1
|
Zheng X, Shi Z, Han C, Mu H, Cheng S, Yan X. Convenient in situ self-assembled formation of dual-functional Ag/MXene nanozymes for efficient chemiluminescence sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8324-8332. [PMID: 39526932 DOI: 10.1039/d4ay00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MXenes are attracting increasing interest as a low-cost carrier for the development of nanozymes with enhanced peroxidase or oxidase-like activity. In this work, silver nanoparticles (AgNPs) were synthesized and loaded on Ti3C2 MXene nanosheets (denoted as Ag/MXene) by a simple method, using MXene as a support and reducing agent. The synthesized Ag/MXene composites exhibited satisfactory stability and the peroxidase activity was higher than that of the single components. In the presence of luminol and hydrogen peroxide (H2O2), Ag/MXene could catalyze H2O2 to produce reactive oxygen species (ROS) and act on luminol to generate strong chemiluminescent (CL) signals. Free radical scavenging experiments and electron paramagnetic resonance spectroscopy confirmed the production of these radicals. In this regard, we fabricated a facile biosensor for glutathione (GSH) and uric acid (UA) detection and the results showed good linear relationship between GSH and UA. The linear ranges of GSH and UA were 50 nM to 20 μM and 1 μM to 35 μM, respectively, with low detection limits of 0.83 nM and 0.37 μM. The sensor platform established in this study provides the possibility for developing MXene biosensors with high sensitivity and performance, and lays the solid foundation for expanding the application of MXene in biosensors.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chun Han
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Centre for Disease Control and Prevention, Nanchang, P. R. China, 330038
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- College of Pharmacy, Nanchang University, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Meng X, Du M, Li Y, Du S, Zhao L, Zheng S, Zhang J, Li H, Qiao L, Tan KB, Han W, Xu S, Li J, Lu M. Solidify Eutectic Electrolytes via the Added MXene as Nucleation Sites for a Solid-State Zinc-Ion Battery with Reconstructed Ion Transport. NANO LETTERS 2024; 24:8818-8825. [PMID: 38985501 DOI: 10.1021/acs.nanolett.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10-4 S cm-1 at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.
Collapse
Affiliation(s)
- Xiangxuan Meng
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Mingdong Du
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Yuning Li
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Shiji Du
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Lixin Zhao
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Shunri Zheng
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Jian Zhang
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Haibo Li
- School of Optoelectronic Science, Changchun College of Electronic Technology, Changchun, Jilin 130114, China
| | - Liang Qiao
- College of Science, Changchun University, Changchun, Jilin 130022, China
| | - Kar Ban Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Wenjuan Han
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Shichong Xu
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Jiaming Li
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| | - Ming Lu
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, China
| |
Collapse
|
3
|
Jia D, Yang T, Wang K, Wang H, Wang E, Chou KC, Hou X. Ti 3C 2T x Coated with TiO 2 Nanosheets for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Molecules 2024; 29:2915. [PMID: 38930980 PMCID: PMC11206739 DOI: 10.3390/molecules29122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Two-dimensional MXenes have become an important material for electrochemical sensing of biomolecules due to their excellent electric properties, large surface area and hydrophilicity. However, the simultaneous detection of multiple biomolecules using MXene-based electrodes is still a challenge. Here, a simple solvothermal process was used to synthesis the Ti3C2Tx coated with TiO2 nanosheets (Ti3C2Tx@TiO2 NSs). The surface modification of TiO2 NSs on Ti3C2Tx can effectively reduce the self-accumulation of Ti3C2Tx and improve stability. Glassy carbon electrode was modified by Ti3C2Tx@TiO2 NSs (Ti3C2Tx@TiO2 NSs/GCE) and was able simultaneously to detect dopamine (DA), ascorbic acid (AA) and uric acid (UA). Under concentrations ranging from 200 to 1000 μM, 40 to 300 μM and 50 to 400 μM, the limit of detection (LOD) is 2.91 μM, 0.19 μM and 0.25 μM for AA, DA and UA, respectively. Furthermore, Ti3C2Tx@TiO2 NSs/GCE demonstrated remarkable stability and reliable reproducibility for the detection of AA/DA/UA.
