1
|
Mahajan JS, Shokrollahzadeh Behbahani H, Green MD, Korley LTJ, Epps TH. Increased hydrophilicity of lignin-derivable vs. bisphenol-based polysulfones for potential water filtration applications. RSC SUSTAINABILITY 2024; 2:2844-2850. [PMID: 39310879 PMCID: PMC11409988 DOI: 10.1039/d4su00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
The functionality inherent in lignin-derivable aromatics (e.g., polar methoxy groups) can provide a potential opportunity to improve the hydrophilicity of polysulfones (PSfs) without the need for the additional processing steps and harsh reagents/conditions that are typically used in conventional PSf modifications. As determined herein, lignin-derivable PSfs without any post-polymerization modification exhibited higher hydrophilicity than comparable petroleum-based PSfs (commercial/laboratory-synthesized) and also demonstrated similar hydrophilicity to functionalized BPA-PSfs reported in the literature. Importantly, the lignin-derivable PSfs displayed improved thermal properties relative to functionalized BPA-PSfs in the literature, and the thermal properties of these bio-derivable PSfs were close to those of common non-functionalized PSfs. In particular, the glass transition temperature (T g) and degradation temperature of 5% weight loss (T d5%) of lignin-derivable PSfs (T g ∼165-170 °C, T d5% ∼400-425 °C) were significantly higher than those of typical functionalized BPA-PSfs in the literature (T g ∼110-160 °C, T d5% ∼240-260 °C) and close to those of unmodified, commercial/laboratory-synthesized BPA-/bisphenol F-PSfs (T g ∼180-185 °C, T d5% ∼420-510 °C).
Collapse
Affiliation(s)
- Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers, University of Delaware Newark Delaware 19716 USA
| | - Hoda Shokrollahzadeh Behbahani
- Department of Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University Tempe Arizona 85287 USA
| | - Matthew D Green
- Department of Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University Tempe Arizona 85287 USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers, University of Delaware Newark Delaware 19716 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Thomas H Epps
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers, University of Delaware Newark Delaware 19716 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
2
|
Maleki A, Bozorg A. MOF@MXene nanocomposite as a novel modifier to extend the application of PES mixed-matrix nanofiltration membranes for water treatment. CHEMOSPHERE 2024; 364:143273. [PMID: 39241840 DOI: 10.1016/j.chemosphere.2024.143273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
MXene-based membranes, as a type of modified membrane, have unique structures that attract attention for water treatment but suffer from low water flux. To address this, MXene was manipulated with UiO-66-NH2 nanoparticles to create UiO-66-NH2@MXene 2D-nanocomposites for the modification of the PES membrane. Herein, we synthesized a novel modified MXene-based PES membrane. The MXene, UiO-66-NH2, and UiO-66-NH2@MXene were assessed using the Fourier transform infrared, X-ray diffraction pattern, X-ray photoelectron spectroscopy, and zeta potential analysis. Field emission scanning electron microscopy was used to evaluate the MXene-based materials and prepared membranes, and the surface topography of the fabricated membranes was studied using atomic force microscopy. The membrane modified by 0.25 wt% of modifier was able to not only remove 72% and 81% of methylene blue and crystal violet cationic dyes, but also recorded more than 91% rejections for methyl blue, methyl orange, acid fusion, and Congo red anionic dyes. Using the same membrane, salt rejections of 91%, 87%, 79%, and 62% were achieved for Na2SO4, MgSO4, MgCl2, and NaCl, respectively. Water flux was also increased by more than 4 times in the membrane modified with 0.25 wt% of the novel nanocomposite modifier, and the water contact angle of the membrane with 0.5 wt% decreased from 65° to 38° compared to the pristine PES membrane. Besides, the anti-fouling properties were exceptionally improved in the membranes modified by the introduced UiO-66-NH2@MXene nanocomposite modifier.
