1
|
Feng G, Wang Z, Xu M, Wang C, Li Y. Cyclodextrin-modified PVDF membranes with improved anti-fouling performance. CHEMOSPHERE 2024; 363:142808. [PMID: 38992443 DOI: 10.1016/j.chemosphere.2024.142808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 μg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.
Collapse
Affiliation(s)
- Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Zhilu Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Man Xu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China.
| |
Collapse
|
2
|
Li J, Li D, Zhang Z, Yu C, Sun D, Mo Z, Wang J, Mohamed M, You H, Wan H, Li J, He S. Smart and Sustainable Crop Protection: Design and Evaluation of a Novel α-Amylase-Responsive Nanopesticide for Effective Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12146-12155. [PMID: 38747516 DOI: 10.1021/acs.jafc.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto β-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.
Collapse
Affiliation(s)
- Jiaqing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Donglin Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Zhaoyang Zhang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Chang Yu
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Dan Sun
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Ziyao Mo
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Jiayin Wang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Mmby Mohamed
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Hong You
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Hu Wan
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Jianhong Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| |
Collapse
|
3
|
Peng X, Wei Y, Peng Y, Zhao H, Tong T, He Q. Enantiomeric separation of tryptophan via novel chiral polyamide composite membrane. Chirality 2024; 36:e23674. [PMID: 38699859 DOI: 10.1002/chir.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing β-cyclodextrin (β-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by β-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5β-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.
Collapse
Affiliation(s)
- Xinwei Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongming Wei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongliang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Tianzhong Tong
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
4
|
Hu D, Feng G, Xu M, Wang C, Li Y. Tailoring the performance of composite PEI nanofiltration membranes via incorporating activated cyclodextrins. CHEMOSPHERE 2023; 342:140180. [PMID: 37714471 DOI: 10.1016/j.chemosphere.2023.140180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Cyclodextrins (CDs) with unique cavity structures have been used as materials for nanofiltration membrane fabrications. In the present work, the activated CD (O-CD), oxidated by NaIO4, and polyethyleneimine (PEI) were co-deposited on a hydrolyzed polyacrylonitrile support, post-treated by glycerol protection and heating treatment, to prepare nanofiltration membranes with low molecular weight cut-off (MWCO). As the cavities in CD present and the aldehyde groups introduced after oxidation, the O-CDs were expected to crosslink the PEI layer and provide extra permeating channels. The filtration experiments showed that the incorporation of O-CDs improved the permeances of the O-CD-PEI/HPAN nanofiltration membranes. The performance can be tailored by the control of the loading or the oxidation degree of the O-CD. At optimal conditions, the permeance increment was nearly double (from 9.2 to 21.1 Lm-2·h-1·bar-1). While the selectivity was without significant sacrifice, the rejection of PEG 200 remained around 90%. Meanwhile, the membrane stability was demonstrated by pro-longed filtratiing a PEG 200 aqueous solution. The constant permeance and rejection confirmed the O-CD-PEI/HPAN membranes were stable. The incorporation of activated CD in PEI offers a facile strategy to promote the permeance of PEI-based membranes.
Collapse
Affiliation(s)
- Dujuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Li J, Gong JL, Fang SY, Cao WC, Tang SQ, Qin M, Zhou HY, Wang YW. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. J Colloid Interface Sci 2023; 641:197-214. [PMID: 36933467 DOI: 10.1016/j.jcis.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and β-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by ∼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Si-Yuan Fang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Si-Qun Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Meng Qin
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Huai-Yang Zhou
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yu-Wen Wang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Zhang Z, Fan K, Liu Y, Xia S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159922. [PMID: 36336064 DOI: 10.1016/j.scitotenv.2022.159922] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.
