K, Ndlovu G, Tetyana P, Moloto N, Tetana Z. Antifouling and antibacterial β-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, Yang Z, Shao S, Tang CY. Nanofiltration for drinking water treatment: a review. Front Chem Sci Eng 2021; 16:681-698. [PMID: 34849269 PMCID: PMC8617557 DOI: 10.1007/s11705-021-2103-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.
Collapse
Affiliation(s)
- Hao Guo
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Wulin Yang
- College of Environmental Science and Engineering, Peking University, Beijing, 100871 China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087 China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhe Yang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072 China
| | - Chuyang Y. Tang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Gonzales RR, Abdel-Wahab A, Han DS, Matsuyama H, Phuntsho S, Shon HK. Control of the antagonistic effects of heat-assisted chlorine oxidative degradation on pressure retarded osmosis thin film composite membrane surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment. MEMBRANES 2021; 11:membranes11100733. [PMID: 34677498 PMCID: PMC8541663 DOI: 10.3390/membranes11100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
To improve membrane fouling management, the NaClO-assisted backwash has been developed to improve permeability maintenance and reduce the need for intensive chemical cleanings. This study is aimed to focus on the efficiency of NaClO-assisted backwash in real UF pilot scale and with periodic classic backwash (CB) and air backwash (AB). The impacts on hydraulic filtration performance, physicochemical properties of membrane material under different addition frequencies of NaClO, and the performance of chlorinated CB and AB will be discussed. In result, 10 mg Cl2 L−1 NaClO addition in backwash water is confirmed to greatly improve the overall filtration performance and backwash cleaning efficiency. One condition stands out from the other due to better control of irreversible fouling, less NaClO consumption in 10 years prediction, sustainable and adaptable filtration performance, and less potential damage on the physicochemical properties of the membrane. Additionally, it can be inferred from this experiment that frequent contact with NaClO induced some degradation on the PES-made UF membrane surface properties. To retain the best state of UF membrane on anti-fouling and qualified production, the optimized condition with more frequent NaClO contact was not suggested for long-term filtration.
Collapse
|
34
|
Ghamri W, Loulergue P, Petrinić I, Hélix-Nielsen C, Pontié M, Nasrallah N, Daoud K, Szymczyk A. Impact of sodium hypochlorite on rejection of non-steroidal anti-inflammatory drugs by biomimetic forward osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Choudhury RR, Gohil JM, Dutta K. Poly(vinyl alcohol)‐based membranes for fuel cell and water treatment applications: A review on recent advancements. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rikarani R. Choudhury
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
| | - Jaydevsinh M. Gohil
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| | - Kingshuk Dutta
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| |
Collapse
|
36
|
Ahmed J, Jamal Y. A pilot application of recycled discarded RO membranes for low strength gray water reclamation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34042-34050. [PMID: 33037547 DOI: 10.1007/s11356-020-11117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Reuse of recycled RO membranes after oxidative treatment as ultrafiltration membranes promise to bring membrane filtration at par with conventional treatment processes in terms of cost-effectiveness. Although the treatment process in which discarded RO membranes are converted into ultrafiltration membranes is well documented, limited pilot data are available for their application in different filtration applications. This research gap is felt because most commercially available RO membranes are spiral, wound while the ultrafiltration membranes commonly used for water filtration applications are hollow fiber. Pilot-scale data will help to develop performance guidelines and predict fouling characteristics of different types of feed waters. In the current paper, converted RO membranes are subjected to filtration with domestic gray water as the feed source. The results show that the converted membranes performed at par with conventional filtration while also providing a consistent filtrate turbidity of < 1 NTU. The reduction in cost and physical footprints and recycling of membranes that would otherwise have ended up in landfills are added advantages that makes this an attractive proposition for gray water filtration applications.