Collapse
Affiliation(s)
- Amin Maleki
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Kong F, You L, Zhang D, Sun G, Chen J. Facile Preparation of Dense Polysulfone UF Membranes with Enhanced Salt Rejection by Post-Heating. MEMBRANES 2023; 13:759. [PMID: 37755181 PMCID: PMC10536995 DOI: 10.3390/membranes13090759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023]
Abstract
Polysulfone (PSf) membranes typically have a negligible rejection of salts due to the intrinsic larger pore size and wide pore size distribution. In this work, a facile and scalable heat treatment was proposed to increase the salt rejection. The influence of heat treatment on the structure and performance of PSf membranes was systematically investigated. The average pore size decreased from 9.94 ± 5.5 nm for pristine membranes to 1.18 ± 0.19 nm with the increase in temperature to 50 °C, while the corresponding porosity decreased from 2.07% to 0.13%. Meanwhile, the thickness of the sponge structure decreased from 20.20 to 11.5 μm as the heat treatment temperature increased to 50 °C. The MWCO of PSf decreased from 290,000 Da to 120 Da, whereas the membrane pore size decreased from 5.5 to 0.19 nm. Correspondingly, the water flux decreased from 1545 to 27.24 L·m-2·h-1, while the rejection ratio increased from 3.1% to 74.0% for Na2SO4, from 1.3% to 48.2% for MgSO4, and from 0.6% to 23.8% for NaCl. Meanwhile, mechanism analysis indicated that the water evaporation in the membranes resulted in the shrinkage of the membrane pores and decrease in the average pore size, thus improving the separation performance. In addition, the desalting performance of the heat-treated membranes for real actual industrial wastewater was improved. This provides a facile and scalable route for PSf membrane applications for enhanced desalination.
Collapse
Affiliation(s)
- Fanxin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, China (D.Z.); (J.C.)
| | - Lian You
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, China (D.Z.); (J.C.)
| | - Dingwen Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, China (D.Z.); (J.C.)
| | - Guangdong Sun
- Research Center for Urban & Rural Water Environmental Technology, China Urban and Rural Holding Group Co., Ltd., Beijing 102249, China
- Beijing Originwater Membrane Technology Co., Ltd., Beijing 101407, China
| | - Jinfu Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, China (D.Z.); (J.C.)
| |
Collapse
|
4
|
George J, Kumar VV. Designing a novel poly (methyl vinyl ether maleic anhydride) based polymeric membrane with enhanced antifouling performance for removal of pentachlorophenol from aqueous solution. ENVIRONMENTAL RESEARCH 2023; 223:115404. [PMID: 36740155 DOI: 10.1016/j.envres.2023.115404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this current study, poly (methyl vinyl ether maleic anhydride) (PMVEAMA), a sustainable additive, was incorporated into poly (ether-ether sulfone) (PEES) polymer to design a novel polymeric hybrid membrane for the efficient filtration of toxic pentachlorophenol (PCP) from an aqueous medium. Hydrophilic additives significantly altered the membrane's morphology, structure, porosity, water content, and flux performance compared to the bare PEES membrane. The influence of PMVEAMA on the structural modification of the synthesized polymer membrane was confirmed by SEM, ATR-FTIR, XRD, AFM, zeta potential and contact angle. Findings revealed that the addition of PMVEAMA to the PEES polymer enhances the porosity (17.7%-28.9%), water content (29.8%-39.8%), and pure water flux (186 Lm-2h-1 to 349 Lm-2h-1). The effect of PMVEAMA concentration on the PEES membrane exhibited more finger like pores, better porosity and hydrophilicity, reduced surface roughness, fouling and increased permeability. The fouling studies exhibit an improved 57% PCP rejection and permeation flux of 22.3 Lm-2h-1 due to the addition of the hydrophilic additive. Surprisingly, the incorporation of PMVEAMA into the bare PEES membrane resulted in a high flux recovery ratio of 73.7%. The antifouling properties and enhanced permeability of the PEES/PMVEAMA membrane indicates its potential application in water purification sectors for the efficient separation of contaminants.