Collapse
Affiliation(s)
- Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
7
|
Natural-product-derived membranes for high-efficiency anionic dye removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Zhu B, Shao R, Li N, Guo C, Liu P, Shi J, Min C, Liu S, Qian X, Wang L, Xu Z. Narrowing the pore size distribution of polyamide nanofiltration membranes via dragging piperazines to enhance ion selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Li X, Jiao C, Zhang X, Li X, Song X, Zhang Z, Jiang H. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wang Z, Zhu X, Cheng X, Bai L, Luo X, Xu D, Ding J, Wang J, Li G, Shao P, Liang H. Nanofiltration Membranes with Octopus Arm-Sucker Surface Morphology: Filtration Performance and Mechanism Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16676-16686. [PMID: 34878772 DOI: 10.1021/acs.est.1c06238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precisely tailoring the surface morphology characteristics of the active layers based on bionic inspirations can improve the performance of thin-film composite (TFC) membranes. The remarkable water adsorption and capture abilities of octopus tentacles inspired the construction of a novel TFC nanofiltration (NF) membrane with octopus arm-sucker morphology using carbon nanotubes (CNTs) and beta-cyclodextrin (β-CD) during interfacial polymerization (IP). The surface morphology, chemical elements, water contact angle (WCA), interfacial free energy (ΔG), electronegativity, and pore size of the membranes were systematically investigated. The optimal membrane exhibited an enhanced water permeance of 22.6 L·m-2·h-1·bar-1, 180% better than that of the TFC-control membrane. In addition, the optimal membrane showed improved single salt rejections and monovalent/divalent ion selectivity and can break the trade-off effect. The antiscaling performance and stability of the membranes were further explored. The construction mechanism of the octopus arm-sucker structure was excavated, in which CNTs and β-CD acted as arm skeletons and suckers, respectively. Furthermore, the customization of the membrane surface and performance was achieved through tuning the individual effects of the arm skeletons and suckers. This study highlights the noteworthy potential of the design and construction of the surface morphology of high-performance NF membranes for environmental application.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
13
|
Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pang J, Cui X, Feng Y, Guo Z, Kong G, Yu L, Zhang C, Wang R, Kang Z, Sun D. Fabrication of Graphene oxide membrane with multiple “Plug-ins” for efficient dye nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Matshetshe K, Sikhwivhilu K, Ndlovu G, Tetyana P, Moloto N, Tetana Z. Antifouling and antibacterial β-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Gao X, Li P, Gu Z, Xiao Q, Yu S, Hou L. Preparation of poly(piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zhao Q, Zhao DL, Nai MH, Chen SB, Chung TS. Nanovoid-Enhanced Thin-Film Composite Reverse Osmosis Membranes Using ZIF-67 Nanoparticles as a Sacrificial Template. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33024-33033. [PMID: 34235913 DOI: 10.1021/acsami.1c07673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, nanovoid-enhanced thin-film composite (TFC) membranes have been successfully fabricated using ZIF-67 nanoparticles as the sacrificial template. By incorporating different amounts of ZIF-67 during interfacial polymerization, the resultant TFC membranes can have different degrees of nanovoids after self-degradation of ZIF-67 in water, consequently influencing their physiochemical properties and separation performance. Nanovoid structures endow the membranes with additional passages for water molecules. Thus, all the newly developed TFC membranes exhibit better separation performance for brackish water reverse osmosis (BWRO) desalination than the pristine TFC membrane. The membrane made from 0.1 wt % ZIF-67 shows a water permeance of 2.94 LMH bar-1 and a salt rejection of 99.28% when being tested under BWRO at 20 bar. This water permeance is 53% higher than that of the pristine TFC membrane with the salt rejection well maintained.
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Die Ling Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
18
|
Huang BQ, Tang YJ, Zeng ZX, Xue SM, Li SQ, Wang YR, Li EC, Tang CY, Xu ZL. Enhancing nanofiltration performance for antibiotics/NaCl separation via water activation before microwave heating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhan ZM, Tang YJ, Zhu KK, Xue SM, Ji CH, Tang CY, Xu ZL. Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Sciortino F, Sanchez-Ballester NM, Mir SH, Rydzek G. Functional Elastomeric Copolymer Membranes Designed by Nanoarchitectonics Approach for Methylene Blue Removal. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Yu X, Zhu T, Xu S, Zhang X, Yi M, Xiong S, Liu S, Shen L, Wang Y. Second interfacial polymerization of thin‐film composite hollow fibers with
amine‐
cyclodextrin
s
for pervaporation dehydration. AIChE J 2021. [DOI: 10.1002/aic.17144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xi Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Xuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shutong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
22
|
Long Q, Chen J, Wang Z, Zhang Z, Qi G, Liu ZQ. Vein-supported porous membranes with enhanced superhydrophilicity and mechanical strength for oil-water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sun H, Bao S, Zhao H, Chen Y, Wang Y, Jiang C, Li P, Jason Niu Q. Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Perfluoro-functionalized polyethyleneimine that enhances antifouling property of nanofiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Kong FX, Liu Q, Dong LQ, Zhang T, Wei YB, Chen JF, Wang Y, Guo CM. Rejection of pharmaceuticals by graphene oxide membranes: Role of crosslinker and rejection mechanism. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Yuan S, Zhang G, Zheng J, Jin P, Zhu J, Yang J, Liu S, Van Puyvelde P, Van der Bruggen B. Tuning intermolecular pores of resorcin[4]arene-based membranes for enhanced nanofiltration performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
The investigation of the reversed enantio-selectivity by an alpha-cyclodextrin doped thin film composite membrane. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Liu C, Wang W, Zhu L, Cui F, Xie C, Chen X, Li N. High-performance nanofiltration membrane with structurally controlled PES substrate containing electrically aligned CNTs. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Tang MJ, Liu ML, Wang DA, Shao DD, Wang HJ, Cui Z, Cao XL, Sun SP. Precisely Patterned Nanostrand Surface of Cucurbituril[ n]-Based Nanofiltration Membranes for Effective Alcohol-Water Condensation. NANO LETTERS 2020; 20:2717-2723. [PMID: 32207960 DOI: 10.1021/acs.nanolett.0c00344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[n] (n = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.5 wt % IPA aqueous solution to 9.0 wt %. This not only provides a novel strategy for patterning nanostructural morphology but also makes nanofiltration membranes promising for alcohol condensation in the biological fermentation industry that may reduce energy consumption and postprocessing costs.