Collapse
Affiliation(s)
- Dengzhou Jia
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Yang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kang Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Enhui Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kuo-Chih Chou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinmei Hou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Yang J, Zhu S, Zhang H. Polycation-Intercalated MXene Membrane with Enhanced Permselective and Anti-Microbial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2885. [PMID: 37947731 PMCID: PMC10650023 DOI: 10.3390/nano13212885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) nanomaterial-based membranes feature attractive properties for molecular separation and transport, which exhibit huge potential in various chemical processes. However, the low permeability and bio-fouling of the MXene membrane in water treatment become huge obstacles to its practical application. Herein, a highly permselective and anti-bacterial 2D nanofiltration membrane is fabricated by intercalating a polycation of polydiallyldimethylammonium chloride (PDDA) into the Ti3C2Tx MXene laminar architecture through a facile and patternable electrostatic assembly strategy. As a result, the as-fabricated Ti3C2Tx/PDDA composite membrane exhibits higher water permeance up to 73.4 L m-2 h-1 with a rejection above 94.6% for MgCl2. The resultant membrane simultaneously possesses good resistance to swelling and long-term stability in water environments, even after 8 h. Additionally, the Ti3C2Tx/PDDA membrane also demonstrates a high flux recovery ratio of nearly 96.1% to bovine serum albumin proteins after being cleaned. More importantly, the current membrane shows excellent anti-adhesive and anti-microbial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), with inhibition rates of 90% and 95% against E. coli and S. aureus, respectively. This holds great potential for the application of the polyelectrolyte-intercalated MXene membrane in serving as a promising platform to separate molecules and/or ions in an aquatic environment.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| |
Collapse
|
5
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Kailasa SK, Alfantazi A. Applications of advanced MXene-based composite membranes for sustainable water desalination. CHEMOSPHERE 2023; 314:137643. [PMID: 36581116 DOI: 10.1016/j.chemosphere.2022.137643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
MXenes are an innovative class of 2D nanostructured materials gaining popularity for various uses in medicine, chemistry, and the environment. A larger outer layer area, exceptional stability and conductivity of heat, high porosity, and environmental friendliness are all characteristics of MXenes and their composites. As a result, MXenes have been used to produce Li-ion batteries, semiconductors, water desalination membranes, and hydrogen storage. MXenes have recently been used in many environmental remediations, frequently surpassing conventional materials, to treat groundwater contamination, surface waters, industrial and municipal wastewaters, and desalination. Due to their outstanding structural characteristics and the enormous specific surface area, they are widely utilized as adsorbents or membrane materials for the desalination of seawater. When used for electrochemical applications, MXene-composites can deionize via Faradaic capacitive deionization (CDI) and adsorb various organic and inorganic pollutants to treat the water. In general, as compared to other 2D nanomaterials, MXene has superb characteristics; because of their magnificent characteristics and they exhibit strong desalination capability. The current review paper discusses the desalination capability of MXenes and their composites. Focusing on the desalination capacity of MXene-based nanomaterials, this study discusses the characteristics and synthesis techniques of MXenes their composites along with their ion-rejection capability and pervaporation desalination of water via MXene-based membranes, capacitive deionization capability, solar desalination capability. Furthermore, the challenges and prospects of MXenes and their composites are highlighted.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujarat, India
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
6
|
Dai L, Xiong Z, Xu W, Qu K, Wang Y, Gu S, Cao H, Yu Y, Lei L, Li S, Huang K, Guo X, Xu Z. Two-dimensional confined channels with high-density hydrophilic microregions for enhanced selective water transport. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
8
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Cai R, Zhao J, Lv N, Fu A, Yin C, Song C, Chao M. Curing and Molecular Dynamics Simulation of MXene/Phenolic Epoxy Composites with Different Amine Curing Agent Systems. NANOMATERIALS 2022; 12:nano12132249. [PMID: 35808085 PMCID: PMC9268527 DOI: 10.3390/nano12132249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
Herein, the curing kinetics and the glass transition temperature (Tg) of MXene/phenolic epoxy composites with two curing agents, i.e., 4,4-diaminodiphenyl sulfone (DDS) and dicyandiamine (DICY), are systematically investigated using experimental characterization, mathematical modeling and molecular dynamics simulations. The effect of MXene content on an epoxy resin/amine curing agent system is also studied. These results reveal that the MXene/epoxy composites with both curing agent systems conform to the SB(m,n) two-parameter autocatalytic model. The addition of MXene accelerated the curing of the epoxy composite and increased the Tg by about 20 K. In addition, molecular dynamics were used to simulate the Tg of the cross-linked MXene/epoxy composites and to analyze microstructural features such as the free volume fraction (FFV). The simulation results show that the introduction of MXene improves the Tg and FFV of the simulated system. This is because the introduction of MXene restricts the movement of the epoxy/curing agent system. The conclusions are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Rui Cai
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (N.L.); (A.F.); (C.Y.)