Collapse
Affiliation(s)
- Jenet George
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India.
| |
Collapse
|
5
|
Fang S, Tang H, Wang M, Xu Z, Li N. The antifouling and separation performance of an ultrafiltration membrane derived from a novel amphiphilic copolymer containing a crown ether. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Polyethersulfone membrane modified by zwitterionic groups for improving anti-fouling and antibacterial properties. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
8
|
George J, Kumar VV. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Yousefi A, Etemadi H, Hermani M, Aftabi F, Hosseinzadeh G. Preparation and Performance Evaluation of PVC/PDA-modified Al2O3 Nanocomposite Membranes in Oily Wastewater Treatment. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Yang X, Ma X, Yuan J, Feng X, Zhao Y, Chen L. Enhanced the antifouling and antibacterial performance of
PVC
/
ZnO‐CMC
nanoparticles ultrafiltration membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xin Yang
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xiao Ma
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Jingjing Yuan
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xia Feng
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Yiping Zhao
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Li Chen
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| |
Collapse
|
11
|
Zhang X, Choi PJ, Khanzada NK, Sun J, Wong PW, Guo J, Ling L, Wu D, Jang A, An AK. FO membrane fabricated by layer-by-layer interfacial polymerisation and grafted sulfonamide group for improving chlorine resistance and water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Saijun D, Boonsuk P, Chinpa W. Conversion of polycarbonate from waste compact discs into antifouling ultrafiltration membrane via phase inversion. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Dadashov S, Demirel E, Suvaci E. Tailoring microstructure of polysulfone membranes via novel hexagonal ZnO particles to achieve improved filtration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wen X, He C, Hai Y, Ma R, Sun J, Yang X, Qi Y, Wei H, Chen J. Fabrication of an antifouling PES ultrafiltration membrane via blending SPSF. RSC Adv 2022; 12:1460-1470. [PMID: 35425199 PMCID: PMC8979071 DOI: 10.1039/d1ra06354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfonated polysulfone (SPSF) with different sulfonation degrees (10%, 30%, and 50%) was added to polyethersulfone (PES) to improve the separation and antifouling performance of polyethersulfone ultrafiltration membranes. The PES/SPSF blend ultrafiltration membrane was prepared by the non-solvent induced phase inversion method (NIPS), and the effect of sulfonation degree on the ultrafiltration performance was studied. The compatibility of SPSF and PES was calculated by the group contribution method, and confirmed by differential scanning calorimetry (DSC). The morphology and surface roughness of the membrane were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the chemical composition of the membrane was analyzed by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR), and the permeability and anti-fouling performance of the blend membrane were studied through filtration experiments. The research shows that the flux and anti-fouling performance of the blend membrane have been improved after adding SPSF. When the sulfonation degree of the SPSF is 30%, the pure water flux of the blend membrane can reach 530 L m−2 h−1, the rejection rate of humic acid (HA) is 93%, the flux recovery rate of HA increases from 69.23% to 79.17%, and the flux recovery rate of BSA increases from 72.56% to 83%. The chemical structures of (a) PES and (b) SPSF.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
16
|
Maggay IVB, Aini HN, Lagman MMG, Tang SH, Aquino RR, Chang Y, Venault A. A Biofouling Resistant Zwitterionic Polysulfone Membrane Prepared by a Dual-Bath Procedure. MEMBRANES 2022; 12:69. [PMID: 35054595 PMCID: PMC8780878 DOI: 10.3390/membranes12010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/06/2023]
Abstract
This study introduces a zwitterionic material to modify polysulfone (PSf) membranes formed by a dual bath procedure, in view of reducing their fouling propensity. The zwitterionic copolymer, derived from a random polymer of styrene and 4-vinylpyrridine and referred to as zP(S-r-4VP), was incorporated to the PSf solution without any supplementary pore-forming additive to study the effect of the sole copolymer on membrane-structuring, chemical, and arising properties. XPS and mapping FT-IR provided evidence of the modification. Macrovoids appeared and then disappeared as the copolymer content increased in the range 1-4 wt%. The copolymer has hydrophilic units and its addition increases the casting solution viscosity. Both effects play an opposite role on transfers, and so on the growth of macrovoids. Biofouling tests demonstrated the efficiency of the copolymer to mitigate biofouling with a reduction in bacterial and blood cell attachment by more than 85%. Filtration tests revealed that the permeability increased by a twofold factor, the flux recovery ratio was augmented from 40% to 63% after water/BSA cycles, and irreversible fouling was reduced by 1/3. Although improvements are needed, these zwitterionic PSf membranes could be used in biomedical applications where resistance to biofouling by cells is a requirement.