Collapse
Affiliation(s)
- Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Da-An Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Dan-Dan Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hua-Jiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
30
|
Cai J, Cao XL, Zhao Y, Zhou FY, Cui Z, Wang Y, Sun SP. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117863] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117641] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Ke J, Zhang Y, Zhang X, Liu Y, Ji Y, Chen J. Novel chiral composite membrane prepared via the interfacial polymerization of diethylamino-beta-cyclodextrin for the enantioseparation of chiral drugs. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Ren D, Jin YT, Liu TY, Wang X. Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7605-7616. [PMID: 31968159 DOI: 10.1021/acsami.9b22086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The selective separation of ions in terms of extremely similar size and properties remains an important challenge in water purification. We innovated a kind of porous nanofilm via interfacial polymerization using rigid heterocyclic ligands to achieve high valent cation selectivity and rapid water/ion transport. The interconnected microporosity and uniformly distributed cation-affinitive sites of the ultrathin membranes enabled water permeation (7.5 L m-2 h-1 bar-1), ion permeance of Na+ (1.5 mol m-2 h-1 bar-1), and Mg2+/Na+ permselectivity (2.1) during nanofiltration. The forward osmosis exhibited a prominent water flux of 95 LMH at 1 M NaCl draw solution, which expanded various applications. The polyarylate membranes comprising 4,7-diphenyl-1,10-phenanthroline showed a higher water permeation and ion selectivity than the planar monomers, e.g., resorcinol. A distinct fluorescence responsiveness existed between membranes and cations for the interaction characterization. Host-guest nuclear magnetic resonance (NMR) spectroscopy and solid-state nuclear magnetic resonance spectroscopy characterized the preferential affinitive of divalent/high-valent cations in the interconnected microporous powders; an ultraviolet spectrophotometer characterized the light responsiveness of the porous nanofilms. Such an active membrane has potential applications in selective separation and adsorption of cations, photocatalytic materials, photosensors, and other fields.
Collapse
Affiliation(s)
- Dan Ren
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yu-Tao Jin
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
- Beijing Scinor Membrane Technology Co., Ltd. , Beijing 100083 , People's Republic of China
| | - Tian-Yin Liu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaolin Wang
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
34
|
Chen ZH, Liu Z, Hu JQ, Cai QW, Li XY, Wang W, Faraj Y, Ju XJ, Xie R, Chu LY. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Tang YJ, Shen BJ, Huang BQ, Zhan ZM, Xu ZL. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Xiao HF, Chu CH, Xu WT, Chen BZ, Ju XH, Xing W, Sun SP. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Graphene oxide/cross-linked polyimide (GO/CLPI) composite membranes for organic solvent nanofiltration. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Xiong S, Xu S, Phommachanh A, Yi M, Wang Y. Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3331-3341. [PMID: 30802043 DOI: 10.1021/acs.est.8b06628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyamide TFC membranes are widely applied in membrane-based water treatment but generally suffer various fouling problems. In this work, the layer-by-layer assembly of phytic acid (PA) and metal ions (M) is constructed on the surface TFC membrane for the first time, to improve the bio/organic fouling resistances and separation performance of TFC membranes simultaneously. The PA molecule with six phosphonic acid groups of strong chelation ability acts as the organic ligand, and the metal ion acts as the inorganic cross-linker, inducing the assembly of hydrophilic and antibacterial PA-M (Ag or Cu) complexes on the TFC membrane surface. Various characterizations including FTIR, XPS, SEM, AFM, and EDX are employed to confirm the successful and uniform modification of PA-M. FO performance of the PA-M modified TFC membranes, i.e., TFC_PA-Ag and TFC_PA-Cu, is optimized by varying PA concentration and assembly cycles, where the water flux can be improved by 57% and 68%, respectively, without compromising the membrane selectivity. Additionally, the PA-M modification improves the biofouling and organic fouling resistances of the TFC membrane remarkably, owing to the enhanced antibacterial ability and hydrophilicity. The modified TFC membranes are also proven to show the excellent stability by the quantitative release test.