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (R.C.); (M.C.)
| | - Jinlong Zhao
- Petrochina Jidong Oilfield Company, Tangshan 063004, China;
| | - Naixin Lv
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (N.L.); (A.F.); (C.Y.)
| | - Anqing Fu
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (N.L.); (A.F.); (C.Y.)
| | - Chengxian Yin
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China; (N.L.); (A.F.); (C.Y.)
| | - Chengjun Song
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang’an University, Xi’an 710064, China;
| | - Min Chao
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang’an University, Xi’an 710064, China;
- Correspondence: (R.C.); (M.C.)
| |
Collapse
|
10
|
Zhang H, Zheng Y, Yu S, Chen W, Yang J. A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2103. [PMID: 35745442 PMCID: PMC9229763 DOI: 10.3390/nano12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022]
Abstract
Membrane-based nanotechnology possesses high separation efficiency, low economic and energy consumption, continuous operation modes and environmental benefits, and has been utilized in various separation fields. Two-dimensional nanomaterials (2DNMs) with unique atomic thickness have rapidly emerged as ideal building blocks to develop high-performance separation membranes. By rationally tailoring and precisely controlling the nanochannels and/or nanoporous apertures of 2DNMs, 2DNM-based membranes are capable of exhibiting unprecedentedly high permeation and selectivity properties. In this review, the latest breakthroughs in using 2DNM-based membranes as nanosheets and laminar membranes are summarized, including their fabrication, structure design, transport behavior, separation mechanisms, and applications in liquid separations. Examples of advanced 2D material (graphene family, 2D TMDs, MXenes, metal-organic frameworks, and covalent organic framework nanosheets) membrane designs with remarkably perm-selective properties are highlighted. Additionally, the development of strategies used to functionalize membranes with 2DNMs are discussed. Finally, current technical challenges and emerging research directions of advancing 2DNM membranes for liquid separation are shared.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Yiling Zheng
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Shuwen Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China;
| | - Weixing Chen
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
11
|
Xu D, Luo X, Jin P, Zhu J, Zhang X, Zheng J, Yang L, Zhu X, Liang H, Van der Bruggen B. A novel ceramic-based thin-film composite nanofiltration membrane with enhanced performance and regeneration potential. WATER RESEARCH 2022; 215:118264. [PMID: 35303558 DOI: 10.1016/j.watres.2022.118264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The rational design of a ceramic-based nanofiltration membrane remains a significant challenge due to its performance and fabrication cost. Herein, we report a high-performance ceramic-based thin-film composite (TFC) membrane fabricated via a typical interfacial polymerization on an interwoven net substrate assembled by titanium dioxide (TiO2) nanowires. The chemical properties and morphologies were systematically investigated for ceramic substrates and their corresponding TFC membranes. Due to the significantly improved hydrophilicity of the TiO2 framework, more reactive amine monomers were uniformly adsorbed on the modified surface of the ceramic substrate, yielding an ultrathin polyamide layer with less resistance. In addition, the smooth surface and decreased pore size of the TiO2 framework contributed to forming a defect-free polyamide layer. As a result, the obtained ceramic-based TFC membrane evinced high permeance of 26.4 L m-2 h-1 bar-1 and excellent salt rejection efficiency, leading to simultaneous improvements compared with the control TFC membrane without the TiO2 framework. Notably, the potential regeneration ability of the ceramic-based TFC membrane could be achieved via facile low-temperature calcination and re-polymerization process due to the varied thermostability between the polyamide layer and the robust ceramic substrate. The operation of regeneration helped to prolong the lifetime and decrease the cost for the ceramic-based TFC membrane. This research provides a feasible protocol to fabricate sustainable ceramic-based nanofiltration membranes with enhanced performance for water treatment.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Junyong Zhu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
12
|
Zhou Z, Zhou S, Cheng X, Liu W, Wu R, Wang J, Liu B, Zhu J, Van der Bruggen B, Zhang Y. Ultrathin polyamide membranes enabled by spin-coating assisted interfacial polymerization for high-flux nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Siwal SS, Sheoran K, Mishra K, Kaur H, Saini AK, Saini V, Vo DVN, Nezhad HY, Thakur VK. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. CHEMOSPHERE 2022; 293:133542. [PMID: 34999104 DOI: 10.1016/j.chemosphere.2022.133542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