Collapse
Affiliation(s)
- Irish Valerie B. Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Hana Nur Aini
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Mary Madelaine G. Lagman
- School of Chemical, Biological, and Materials Engineering and Science, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines; (M.M.G.L.); (R.R.A.)
| | - Shuo-Hsi Tang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Ruth R. Aquino
- School of Chemical, Biological, and Materials Engineering and Science, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines; (M.M.G.L.); (R.R.A.)
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| |
Collapse
|
17
|
Wang J, Li SL, Guan Y, Zhu C, Gong G, Hu Y. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Zhou B, Huang F, Gao C, Xue L. The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Effect of pore-forming/hydrophilic additive anchorage on the mesoporous structure and sieving performance of a blended ultrafiltration (UF) membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Marson GV, Pereira DTV, da Costa Machado MT, Di Luccio M, Martínez J, Belleville MP, Hubinger MD. Ultrafiltration performance of spent brewer's yeast protein hydrolysate: Impact of pH and membrane material on fouling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Wang Y, Shen H, Cui C, Hou L, Chen W, Liu Q, Xu J, Wang Z, Hu J. Towards to better permeability and antifouling sulfonated poly (aryl ether ketone sulfone) with carboxyl group ultrafiltration membrane blending with amine functionalization of SBA-15. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Doan NTT, Lai QD. Ultrafiltration for recovery of rice protein: Fouling analysis and technical assessment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Yin J, Tang H, Xu Z, Li N. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Wang Y, Zhang J, Bao C, Xu X, Li D, Chen J, Hong M, Peng B, Zhang Q. Self-cleaning catalytic membrane for water treatment via an integration of Heterogeneous Fenton and membrane process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Hu M, Cui Z, Yang S, Li J, Shi W, Zhang W, Matindi C, He B, Fang K, Li J. Pregelation of sulfonated polysulfone and water for tailoring the morphology and properties of polyethersulfone ultrafiltration membranes for dye/salt selective separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Babanzadeh S, Mehdipour‐Ataei S, Khodami S. Novel blended poly(sulfide sulfone)/poly(ether sulfone) dense membranes for water treatment. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Samal Babanzadeh
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| | - Shahram Mehdipour‐Ataei
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| | - Samaneh Khodami
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| |
Collapse
|
28
|
Zhang H, Guo Y, Zhang X, Hu X, Wang C, Yang Y. Preparation and characterization of PSF-TiO2 hybrid hollow fiber UF membrane by sol–gel method. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02313-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Xie YX, Wang KK, Yu WH, Cui MB, Shen YJ, Wang XY, Fang LF, Zhu BK. Improved permeability and antifouling properties of polyvinyl chloride ultrafiltration membrane via blending sulfonated polysulfone. J Colloid Interface Sci 2020; 579:562-572. [DOI: 10.1016/j.jcis.2020.06.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
30
|
Li D, Sun X, Gao C, Dong M. Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Lim YJ, Lee J, Bae TH, Torres J, Wang R. Feasibility and performance of a thin-film composite seawater reverse osmosis membrane fabricated on a highly porous microstructured support. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118378] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Rezaei Soulegani S, Sherafat Z, Rasouli M. Morphology, physical, and mechanical properties of potentially applicable coelectrospun polysulfone/
chitosan‐polyvinyl
alcohol fibrous membranes in water purification. J Appl Polym Sci 2020. [DOI: 10.1002/app.49933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sanaz Rezaei Soulegani
- Department of Materials Science and Engineering, School of Engineering Shiraz University Shiraz Iran
| | - Zahra Sherafat
- Department of Materials Science and Engineering, School of Engineering Shiraz University Shiraz Iran
| | - Maryam Rasouli
- Department of Materials Science and Engineering, School of Engineering Shiraz University Shiraz Iran
| |
Collapse
|
34
|
Xu Z, Tang H, Li N. Enhanced proton/iron permselectivity of sulfonated poly (ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Alias SS, Harun Z, Manoh N, Jamalludin MR. Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02950-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Zhang H, Tao Y, He Y, Pan J, Yang K, Shen J, Gao C. Preparation of Low-Lactose Milk Powder by Coupling Membrane Technology. ACS OMEGA 2020; 5:8543-8550. [PMID: 32337415 PMCID: PMC7178344 DOI: 10.1021/acsomega.9b04252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/24/2020] [Indexed: 06/11/2023]