Collapse
Affiliation(s)
- Jawwad Ahmed
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yousuf Jamal
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
37
|
S E, G A, A F I, P S G, Y LT. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application. ENVIRONMENTAL RESEARCH 2021; 197:111177. [PMID: 33864792 DOI: 10.1016/j.envres.2021.111177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
Collapse
Affiliation(s)
- Elakkiya S
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Arthanareeswaran G
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| | - Ismail A F
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Goh P S
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lukka Thuyavan Y
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
38
|
Zhao H, Yang L, Chen X, Sheng M, Cao G, Cai L, Meng S, Tang CY. Degradation of Polyamide Nanofiltration Membranes by Bromine: Changes of Physiochemical Properties and Filtration Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6329-6339. [PMID: 33848140 DOI: 10.1021/acs.est.1c00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potential coexistence and interaction of bromine and polyamide membranes during membrane-based water treatment prompts us to investigate the effect of bromine on membrane performance. For fully aromatic polyamide membrane NF90 exposed under a mild bromination condition (10 mg/L), bromine incorporation resulted in more negatively charged (-13 vs -25 mV) and hydrophobic (55.2 vs 58.9°) surfaces and narrower pore channels (0.3 vs 0.29 nm). The permeabilities of water and neutral solutes were reduced by 64 and 69-87%, respectively, which was attributed to the decreased effective pore radius and hydrophilicity. NaCl permeability was reduced by 90% as a synergistic result of enhanced size exclusion and charge repulsion. The further exposure (100 and 500 mg/L bromine) resulted in a more hydrophobic surface (61.7 and 65.5°) and the minor further reduction for water and solute permeabilities (1-9%). Compared with chlorine, the different incorporation efficiency and properties (e.g., atomic size, hydrophilicity) of bromine resulted in opposite trends and/or different degrees for the variation of physicochemical properties and filtration performance of membranes. The bromine incorporation, the shift and disappearance of three characteristic bands, and the increased O/N ratio and calcium content indicated the degradation pathways of N-bromination and bromination-promoted hydrolysis under mild bromination conditions (480 mg/L·h). The further ring-bromination occurred after severe bromine exposure (4800-24,000 mg/L·h). The semi-aromatic polyamide membrane NF270 underwent a similar but less significant deteriorated filtration performance compared with NF90, which requires a different explanation.
Collapse
Affiliation(s)
- Huihui Zhao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| | - Mei Sheng
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Lankun Cai
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
39
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
40
|
Lee SJ, Lim HW, Park SH. Adsorptive seawater desalination using MOF-incorporated Cu-alginate/PVA beads: Ion removal efficiency and durability. CHEMOSPHERE 2021; 268:128797. [PMID: 33172669 DOI: 10.1016/j.chemosphere.2020.128797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
With the worsening water scarcity problem, seawater desalination has been receiving gradually increasing attention. Ion adsorptive desalination was introduced as one of the seawater desalination techniques. In our previous study, metal-organic framework (MOF)-incorporated single-network alginate (MOF-Alg(Cu)) beads were used to adsorb ions in seawater. In the present study, MOF-incorporated Cu-based alginate/PVA hydrogel (MOF-Alg(Cu)/PVA) beads were fabricated to enhance the ion adsorption desalination technique. Cu-based MOFs were successfully synthesized in situ on an interpenetrating polymer network (IPN). Given that the IPN hydrogel beads have high stability, the amount of MOF particles extracted during the adsorption of ions is reduced. The fabricated MOF-Alg(Cu)/PVA beads exhibit efficient removal of dissolved ions in artificial seawater and NaCl solution with varied concentrations. The ion adsorption characteristics were evaluated on the basis of adsorption kinetics, adsorption isotherms, and dosage of adsorbent. The repeat cycle tests show that more than half of the ion removal efficiency was maintained after 10 cycle tests. The concentration of artificial seawater was reduced to 1500 ppm by employing MOF-Alg(Cu)/PVA beads through a multistage experiment. Compared with other seawater desalination techniques, the proposed adsorptive desalination technique using MOF-Alg(Cu)/PVA beads will pave the way for developing a new ecofriendly and energy-saving approach.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Hyeong Woo Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
41
|
Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Wang JJ, Liang YQ, Fan BH, Zheng YZ, Zhang TL. Superhydrophilic modification of
APA‐TFC
membrane surface by grafting
QACs
and salicylaldehyde units with
PEG
chains as the spacers. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Jia Wang