MXenes are a quickly growing and extended group of two-dimensional (2D) substances that have earned unbelievable analysis credits for various application areas within different manufacturing areas. Due to novel essential architectural and physicochemical properties shows good properties, such as elevated exterior area, living adaptability, strong electrochemistry, and great hydrophilicity. Given the fast progress within the structure and synthesis of MBNs for water treatment, quick updates on this research field are required to remove toxic substances, such as production approaches and characterization methods for the advantages and constraints of MXenes for pollutant degradation. MXenes are determined as a proposed road toward atmosphere-clean-up machinery to identify and decrease a pattern of hazardous resistant pollutants from environmental forms. Here, in this review article, we have been focused on describing the overview, novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation, along with the conclusion, challenges, and prospects in this field, have been discussed.
Collapse
Affiliation(s)
- Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Karamveer Sheoran
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Kirti Mishra
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Vipin Saini
- Department of Pharmacy, Maharishi Markandeshwar University, Kumarhatti, Solan, Himachal Pradesh, 173229, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering and Aeronautics, City University of London, London, EC1V0HB, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
14
|
Chen Y, Yang C, Huang X, Li L, Yu N, Xie H, Zhu Z, Yuan Y, Zhou L. Two-dimensional MXene enabled carbon quantum dots@Ag with enhanced catalytic activity towards the reduction of p-nitrophenol. RSC Adv 2022; 12:4836-4842. [PMID: 35425493 PMCID: PMC8981249 DOI: 10.1039/d1ra09177h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
A composite of cuttlefish ink-based carbon quantum dots@Ag/MXene (CQD@Ag/MXene) was firstly synthesized by solvothermal method as a catalyst for reduction of p-nitrophenol (PNP) to p-aminophenol (PAP). CQD@Ag/MXene was characterized by scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman. The results show that loading on 2D material MXene can prevent the aggregation of CQD@Ag and expose more active sites, which contributes to a superior catalytic activity with a pseudo-first-order rate constant k (2.28 × 10-2 s-1) and mass-normalized rate constant k m (5700 s-1 g-1), nearly 2 times higher than CQD@Ag without MXene (k = 1.09 × 10-2 s-1 and k m = 2725 s-1 g-1). Besides, CQD@Ag/MXene showed excellent reusability which even retained about 65% activity in successive 10 cycles. The high adsorption rate to PNP and the promotion of forming H radicals may be the reason for the outstanding catalytic activity of CQD@Ag/MXene. CQD@Ag/MXene can be a potential candidate in the removal of environmental pollutants due to its facile synthesis and high catalytic efficiency.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Chunli Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Xiaotong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Lu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Na Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Huan Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Zebin Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Yong Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| |
Collapse
|
15
|
Zhang T, Guo X, Solomon B, Sharifpur M, Zhang LZ. A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Liu G, Guo Y, Meng B, Wang Z, Liu G, Jin W. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Chen Z, Asif M, Wang R, Li Y, Zeng X, Yao W, Sun Y, Liao K. Recent Trends in Synthesis and Applications of porous MXene Assemblies: A Topical Review. CHEM REC 2021; 22:e202100261. [PMID: 34913570 DOI: 10.1002/tcr.202100261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/01/2021] [Indexed: 02/06/2023]
Abstract
MXene possesses high conductivity, excellent hydrophilicity, rich surface chemistry, hence holds great potential in various applications. However, MXene materials have low surface area utilization due to the agglomeration of ultrathin nanosheets. Assembling 2D MXene nanosheets into 3D multi-level architectures is an effective way to circumvent this issue. Incorporation of MXene with other nanomaterials during the assembly process could rationally tune and tailor the specific surface area, porosity and surface chemistry of the MXene assemblies. The complementary and synergistic effect between MXene and nanomaterials could expand their advantages and make up for their disadvantages, thus boost the performance of 3D porous MXene composites. Herein, we summarize the recent progress in fabrication of porous MXene architectures from 2D to 3D, and also discuss the potential applications of MXene nanostructures in energy harvesting systems, sensing, electromagnetic interference shielding, water purification and photocatalysis.