Abstract
Due to lactose intolerance, there is a growing need for lactose-free or low-lactose dairy products. Herein, a combination of three membrane technologies (UF, electrodialysis (ED), and nanofiltration (NF)) was used as a novel green technology to replace the enzymatic preparation of low-lactose milk powder in the traditional industry. In which, large molecules such as proteins and fats are first retained using UF, mineral salt was intercepted and re-added into milk by electrodialysis, and finally, lactose is recovered by NF. Finally, low-lactose milk powder with a lactose content of less than 0.2% was obtained; meanwhile, the high purity (95.7%) of lactose powder could be effectively reclaimed from the NF concentrate (lactose concentrate). The whole membrane process is based on the physical pore size screening mechanism, without adding any chemical reagents with minimal impact on the physical and chemical properties of milk. These results indicate that process development and optimization coupling of three membrane technologies is very promising in preparing low-lactose milk powder and recovering lactose.
Collapse
Affiliation(s)
- Hongjie Zhang
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Yanyao Tao
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Yubin He
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Jiefeng Pan
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Kai Yang
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Jiangnan Shen
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Congjie Gao
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
- Huzhou
Institute of Collaborative Innovation Center for Membrane Separation
and Water Treatment, Zhejiang University
of Technology, 1366 Hongfeng Road, Huzhou, Zhejiang 313000, P. R. China
| |
Collapse
|
38
|
Obaid M, Ghaffour N, Wang S, Yoon MH, Kim IS. Zirconia nanofibers incorporated polysulfone nanocomposite membrane: Towards overcoming the permeance-selectivity trade-off. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Fabrication and characterisation of fine-tuned Polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Zhang C, Huang R, Tang H, Zhang Z, Xu Z, Li N. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Lin B, Tan H, Liu W, Gao C, Pan Q. Preparation of a novel zwitterionic striped surface thin-film composite nanofiltration membrane with excellent salt separation performance and antifouling property. RSC Adv 2020; 10:16168-16178. [PMID: 35493633 PMCID: PMC9052886 DOI: 10.1039/d0ra00480d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the co-deposition of taurine, tannic acid (TA), and polyethyleneimine (PEI), followed by subsequent interfacial polymerization with trimesoyl chloride (TMC) on the surface of the polysulfone ultrafiltration substrates. The surface properties, including the roughness, hydrophilicity, surface potential, and NF performances were facilely tuned by varying the taurine content for the prepared TFC membranes. In addition, the as-prepared TFC NF membranes had an excellent antifouling property and flux recovery ratio (FRR) in humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) filtration tests. These results also revealed that the taurine content controlled the formation of the striped surface. Thus, this work provided a viable strategy for fabricating TFC NF membranes with high selectivity and outstanding antifouling ability. Thin-film composite (TFC) nanofiltration (NF) membranes with zwitterionic striped surface were fabricated via the co-deposition and interfacial polymerization.![]()
Collapse
Affiliation(s)
- Bo Lin
- Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
| | - Huifen Tan
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| | - Wenchao Liu
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| | - Congjie Gao
- Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Zhejiang University of Technology
- Hangzhou 310014
| | - Qiaoming Pan
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| |
Collapse
|
42
|
Farjami M, Vatanpour V, Moghadassi A. Fabrication of a new emulsion polyvinyl chloride (EPVC) nanocomposite ultrafiltration membrane modified by para-hydroxybenzoate alumoxane (PHBA) additive to improve permeability and antifouling performance. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ. Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Rezania H, Vatanpour V, Arabpour A, Shockravi A, Ehsani M. Structural manipulation of PES constituents to prepare advanced alternative polymer for ultrafiltration membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.48690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hamidreza Rezania
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Atefeh Arabpour