- Department of Chemistry Changzhi University Changzhi People's Republic of China
| | - Ya Qin Liang
- Department of Chemistry Changzhi University Changzhi People's Republic of China
| | - Bian Hua Fan
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| | - Yi Zhong Zheng
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| | - Tian Lin Zhang
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| |
Collapse
|
43
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
44
|
Alhweij H, Amura I, Wenk J, Emanuelsson EAC, Shahid S. Self‐doped sulfonated polyaniline ultrafiltration membranes with enhanced chlorine resistance and antifouling properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hassan Alhweij
- Department of Chemical Engineering University of Bath Bath UK
- Department of Process engineering Stantec UK Limited, Dominion House Warrington UK
| | - Ida Amura
- Department of Chemical Engineering University of Bath Bath UK
- Centre for Advanced Separations Engineering University of Bath Bath UK
| | - Jannis Wenk
- Department of Chemical Engineering University of Bath Bath UK
| | - Emma Anna Carolina Emanuelsson
- Department of Chemical Engineering University of Bath Bath UK
- Centre for Advanced Separations Engineering University of Bath Bath UK
| | - Salman Shahid
- Department of Chemical Engineering University of Bath Bath UK
- Centre for Advanced Separations Engineering University of Bath Bath UK
| |
Collapse
|
45
|
Ge M, Wang X, Wu S, Long Y, Yang Y, Zhang J. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117980] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Kerdi S, Qamar A, Vrouwenvelder JS, Ghaffour N. Biofilm removal efficacy using direct electric current in cross-flow ultrafiltration processes for water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Li S, Zhao X, Zhang H. Aging retardation strategy of PVDF membranes: evaluation of free radical scavenging effect of nano-particles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05980c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ESR and spectrophotometry proved that nano-particles can effectively remove free radicals produced by NaClO, and analyzed the mechanism of delaying aging.
Collapse
Affiliation(s)
- Siyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| | - Xuehui Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| |
Collapse
|
48
|
Zhang X, Huang H, Li X, Wang J, Wei Y, Zhang H. Bioinspired chlorine-resistant tailoring for polyamide reverse osmosis membrane based on tandem oxidation of natural α-lipoic acid on the surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
He Y, Chen Q, Zhang Y, Zhao Y, Chen L. H 2O 2-Triggered Rapid Deposition of Poly(caffeic acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52104-52115. [PMID: 33156623 DOI: 10.1021/acsami.0c13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-derived polyphenol coating offers a promising route to fabricate functional surfaces for different substrate materials. However, almost all of the deposition approaches are time-consuming and involve inefficient processes, and the mechanisms behind the coating deposition are rarely understood. Herein, we report a rational methodology to achieve the rapid deposition of poly(caffeic acid) (PCA) by using H2O2 as a trigger under the assistance of copper sulfate (CuSO4). The comparative monomer structure of PCA oxidation polymerization has illustrated a significant distinction in the reaction path for PCA coating deposition which has never been reported before. Until now, the unprecedented fast velocity for polyphenol coating has been obtained, and the PCA coating exhibits excellent homogeneity, spatiotemporal tunability, and firm stability. Moreover, three different types of filtration membranes, poly(vinylidene fluoride) microfiltration membrane (PVDF MF membrane), poly(ether sulfone) (PES) ultrafiltration (UF) hollow fiber membrane, and PCA-coated PES nanofiltration (NF) membrane, are all successfully dip-coated using H2O2-triggered PCA coating. Without synthetic complexities and intricate procedures, the formation of hydrophilic and homogeneous PCA aggregates on the surface and/or inside pore walls resulted in various membranes. The as-prepared PCA-coated PVDF MF membrane demonstrates excellent oil/water separation efficiency of less than 150 ppm and a flux recovery rate of approximately 90% even after five cycles. By one-step co-deposition of PCA and poly(2-ethyl-2-oxazoline) (PEtOx) on the PES UF membrane surface, hydrophilicity and biofouling resistance are implemented for efficient protein filtration. The PES NF membrane formed by the PCA layer exhibits high mono-/divalent ion selectivity and excellent chlorine resistance. Overall, these results represent a rapid and sustainable approach to tailor PCA coatings for versatile liquid separation processes.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qi Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongjian Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
50
|
Hashiba K, Nakai S, Nishijima W, Ohno M, Gotoh T. Degradation of secondary polyamide reverse osmosis membrane by hypochlorite in the presence of calcium ions. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|