Collapse
Affiliation(s)
- Zhenyu Chen
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruochong Wang
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yong Li
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xu Zeng
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wentao Yao
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Mahar I, Memon FH, Lee JW, Kim KH, Ahmed R, Soomro F, Rehman F, Memon AA, Thebo KH, Choi KH. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Water Purification and Antibacterial Applications. MEMBRANES 2021; 11:869. [PMID: 34832099 PMCID: PMC8623976 DOI: 10.3390/membranes11110869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Two-dimensional (2D) materials such as graphene, graphene oxide (GO), metal carbides and nitrides (MXenes), transition metal dichalcogenides (TMDS), boron nitride (BN), and layered double hydroxide (LDH) metal-organic frameworks (MOFs) have been widely investigated as potential candidates in various separation applications because of their high mechanical strength, large surface area, ideal chemical and thermal stability, simplicity, ease of functionalization, environmental comparability, and good antibacterial performance. Recently, MXene as a new member of the 2D polymer family has attracted significant attention in water purification, desalination, gas separation, antibacterial, and antifouling applications. Herein, we review the most recent progress in the fabrication, preparation, and modification methods of MXene-based lamellar membranes with the emphasis on applications for water purification and desalination. Moreover, the antibacterial properties of MXene-based membranes show a significant potential for commercial use in water purification. Thus, this review provides a directional guide for future development in this emerging technology.
Collapse
Affiliation(s)
- Inamullah Mahar
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Sindh, Pakistan; (I.M.); (A.A.M.)
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan;
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Jae-Wook Lee
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Kyung Hwan Kim
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| | - Rafique Ahmed
- Institute of Composite Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China;
| | - Faheeda Soomro
- Department of Linguistics and Human Sciences, Begum Nusrat Bhutto Women University, Sukkur 65200, Sindh, Pakistan;
| | - Faisal Rehman
- Department of Mechatronics Engineering, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi 43701, Punjab, Pakistan;
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Sindh, Pakistan; (I.M.); (A.A.M.)
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang 110016, China
| | - Kyung Hyun Choi
- Advanced Micro Mechatronics Lab., Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.-W.L.); (K.H.K.)
| |
Collapse
|
19
|
Boobphahom S, Siripongpreda T, Zhang D, Qin J, Rattanawaleedirojn P, Rodthongkum N. TiO 2/MXene-PVA/GO hydrogel-based electrochemical sensor for neurological disorder screening via urinary norepinephrine detection. Mikrochim Acta 2021; 188:387. [PMID: 34668069 DOI: 10.1007/s00604-021-04945-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
A hydrogel based on titanium dioxide/MXene with polyvinyl alcohol/graphene oxide (TiO2/MXene-PVA/GO) composite was successfully formulated and applied to modify a screen-printed carbon electrode (SPCE) for urinary norepinephrine (NE) detection. The characterization confirmed that a nanocomposite hydrogel structure of TiO2/MXene-PVA/GO was formed. The as-prepared hydrogel substantially enhanced the sensor performances due to electrocatalytic activity of TiO2, high conductivity of MXene, and auto-sample preconcentration via PVA/GO hydrogel. The electrochemical behavior of NE was investigated by cyclic voltammetry and amperometry. Under optimized conditions, the TiO2/MXene-PVA/GO hydrogel/SPCE response due to the oxidation of NE at +0.4 V (vs. Ag|AgCl) is proportional to the concentration of NE over 0.01 to 1.00 μM (R2 = 0.9968) and 1.00 to 60.0 μM (R2 = 0.9936) ranges with a detection limit (3σ) of 6 nM without interferent effect from common interferences in urine. Furthermore, this sensor was employed for urinary NE determination and validated by high performance liquid chromatography (HPLC) with a UV detector at 280 nm; the average recovery was found to be 97.6 to 102%, with a relative standard deviation (RSD) less than 4.9%. This device was sensitive enough to evaluate an early stage of neurological disorder via detecting clinically relevant NE level. Eventually, it was integrated with pantyliners which could be a potential wearable sensor in the near future.