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Abbas Shockravi
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Morteza Ehsani
- Iran Polymer and Petrochemical Institute, P.O. Box 14965/115 Tehran Iran
| |
Collapse
|
45
|
Enfrin M, Dumée LF, Lee J. Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions. WATER RESEARCH 2019; 161:621-638. [PMID: 31254888 DOI: 10.1016/j.watres.2019.06.049] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 05/22/2023]
Abstract
The presence of nano and microplastics in water has increasingly become a major environmental challenge. A key challenge in their detection resides in the relatively inadequate analytical techniques available preventing deep understanding of the fate of nano/microplastics in water. The occurrence of nano/microplastics in water and wastewater treatment plants poses a concern for the quality of the treated water. Due to their broad but small size and diverse chemical natures, nano/microplastics may travel easily along water and wastewater treatment processes infiltrating remediation processes at various levels, representing operational and process stability challenges. This review aims at presenting the current understanding of the fate and impact of nano/microplastics through water and wastewater treatment plants. The formation and fragmentation mechanisms, physical-chemical properties and occurrence of nano/microplastics in water are correlated to the interactions of nano/microplastics with water and wastewater treatment plant processes and potential solutions to limit these interactions are comprehensively reviewed. This critical analysis offers new strategies to limit the number of nano/microplastics in water and wastewater to keep water quality up to the required standards and reduce threats on our ecosystems.
Collapse
Affiliation(s)
- Marie Enfrin
- Department of Chemical and Process Engineering, University of Surrey, Surrey, GU27XH, United Kingdom
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria, 3216, Australia.
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Surrey, GU27XH, United Kingdom
| |
Collapse
|
46
|
Ganj M, Asadollahi M, Mousavi SA, Bastani D, Aghaeifard F. Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1832-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Zhang L, Zhou J, Sun F, Yu HY, Gu JS. Amphiphilic Block Copolymer of Poly(dimethylsiloxane) and Methoxypolyethylene Glycols for High-Permeable Polysulfone Membrane Preparation. ACS OMEGA 2019; 4:13052-13060. [PMID: 31460432 PMCID: PMC6704433 DOI: 10.1021/acsomega.9b00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 05/02/2023]
Abstract
Poly(dimethylsiloxane)-block-methoxypolyethylene glycols (PDMS-b-mPEG) were synthesized by Steglich esterification. The high-permeable membrane (PSf/PDMS-b-mPEG) was prepared by using PDMS-b-mPEG as additives. The successful synthesis of PDMS-b-mPEG was confirmed by nuclear magnetic resonance. Field emission scanning electron microscopy images show that the distribution of finger-like macroporous and sponge-like macroporous can be modulated by controlling the ratio of the hydrophilic/hydrophobic components of additives. The distribution of additives and membrane wettability are validated with X-ray photoelectron spectroscopy and water contact angle test. The permeability of the blended membrane, especially for the membrane PSf/PDMS-b-mPEG1900 (M3), was remarkably improved. The water permeability of M3 (239.4 L/m2·h·bar) was 6.6 times that of the unblended membrane M0 (42.5 L/m2·h·bar). The findings of protein BSA filtration show that the flux recovery ratio of M3 is 89.2% at a BSA retention rate of about 80%, which demonstrates that the polysulfone membranes blended with PDMS-b-mPEG have excellent antifouling performance and extraordinary permeability.
Collapse
Affiliation(s)
- Lei Zhang
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Jin Zhou
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
- Department
of Material and Chemical Engineering, Chizhou
University, 199 Muzhi
Road, Chizhou, Anhui 247000, China
| | - Fei Sun
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Hai-Yin Yu
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
- E-mail:
| | - Jia-Shan Gu
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| |
Collapse
|
48
|
Zhou J, Lin Y, Ye L, Wang L, Zhou L, Hu H, Zhang Q, Yang H, Luo Z. PVA Hydrogel Functionalization via PET-RAFT Grafting with Glycidyl Methacrylate and Immobilization with 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan via Ring-Open Reaction. Macromol Res 2019. [DOI: 10.1007/s13233-019-7152-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Evaluation of antibacterial and antifouling properties of silver-loaded GO polysulfone nanocomposite membrane against Escherichia coli, Staphylococcus aureus, and BSA protein. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|