Collapse
Affiliation(s)
- Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Anny Phommachanh
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , China
| |
Collapse
|
40
|
Zhou Z, Chen L, Wu Q, Zheng T, Yuan H, Peng N, He M. The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Yang Z, Huang X, Ma XH, Zhou ZW, Guo H, Yao Z, Feng SP, Tang CY. Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Wang H, Wei Z, Wang H, Jiang H, Li Y, Wu C. An acid-stable positively charged polysulfonamide nanofiltration membrane prepared by interfacial polymerization of polyallylamine and 1,3-benzenedisulfonyl chloride for water treatment. RSC Adv 2019; 9:2042-2054. [PMID: 35516149 PMCID: PMC9059827 DOI: 10.1039/c8ra08369j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 11/21/2022] Open
Abstract
Here, we selected macromolecular polyallylamine (PAH) as the monomer in an aqueous-phase reaction for the first time, which underwent interfacial polymerization with 1,3-benzenedisulfonyl chloride (BDSC) on the surface of a polyethersulfone (PES) ultrafiltration membrane to prepare a new PSA composite membrane with positive charge, acid stability and high separation performance. By tailoring the polymerization conditions, the desired PSA composite membrane exhibited excellent rejection of different salts [MgCl2 (92.44%) > MgSO4 (89.2%) > NaCl (56.8%) > Na2SO4 (55.2%)] and a high permeation flux of up to 34.10 L m−2 h−1 at 0.5 MPa. The properties of the membrane were evaluated using various characterization techniques. The results indicated that the new PSA membrane is more positively charged and more compact than reported PSA composite membranes. In addition, it exhibited high acid stability. After exposure to a 20% (w/v) H2SO4 solution for 30 days, the MgCl2 rejection level reached 88.3%. Finally, we used the new PSA composite membrane to test some heavy metal ions and found that the rejection level was always greater than 90%. Therefore, the new PSA composite membrane exhibited potential for water desalination and the removal of heavy metal ions from an acidic environment. Here, an acid stable PSA membrane with positively charge was prepared through the IP between macromolecular PAH and BDSC on PES substrate. In addition, the PSA membrane exhibited excellent separation performance to divalent metal ions.![]()
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| | - Heyun Wang
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
| | - Haoji Jiang
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| | - Yinchun Li
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| | - Chunlin Wu
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|
44
|
Liu S, Wang Z, Ban M, Song P, Song X, Khan B. Chelation–assisted in situ self-assembly route to prepare the loose PAN–based nanocomposite membrane for dye desalination. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Li Q, Cao B, Li P. Fabrication of High Performance Pervaporation Desalination Composite Membranes by Optimizing the Support Layer Structures. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02505] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bing Cao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pei Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Wang Y, Fang Z, Zhao S, Ng D, Zhang J, Xie Z. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Adv 2018; 8:22469-22481. [PMID: 35539700 PMCID: PMC9081449 DOI: 10.1039/c8ra03166e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
A new type of polyamide thin-film composite forward osmosis (FO) membranes were prepared by controlling dopamine self-polymerization in the aqueous phase during interfacial polymerization. The as-prepared membranes were investigated by attenuated total reflection Fourier transform infrared, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy and water contact angle measurements. The influence of the dopamine self-polymerization degree with different polydopamine particle sizes on membrane morphologies and chemical properties was studied by regulating dopamine concentrations in the aqueous phase. FO performance of the membrane was evaluated under two different modes, i.e. active layer facing draw solution (AL-DS) and active layer facing feed solution (AL-FS). The optimized FO membranes achieved a doubly enhanced water flux (22.08 L m−2 h−1) compared with the control membrane without dopamine incorporation, and a half-reduced reverse salt flux (32.77 mmol m−2 h−1) with deionized water as the feed and 1 M NaCl as the draw in the AL-FS mode. The optimized FO membrane showed a significantly reduced structural parameter (176 μm) compared with the control membrane (635 μm), indicating the minimised internal concentration polarization. Moreover, the new FO membranes had less flux decline than the control membrane, suggesting the improved antifouling performance of the membrane. Incorporation of dopamine during interfacial polymerization can be an effective strategy to fabricate high-performance FO membranes with excellent antifouling properties. Incorporation of dopamine enhanced selectivity and antifouling properties of novel TFC polyamide FO membranes.![]()
Collapse
Affiliation(s)
- Yi Wang
- Water Industry and Environment Engineering Technology Research Centre
- Chongqing
- China
- CSIRO Manufacturing
- Clayton
| | - Zhendong Fang
- Water Industry and Environment Engineering Technology Research Centre
- Chongqing
- China
| | - Shuaifei Zhao
- Department of Environmental Sciences
- Macquarie University
- Sydney
- Australia
| | | | - Juan Zhang
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds
- Australia
| | | |
Collapse
|