Collapse
Affiliation(s)
- Siraprapa Boobphahom
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tatiya Siripongpreda
- Nanoscience and Technology Interdisciplinary Program, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - DongDong Zhang
- Nanoscience and Technology Interdisciplinary Program, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pranee Rattanawaleedirojn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Liu Y, Chen Y, Chen Z, Qi H. A novel cellulose‐derived carbon aerogel@
Na
2
Ti
3
O
7
composite for efficient photocatalytic degradation of methylene blue. J Appl Polym Sci 2021. [DOI: 10.1002/app.51347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Liu
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Zhishan Chen
- Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd. Qingyuan China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| |
Collapse
|
21
|
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
22
|
Zhang W, Kai Y, Lin J, Huang Y, Liu X. Enhancing dielectric and mechanical properties of poly(arylene ether nitrile) based composites by introducing low content “core-shell” like structured MXene&PDA@ BaTiO3. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211014936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyarylene ether nitrile (PEN) based composites combined MXene, Polydopamine (PDA) and barium titanate (BaTiO3, BT) with “core-shell”-like structure were developed successfully in this work, and then incorporating into the PEN matrix to form the PEN/MXene&PDA@BT nanocomposite films through the solution casting method. The novel MXene&PDA@BT nanoparticles were characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Then the structure and properties of the obtained PEN/MXene&PDA@BT nanocomposites are studied in detail. The results show that the modification of PDA improved the dispersibility of MXene nanosheets and BT nanoparticles in the PEN matrix, resulting in the enhancement of mechanical and dielectric properties. The research results reveal that when the content of MXene&PDA@BT is 1%, the tensile strength and modulus reached 114.15 MPa and 3015.74 MPa, respectively. Most important, the PEN based nanocomposites exhibit the outstanding frequency in dependent dielectric properties, including high dielectric constant (5.08 at 1 kHz) and low dielectric loss (0.0178 at 1 kHz). These results indicate that the PEN/MXene&PDA@BT composite films are greatly significant for using as the constructing high performance dielectric materials.
Collapse
Affiliation(s)
- Weixi Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yuan Kai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jian Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yumin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
|
24
|
Zhou J, Zhang Y, Jia G, Chen Z, Yang Y, Zhang L. A multifunctional sponge incorporated with TiO 2 and graphene oxide as a reusable absorbent for oil/water separation and dye absorption. NEW J CHEM 2021. [DOI: 10.1039/d0nj06298g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reusable TiO2–GO–SA sponges can be used for the oil/water separation and absorption of oils and dyes.
Collapse
Affiliation(s)
- Jian Zhou
- School of Material Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Yan Zhang
- School of Material Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Guangwen Jia
- School of Material Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Zhenfei Chen
- School of Material Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Yongqiang Yang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu)
- Jiangsu Province Special Equipment Safety Supervision Inspection Institute Branch of Wuxi
- Wuxi 214174
- P. R. China
| | - Lu Zhang
- School of Material Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
25
|
Al-Hamadani YAJ, Jun BM, Yoon M, Taheri-Qazvini N, Snyder SA, Jang M, Heo J, Yoon Y. Applications of MXene-based membranes in water purification: A review. CHEMOSPHERE 2020; 254:126821. [PMID: 32325351 DOI: 10.1016/j.chemosphere.2020.126821] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Since MXenes (a new family of two-dimensional materials) were first produced in 2011, they have become very attractive nanomaterials due to their unique properties and the range of potential industrial applications. Numerous recent studies have discussed the environmental applications of different MXenes in adsorption, catalysis, and membranes. Only a limited number of MXene-based membrane studies have been published to date, and most have discussed only specific MXenes (i.e., Ti3C2Tx), a small number of solutes (e.g., dyes and inorganic salts), and laboratory-scale short-term experiments under limited water-quality and operational conditions. In addition, to our knowledge, there has been no review of MXene-membrane studies. It is therefore essential to assess the current status of understanding of the performance of these membranes in liquid separation and water purification. Here, a comprehensive literature review is conducted to summarize the current preparation techniques for MXene-based membranes and their applications, particularly in terms of environmental and industrial applications (e.g., water treatment and organic solvent filtration), and to direct future research by identifying gaps in our present understanding. In particular, this review focuses on several key factors, including the effects of preparation techniques on membrane properties, operational conditions, and compound properties that influence liquid separation during MXene-based membrane filtration.
Collapse
Affiliation(s)
- Yasir A J Al-Hamadani
- Directorate of Construction and Building, Ministry of Higher Education and Scientific Research of Iraq, 52 Street, Al-Rusafa, Baghdad, 00964, Iraq
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Michelle Yoon
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Shane A Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
26
|
Karahan HE, Goh K, Zhang CJ, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae TH. MXene Materials for Designing Advanced Separation Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906697. [PMID: 32484267 DOI: 10.1002/adma.201906697] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chuanfang John Zhang
- ETH Domain, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Euntae Yang
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- Department of Marine Environmental Engineering, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongnam, 53064, Republic of Korea
| | - Cansu Yıldırım
- Polymer Science and Technology Graduate Program, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Chong Yang Chuah
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - M Göktuğ Ahunbay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Jaewoo Lee
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | | | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
27
|
Riaz S, Park SJ. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Cai W, Cheng X, Chen X, Li J, Pei J. Poly(vinyl alcohol)-Modified Membranes by Ti 3C 2T x for Ethanol Dehydration via Pervaporation. ACS OMEGA 2020; 5:6277-6287. [PMID: 32258862 PMCID: PMC7114143 DOI: 10.1021/acsomega.9b03388] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
In this paper, PVA/Ti3C2T x mixed matrix membranes (MMMs) were prepared by mixing the synthesized Ti3C2T x with the PVA matrix, and the pervaporation (PV) performance of the ethanol-water binary system was tested. The morphology, structural properties, and surface characteristics of the membranes were investigated by scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, degree of swelling, and water contact angle. The PVA/Ti3C2T x MMMs exhibit excellent compatibility and swelling resistance. Moreover the effects of the Ti3C2T x filling level, feed concentration, and operating temperature on the ethanol dehydration performance were systematically studied. The results demonstrated that the separation factor of PVA/Ti3C2T x MMMs was significantly increased because of Ti3C2T x promoting the cross-linking density of the membrane. Specifically, the membrane showed the best PV performance when Ti3C2T x loading was 3.0 wt %, achieving a separation factor of 2585 and a suitable total flux of 0.074 kg/m2 h for separating 93 wt % ethanol solution at 37 °C.
Collapse
Affiliation(s)
- Weibin Cai
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xue Cheng
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiaohan Chen
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Jiding Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junqi Pei
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
29
|
|
30
|
Zhu X, Liu B, Li L, Wu L, Chen S, Huang L, Yang J, Liang S, Xiao K, Hu J, Hou H. A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(II), cadmium(II) and zinc(II). Mikrochim Acta 2019; 186:776. [DOI: 10.1007/s00604-019-3837-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
|
31
|
Wang G, Sun J, Yao Y, An X, Zhang H, Chu G, Jiang S, Guo Y, Sun X, Liu Y. Detection of Inosine Monophosphate (IMP) in Meat Using Double-Enzyme Sensor. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01652-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Zou D, Xu J, Chen X, Drioli E, Qiu M, Fan Y. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|